【最新】初中数学-两圆相切2

合集下载

初中数学圆的知识点总结归纳[修改版]

初中数学圆的知识点总结归纳[修改版]

第一篇:初中数学圆的知识点总结归纳初中数学圆的知识点总结归纳圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=cπ4、圆周长的一半:1周长(曲线)5、半圆的长:1周长+直径面积计算公式:1、已知半径:S=πr平方2、已知直径:S=π(d)平方3、已知周长:S=π(cπ)平方点、直线、圆和圆的位置关系1.点和圆的位置关系①点在圆内点到圆心的距离小于半径②点在圆上点到圆心的距离等于半径③点在圆外点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

2012中考数学复习(47):圆与圆(二)

2012中考数学复习(47):圆与圆(二)

中考数学复习(47):圆与圆(二)知识考点:1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。

2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。

精典例题:【例1】如图,⊙O 1与⊙O 2外切于P ,AB 是两圆的外公切线,切点为A 、B ,我们称△PAB 为切点三角形,切点三角形具有许多性质,现总结如下:(1)△PAB 是直角三角形,并且∠APB =900; (2)△PAB 的外接圆与连心线O 1O 2相切;(3)以O 1O 2为直径的圆与Rt △PAB 的斜边AB 相切; (4)斜边AB 是两圆直径的比例中项;(5)若⊙O 1、⊙O 2的半径为1R 、2R ,则PA ∶PB ∶AB =1R ∶2R ∶21R R +; (6)内公切线PC 平分斜边AB ; (7)△CO 1O 2为直角三角形。

这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。

例1图1例1图2F如图2,⊙A 和⊙B 外切于P ,CD 为两圆的外公切线,C 、D 分别为切点,PT 为内公切线,PT 与CD 相交于点T ,延长CP 、DP 分别与两圆相交于点E 、F ,又⊙A 的半径为9,⊙B 的半径为4。

(1)求PT 的长;(2)求证:PF PE PD PC ⋅=⋅;(3)试在图中找出是线段PA 和PB 比例中项的线段,并加以证明。

分析:图中的基本图形是切点三角形,易证T 为CD 的中点,∠CPD =900,PT 即为外公切线长的一半,CF 、DE 分别为两圆直径,且互相平行,问题就解决了。

略解:(1)作BG ⊥AC 于G ,则CD =BG =12)49()49(22=--+∴PT =CT =TD =21CD =6 证明:(2)PT =21CD ,∴∠CPD =900 ∴CF 、DE 分别是⊙A 和⊙B 的直径又∵CD 切两圆于C 、D ,∴FC ⊥CD ,ED ⊥CD∴CF ∥DE ,∴PDPFPE CP =,∴PF PE PD PC ⋅=⋅ (3)图中是PA 和PB 比例中项的线段有PT 、CT 、DT (证明略)【例2】如图,⊙O 和⊙O '内切于点B ,⊙O '经过O ,⊙O 的弦AE 切⊙O '于点C ,AB 交⊙O '于D 。

初中数学竞赛-第14讲 两圆相交相切

初中数学竞赛-第14讲 两圆相交相切
性质 8 两圆内切于点 T ,以公切线 BC 为公共边,分别作两圆的外切三角形, △ABC 的
AB 、 AC 切大圆于 E 、 F , △DBC 的 DB 、 DC 切小圆于 G 、 H ,则直线 EF 、 GH ,则 直线 EF 、 GH 、 BC 要么相互平行,要么相交于一点. 证明 当 T 为 BC 的中点时, △ABC 、 △DBC 均为等腰三角形,此时 EF , GH , BC 三条 直线相互平行. 当 T 不是 BC 的中点时,如图.
A
ED
G
F
H
B
TC
P
设直线 EF 与 BC 交于点 P .下面证 G 、 H 、 P 三点共线. 由切线长定理,知 AE AF , DG DH , BE BT BG , CF CT CH .故 G 、 H 、 P 三点共线.
性质 9 ⊙O1 与 ⊙O2 相交于点 M , N (或外切于点 M ),且分别与 ⊙O 内切于点 T1 , T2 , P 为 ⊙O 上任一点,弦 PT1 , PT2 分别交 ⊙O1 , ⊙O2 于 E1 , E2 ,则 E1E2 是 ⊙O1 与 ⊙O2 的
由 △O1AT∽△OPT
,有
AT PT
O1 A OP
r R

即有 PA PT AT 1 r R r . ①
PT PT
RR
又由切割线定理,有 PQ2 PA PT .

由 PQ2 PT 2 R r ,故 PT PQ R
R Rr .
P
P
A O
Q O1
A O
Q O1
性质 7 两圆内切于点 T ,大圆的内接三角形 ABC 的边 AB 、 AC 分别与小圆相切于 P 、 Q , 则 PQ 的中点 I 为 △ABC 的内心. 此性质即为曼海姆定理

【初中数学】初中数学圆和圆位置关系公式大全

【初中数学】初中数学圆和圆位置关系公式大全

【初中数学】初中数学圆和圆位置关系公式大全【—圆和圆位置关系】圆的要义:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

圆和圆位置关系①并无公共点,一圆在另一圆之外叫做外离,在之内叫做附带。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③存有两个公共点的叫做平行。

两圆圆心之间的距离叫作圆心距。

设两圆的半径分别为r和r,且r〉r,圆心距为p,则结论:外离p>r+r;外切p=r+r;内含p内乌p=r-r;平行r-r⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②一条弧所对的圆周角等同于它面元的圆心角的一半。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(l/2πr)×360°=180°l/πr=l/r(弧度)即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③如果一条弧的短就是另一条弧的2倍,那么其面元的圆周角和圆心角就是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理①外接圆圆心就是三角形各边垂直平分线的交点,至三角形三个顶点距离成正比;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③r=2s△÷l(r:内切圆半径,s:三角形面积,l:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆o中的弦pq的中点m,过点m任作两弦ab,cd,弦ad与bc分别交pq于x,y,则m为xy之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等同于它所缠的弧的度数的一半。

相切定义

相切定义

相切定义及几何就是,如果一条直线垂直于圆的半径,同时这条直线过圆的半径的外端,这条直线与圆相切。

若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。

初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。

相切是平面上的圆与另一个几何形状的一种位置关系。

这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。

这个交点即为切点。

性质如果两个圆相切,那么切点一定在连心线所在的直线上.AB切○O于A两圆相切的性质如果两个圆相切,那么切点一定在连心线上.拓展圆和圆的五种位置关系设两圆半径分别为R和r,圆心距O1O2=d,则(1)两圆外离?d>R+r;(2)两圆外切?d=R+r;(3)两圆相交?R-r位置关系设两圆半径分别为R和r,圆心距⊙1⊙2=d,则(1)两圆外离⇔d>R+r;(2)两圆外切⇔d=R+r;(3)两圆相交⇔R-r<d<R+r(R≥r);(4)两圆内切⇔d=R-r;(5)两圆内含⇔0≤d<R-r.两圆的公切线及公切线长(1)两圆的公切线:和两圆都相切的直线,叫做两圆的公切线;(2)两圆的外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线;(3)两圆的内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线;(4)公切线长:公切线上两个切点间的距离叫公切线长.(5)公切线公式:l外=d2-(R-r)2,l内=d2-(R+r)2.公切线长定理(1)如果两圆有两条外公切线,则它们的外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等;(2)如果两条外(内)公切线相交,那么交点一定在两圆的连心线上,并且连心线平分这两条外(内)公切线的夹角.燕尾定理燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有S△AOB∶S△AOC=BD∶CDS△AOB∶S△COB=AE∶CES△BOC∶S△AOC=BF∶AF因此图类似燕尾而得名。

与两圆相切有关问题

与两圆相切有关问题

B(2,1)的圆的方程.
问题1:要不要讨论,两圆是内切还是外切?
2 2 2 解:设圆的方程为 ( x a ) ( y b ) r
2 ( a - 3) (b 1) 2 r 2 2 2 则 (-1 - a ) (4 - b) r 2 2 2 (2 - a ) (1 - b) r
|a|=4+1,∴a=〒5,若圆C1与圆C2内切,则|C1C2|=r1-r2,即
|a|=3,∴a=〒3. 2.与x轴相切,并和圆x2+y2=1外切的动圆的圆心轨迹方程是( (A)x2=2y+1 (B)x2=-2y+1 )
(C)x2=2|y|+1
(D)x2=2y-1
3.
(状元桥P77例2)
例 4 .求半径为 4,与圆 x y - 4 x - 2 y - 4 0,且和直线 相切的圆的方程
(状元桥
y 0
P78误区警示)
( ) )
练习:
1.若圆C1:x2+y2=16与圆C2:(x-a)2y+1
(B)±5
(C)3或5
(B)x2=-2y+1
(D)±3或±5
2.与x轴相切,并和圆x2+y2=1外切的动圆的圆心轨迹方程是(
(C)x2=2|y|+1
(D)x2=2y-1
3.
1.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为
(
(A)±3 (B)±5 (C)3或5 (D)±3或±5
)
【解析】选D.若圆C1与圆C2外切,则|C1C2|=r1+r2,即
|C 1 C 2|= (m+1) +(m+2) .

九年级数学上册22.2.2圆的切线课件新版北京课改版


预习反馈
1.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上
底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半
圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( A )
A.14B.9Fra bibliotekC.10
D.12
预习反馈
2.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直 径,已知∠BAC=35°,∠P的度数为( D )
典例精析
典例精析
典例精析
典例精析
例2、如图所示, ⊙O是△ABC的内切圆,切点分别为E, F,C,AB = 9,BC = 13,AC=10。求AE、BF和CG的长。
典例精析
分析:∵⊙ O是△ABC的内切圆,切点分别为E, F,G, ∴AE=AG,BE=BF,CG=CF 设AE=x,BF=y,CG=z。 ∴ x + y =9,y + z = 13,z + x = 10。 解这个方程组,得 x =3,y = 6,z = 7。 ∴AE = 3,BF = 6, CG = 7。
A. 35° C. 60°
B. 45° D. 70°
预习反馈
3.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且
相交于P点.若PC=2,CD=3,DB=6,则△PAB的周长为何
( D)
A. 6
B. 9
C. 12
D. 14
预习反馈
4.如图,AB、AC是⊙O的两条切线,B、C是切点,若
∠A=70°,则∠BOC的度数为( C )
本课小结
(4)切线长定理包含着一些隐含结论: ①垂直关系三处; ②全等关系三对; ③弧相等关系两对,在一些证明求解问题中经常用到。

初中数学圆中常见的两解问题

初中数学圆中常见的两解问题《圆》是初中阶段的重点内容,而圆中两解问题又是其中的难点,也是中考命题的热点,现归纳如下:一、两平行弦之间的距离例1. 圆O 的半径是5,弦AB=6,CD=8,且AB//CD ,求弦AB ,CD 之间的距离。

分析:两种情况(1)弦AB 、CD 在圆心O 的两侧(如图1)。

(2)弦AB 、CD 在圆心O 的同侧(如图2)。

解:(1)过点O 作AB OE ⊥,垂足为E ,延长EO 交CD 于F (如图1)。

CD OF ,AB OE ,CD //AB ⊥∴⊥ 。

连接OB 、OD 。

3AB 21BE ,6AB ,AB OE ==∴=⊥ 。

在BOE Rt ∆中,435BE OB OE 2222=-=-=。

同理OF=3,734OF OE EF =+=+=∴。

(2)过点O 作AB OE ⊥,交CD 于点F ,连接OB 、OD (如图2)。

CD OF ,AB OE ,CD //AB ⊥∴⊥ 。

由(1)可知3OF ,4OE ==,134OF OE EF =-=-=∴。

∴弦AB 、CD 之间的距离为7或1。

二、弦所对的圆周角例2. 在半径为5的圆O 内有长35的弦AB ,求弦AB 所对的圆周角。

分析:两种情况(1)所求圆周角的顶点在优弧AB 上,(2)所求圆周角的顶点在劣弧AB 上(如下图)。

解:过点O 作AB OE ⊥垂足为E ,连接OA 、OB 。

23AO AE 1sin 325AB 21AE 35AB ,AB OE ==∠∴==∴=⊥︒=∠∴︒=∠∴120AOB ,601,︒=∠=∠∴60AOB 21C 。

︒=∠∴︒=∠+∠120C ,180C C 11∴弦AB 所对的圆周角为60°或120°。

三、已知半径、两弦长、求两弦的夹角例3. 已知圆O 的半径为1,弦3AC ,2AB ==,求∠BAC 。

分析:两种情况(1)弦AB 、AC 在圆心两侧(如图1),(2)弦AB 、AC 在圆心同侧(如图2)。

两圆相减

两圆方程相减与圆的根轴直线与圆这一章有这么一个内容,那就是关于两圆的位置关系,相信很多同学都有印象:已知两圆的方程,求这两圆的公共弦所在直线的方程,只需要把两个圆的方程相减即可,当然前提是x2和y2系数要一样。

并且若两圆相切,则得到的直线方程就是他们内公切线方程,若两圆半径相等,则得到的直线方程就是他们的对称轴方程:圆O1:x2+y2+D1x+E1y+F1=0 圆O2:x2+y2+D2x+E2y+F2=0两式相减得:L:(D1-D2)x+(E1-E2)y+F1-F2=0当两圆相交时,L为相交弦所在直线方程,若相切,则为他们的内公切线方程,若两圆半径相等,则为他们的对称轴方程。

那么,涉及到两圆位置关系的题目,可以先轻易地将相交弦直线方程求出,然后利用直线与圆的位置关系求解。

我们当然是不能停留在“记住”的层面,我们有两个问题摆在这里:1:为什么如此便能求出两圆的公共弦直线方程?2:当两圆相离半径也不相等的时候,按照上面的方法也能得到一条直线L,这时候的直线L与两圆又有什么关系?我们首先看第一个问题,我们首先看到,L的方程是两圆联立得到的方程,所以两圆的两个交点都在L上,而两点已经可以确定一条直线,故L即为公共弦直线的方程。

当两圆相切时,我们可以从极限的角度去看待这个问题,就跟我们第一次接触“导数”的概念一样,切线就是极限状态下的割线,这样相互联系对学生的学习也是很有好处的。

我们也可以从L与两圆的交点个数看:L与圆O1联立方程的解的个数,与圆O1与圆O2联立出的方程的解的个数是一样的,而O1与O2只有一个解,故L与O1也只有一个交点。

如果你愿意,你还可以从圆心到直线距离等于半径这个角度看。

当两个圆半径相等时,我们可以先求出他们的圆心连线方程,然后观察L与此直线的关系,可以发现他们斜率之间的关系:L: (D1-D2)x+(E1-E2)y+F1-F2=0O1点坐标=(-D1/2,-E1/2);O2点坐标=(-D2/2,-E2/2),简单计算便知,L与O1O2垂直;O1O2的中点坐标为P=(-(D1+D2)/4,-(E1+E2)/4),结合D12+E12-4F1=D22+E22-4F2(因为两圆半径相等),便可知P点在L上,从而证明L为两圆的对称轴。

初中数学知识点精讲精析 圆和圆的位置关系

3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习六
两圆相切
【最新】初中数学-两圆相切2
复习目标:
1.了解两圆相切、外切、内切的概念; 理解相切两圆的性质. 2.会判断两圆外切或内切,会用两圆相 切的判定、性质进行计算或证明. 3.会用相切两圆的知识解相关的综合性 问题.
复习指导:
回忆下列知识点,会的直接写,不会的可 翻书查找,边填边记,5分钟后,比谁能正 确填写,并能运用它们解题. 【最新】初中数学-两圆相切2
3.若⊙O1、⊙O2、⊙O3两两外切,且 半径分别为2cm、3cm和10cm,则
△O O O 的形状是 . 1 2 3
【最新】初中数学-两圆相切2
4.已知两个半径为1的圆相外切,
半径为2且和这两个圆都相切的圆
共有
个.
5.如图,已知正方形ABCD的边长
为4cm,两个等圆⊙O1、⊙O2外切,
⊙O1与AB、AD相
知识要点:
1.当两个圆有唯一公共点时,叫做两
圆 .这个唯一的公共点叫做 .当
圆相切可分为
.
2.设两个圆的半径分别为R和r,圆心距
为d,则:
① d>R-r


.
两圆外切.
3.相切两圆的 必经过 . 【最新】初中数学-两圆相切2
检测练习:
1.已知两圆相切,半径分别为4和9,
那么两圆的圆心距为
.
2O的.1O半已2=径知6,为⊙⊙O1O与2的⊙半O2径.,连为结11O,1、则O⊙2.若O1
⑴求证:PA·AB=AC·AD. C
⑵当弦AC绕A点旋 B M
转,弦AC的延长线
D
N
交直线BN于D点时, O1
O2
试问⑴的结论是否
成立?试证明.
A
【最新】初中数学-两圆相切2
8.如图⊙O和⊙B外切于A点,两圆的外
公切线CD交OB的延长线于点P,C、D为
切点.连结OC,BD,设R,r分别为
⊙O,⊙B的半径(R>r),Rr=25,AC,AD
切,则外公切线长是
.
【最新】初中数学-两圆相切2
4.两圆内切于A,大圆的弦BC交小
圆于D,E.
⑴求证:∠BAD=∠EAC.
⑵若大圆的弦BC与
A
小圆相切于P(即D与
E重合于P),此时类 似⑴的结论是否成
B
O1
D O2E
C
立?试证明之.
【最新】初中数学-两x+2m2-m+3=0的两个
根(AC>AD). ⑴求证:∠CAD=900
⑵求m的值;
C
D
⑶求PO的
长.
O AB
P
【最新】初中数学-两圆相切2
课堂作业:
1.已知两圆半径是方程x2-12x+6=0
的两根,且圆心距为12,则两圆的
位置关系是
.
2.两圆相切,公切线共有 条.
3.若半径分别为4cm和2cm的两圆外
D
C
切,⊙O2与BC、DC相 切,则这两个的半径 为.
O2
O1
A
B
【最新】初中数学-两圆相切2
6.如图,⊙O1与⊙O2外切于A,AB
是⊙O1的直径,BD切⊙O2于D,交
⊙O1于C,连结AC、AD.
求证:
AB AC
=
BD CD
D C
B O1 A O2
【最新】初中数学-两圆相切2
7.如图,⊙O1与⊙O2外切于P,过P的 直线分别交两圆于B,A,⊙O1的切线 交⊙O2于M,N,AC为⊙O2的弦,设弦AC 交BN于D.
相关文档
最新文档