最新七年级数学上学期期末考试试题

合集下载

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B.(-2)2C.-(-2)D.-(-2)22.某种流行性感冒病毒是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为 A.30×10-7B.3×10-6C.3×10-5D.0.3×10-63.下列调查方式中,采用合适的是A.为了解全市中学生每周体育锻炼的时闻,选择普查方式B.调查西安市“骑电动车”头盔佩戴率,选择抽样调查方式C.神舟十七号飞船发射前的零件检查,选择抽样调查方式D.调查某批次医用外科口罩的合格率,选择普查方式4.如图是由6个相同的小正方体拼成的几何体,从左边看,得到的平面图形是5.下列等式的变形中,正确的是 A.如果|a|=|b|,那么a=b B.如果a c =bc ,那么a=bC.如果a x =ay ,那么x =yD.如果m=n ,那么mc 2−4=nc 2−46.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是 A.-5x -1B.5x +1C.13x -1D.6x 2+13x -17.下列说法:①若a 、b 互为相反数,则a b=-1;②若a b>0,且a+b <0,则|a|+|b|=第4题图-a -b ;③一个数的立方是它本身,则这个数为1或0;④若-1<a <0,则a 的倒数小于-1.其中正确的个数是 A.1个B.2个C.3个D.4个8.如图,矩形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=30°,则∠BMC= A.75°B.150°C.120°D.105°9.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,则符合题意的方程是 A.12x =(x -5)-5B.12x =(x +5)+5C.2x =(x -5)-5D.2x =(x +5)+510.如图,点C 是线段AB 上一点,且3AC=2AB ,D 是AB 的中点,E 是CB 的中点,DE=6,则线段AB 的长是A.18B.20C.12D.24二、填空题(共7小题,每小题3分,计21分)11.多项式-2x 3y 2-3x 2y 3+x y 2-1的次数是_____,常数项是_______. 12.若2x =5,2y =3,则22x+y =_______.13.我们中午休息结束的时间是1点50分,此时钟面上时针与分针所成的夹角是第10题图第8题图ABDCM A 1D 11_______.14.关于x 的方程3-3a−x 2=0与方程2x -5=1的解相同,则常数a 是_______.15.如图是正方体的平面展开图,若AB=8,则该正方体A 、B 两点间的距离为_______. 16.如果x 2-(m+1)x +16是完全平方式,则实数m 的值是_______.17.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为17,当MN 的三等分点移动到点A 时,点M 所对应的数为6,则木棒MN 的长度为_______.三、解答题(共8小题,计69分) 18.(14分)计算(1)-42+[32÷(-2)3-16×40](2)(-3x y 2)2·(-6x 3y)(3)先化简再求值:(3a+b)2-(b+3a)(3a -b)-6b 2,其中a=-13,b=-2. 19.(8分)解方程 (1)0.5x -0.7=6.5-1.3x(2)x+32-2=-2x−2520.(6分)如图,已知平面上四个点A ,B ,C ,D ,请按要求画图并回答问题. (1)连接AB ,延长AB 到E ,使BE=AB. (2)分别画直线AC 、射线AD.(3)在射线AD 上找点P ,使PC+PB 最小,此画图的依据是________.第15题图AB第17题图21.(7分)高新区某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成如图所示两幅统计图,请根据图中的信息,完成下列问题.(1)设学校这次调查共抽取了n 名学生,则n=________. (2)请你补全条形统计图.(3)设该校共有学生2400名,请你估计该校有多少名学生喜欢跳绳?22.(7分)某商店用3135元购进了两种新型玻璃保温杯共60个,这两种玻璃保温杯的进价、标价如表所示.(1)这两种玻璃保温杯各购进多少个?(2)若A 型玻璃保温杯按标价的9折出售,B 型玻璃保温杯按标价的8.5折出售,且篮球跳绳足球 羽毛球 乒乓球 25%20%20% 25% 10%AB D在运输过程中有2个A 型、1个B 型玻璃保温杯不慎损坏,不能进行销售,请问这批玻璃保温杯全部售出后,该商店共获利多少元?23.(7分)如图所示数表,由从1开始的连续自然数组成,观察规律并完成下列各题: (1)第六排从左往右第1个数为_______;第七排从左往右第1个数为________. (2)第a 排第1个数可以表示为_______.(用含a 的式子表示)(3)若第n 排的一个数和第(n+1)排的两个连续自然数能够放入如图所示的等边三角形中,则称该三角形为“数字三角形”,里面三个数字之和称为该数字三角形的“数字和”. 若第n 排和第(n+1)排中总共有39个“数字三角形”,其中一个“数字三角形”的“数字和”为2371,则该“数字三角形”中的三个数字分别为多少?24.(8分)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD=a ,AB=b.(1)求纸片乙的边长(用含字母a 、b 的代数式表示).A甲乙EH丙L3 26 54 7 8 9 10 1112 13 1415……1 第一排 第二排 第三排 第四排 第五排(2)探究纸片乙、丙面积之间的数量关系.25.(12分)如图,将两个完全一样的等腰直角三角尺如图叠放,∠B=∠D=90°,∠AOB=∠DOC=45°,使公共顶点与直线OF 上的点O 重合,∠DOF=10°,∠AOD=70°. (1)∠BOF=________.(2)若三角尺AOB 绕点0以每秒10°的速度顺时针旋转一周,设旋转时间为t 秒,在旋转的过程中,直线OA 恰好平分∠COF ,求t 的值.(3)在(2)的条件下另一个三角尺OCD 也绕点O 以每秒5°的速度顺时针旋转.当三角尺AOB 的边OA 平分∠COD 时,求t 的值?(自行画图分析)西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学参考答案一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B. (-2)2C.-(-2)D.-(-2)21.解:|-2|=2,(-2)2=4,-(-2)=2,-(-2)2=-4,故选D 。

【三套打包】最新七年级(上)数学期末考试试题(含答案)

【三套打包】最新七年级(上)数学期末考试试题(含答案)

最新七年级(上)期末考试数学试题【答案】一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. -3的倒数是A .31B .3 C.-31 D .-3 2.据统计,渝北区第二届“讯飞杯”优质课大赛视频网络点击 10500 次,将数 10500 用科学记数法表示为A. 10.5⨯105B. 1.05⨯105C. 0.105⨯105D.1.05⨯1043.将 6-(+3)+(-2) 改写成省略括号的和的形式是A. 6-3-2B.-6-3-2C. 6-3+2D. 6+3-24.计算-3(2x -1) 的结果是A. -6x -1B. -6x +1C. -6x +3D. -6x -3 5.下列各式子中与 2m 2 n 是同类项的是A .-2mnB .3m 2 nC .3m 2 n 2D .-mn 26.下列四个式子中 ,是一元一次方程的是A .-2X =2y - 3B .3x 2-4x= 2C .21-x =1D . x1=2x+6 7.如图,是由一些黑点组成的图,按此规律,第7个图形中,黑点的个数是A .51B .48C .27D .158.若 a = 3, b =1 ,且 a > b ,那么 a -b 的值是A .4B .2C .-4D .4或29.将下列如图的平面图形绕轴 l 旋转一周,可以得到的立体图形是10.如图,张老师在点 O 处观测到小明站位点 A 位于北偏西 54︒ 30' 的方向,同时观测到小刚站在点 B 在南偏东 15︒ 20' 的方向,那么 ∠AOB 的大小是A .69︒50'B .110︒ 10'C .140︒50'D .159︒50'11.下图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式 a -b +c 的值是A .-4B .0C .2D . 412.轮船在静水中速度为每小时 30km, 水流速度为每小时 6km, 从甲码头顺流航行到乙码头,再返回甲码头,共用 5 小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为 x km ,则列出方程正确的是A .(30+6)x +(30-6)x = 5B .30x +6x = 5C .563=+x xD .5630630=-++x x 二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答题卡中对应的横线上.13.天气预报中,如果零上 3 C ︒ 记作+3 C ︒ ,那么零下 5 C ︒ 记作 C ︒.14.将多项式n m mn n m 222332+-+按m 的降幂排列为: .15.已知 3a - 2b - 4 = 0 ,则代数式 6a - 4b + 2019= .16.如图,BC ⊥AC ,BC=12,AC=9,AB=15,则点 C 到线段 AB 的距离是 .17.实数 x ,y ,z 在数轴上的位置如图所示,则 |y| - |x| +| z| -| y |= .18.A ,B ,C 三种大米的售价分别为40元、50元、70元,其中B ,C 两种大米的进价为40元、50元,经核算,三种大米的总利润相同,且A ,B 两种大米的销售量之和是C 种大米之和的6倍,则A 种大米的进价是 .三、解答题:(本大题 3 个小题,每小题 10 分,共 30 分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上19.计算:(1)-3+ (-4)⨯2 + 2 ;(2)-12- ( 2)3-4÷(-41).20.解方程:(1) 3x - 2 = x - 7;(2)245331=---x x .21.如图,点C ,E 是线段AB 上两点,点D 为线段AB 的中点,AB = 6,CD =1.(1)求 BC 的长;(2)若 AE: EC =1:3 ,求 EC 的长;四、解答题:(本大题3个小题,22、23每小题题8分,24题10分,共26分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上 22.先化简,再求值:()()2222524325x y xy y x -+-- ,其中 x = -2, y = 3.21.如图,将长方形纸片的一角作折叠,使顶点 A 落在 A' 处, DE 为折痕,将∠BEA' 对折,使得 B' 落在直线 EA' 上,得折痕 EG(1)求∠DEG 的度数;(2) 若 EA' 恰好平分∠DEB ,求∠DEA' 的度数24.如图,已知数轴上点A表示的数为-12 ,点B在点A右边,且OA= 2OB.(1)写出数轴上点 B 表示的数;(2)点 M 为数轴上一点,若 AM - BM = 4 ,求出点 M 表示的数.五、解答题:(本大题2个小题,其中,25题10分,26题12分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上25.重庆市出租车的起步价是 10 元(起步价是指不超过 3km 行程的出租车价格).超过3km 行程后,其中除 3km 的行程按起步价计费外,超过部分按每千米 2 元计费(不足1km 按 1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过 3km,那么顾客还需付回程的空驶费,超过 3km 部分按每千米 0.6 元计算空驶费(即超过部分实际按每千米2.6 元计费).如果往返都乘同一出租车并且中间等候时间不超过 3min,则不收空驶费而加收 3.2 元等候费.现设小云等 4 人从单位到相距 x km(x<12)的解放碑办事,在解放碑停留时间 3 min 内,然后返回单位.现有两种方案:方案一:去时4人乘同一辆出租车,返回都乘公交车(公交车车票为每人 3 元);方案一:4 人乘同一辆出租车往返.(1)若 3<x<12,用含 x 的代数式分别把两种方案的费用表示出来;(2) 如果小云单位到解放碑的距离 x km(x<12),请问选择哪种计费方式更省钱?26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.(1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和。

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每小题3分,共24分)A .B .3.在,,…中,已知的最大整数,例如5-1x 2x 3x []2.62=A .1B .28.一副三角板ABC 、DBE ,如图1放置,①在图1的情况下,在内作②在旋转过程中,若平分,③在旋转过程中,两块三角板的边所在直线夹角成④的角度恒为.其中正确的结论个数为( )A .1个B .2个DBC ∠DBF ∠BM DBA ∠BN DBC ABE ∠+∠105︒15.已知直线与直线16.如图,AB OE AB ⊥三、解答题(共52分)(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?21.已知点在线段上,,点、在直线上,点(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;(1)点表示的有理数是 ,点表示的有理数是 ,点1.5C AB 2AC BC =D E AB 18AB =8DE =DE AB E BC AD A C(1)如图1,,,请判断(2)若平分,且为的“分余线(3)如图2,,在的内部作射线的“分余线”.当为的“分余线”时,请直接写出70AOB ∠=︒50AOC ∠=︒OC AOB ∠OC AOB ∠155AOB ∠=︒AOB ∠OC MON ∠答案解析A.B.5-【答案】A【分析】本题考查了一元一次方程的应用,根据解题的关键.【详解】解:设每条边上四个数之和为则我们可以确定其中有三个数的边上的圆圈里的数,再求另外两个空圆圈里的数,,将其填入相应的圆圈中,如图,统计已填入的具体数有没有填入的数有:,2,(2)0(5)3m m ----+=-(2)(4)(6)4m m ---+--=6-5-A.1B.2【答案】D【分析】根据图形以及数字的摆放,第一图可得第二个图可知的下面是5,5的右边是2将正方形展开如图所示,∴的对面是,故选:D .【点睛】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.8.一副三角板ABC 、DBE ,如图1放置,(、),将三角板绕点B 逆时针旋转一定角度,如图2所示,且,有下列四个结论:①在图1的情况下,在内作,则平分;②在旋转过程中,若平分,平分,的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成的次数为3次;④的角度恒为.其中正确的结论个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】结合图形根据题意正确进行角的和差计算即可判断.【详解】①如图可得,所以平分,①正确;②当时,设,∵平分,∴,∴ ,,45630D ∠=︒45BAC ∠=︒DBE 090CBE ︒<∠<︒DBC ∠DBF EBF ∠=∠BA DBF ∠BM DBA ∠BN EBC ∠MBN ∠90︒DBC ABE ∠+∠105︒15DBA ABF ∠=∠=︒BA DBF ∠045CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-()45602215EBC x x ∠=︒-︒-=-︒∴,当时,设,∵平分,∴,∴,∴,∴,∴,故②正确;③时,时,时故③正确;④当时,当时,故④错误;综上所述,正确的结论为①②③;故选:C .【点睛】本题主要考查了角的和差,角的平分线,旋转的性质,关键根据题意正确进行角的和差计算.二、填空题(每小题3分,共24分)【答案】/7.5EBN x ∠=-︒6027.552.5M BN x x x ∠=+︒-+-︒=︒4590CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-215EBC x ∠=-︒60M BE x∠=︒-7.5EBN C BN x ∠=∠=-︒607.552.5M BN x x ∠=︒-+-︒=︒30CBE ∠=︒BD BC ⊥45CBE ∠=︒AB DE ⊥75CBE ∠=︒DB AB ⊥045CBE ︒<∠<︒105D BC ABE ∠+∠=︒4590CBE ︒<∠<︒105D BC ABE ∠+∠>︒1b +1b+【答案】10【分析】本题主要考查了求圆柱的体积,先求出圆柱的底面积,再根据圆柱的体积【详解】解:一个高∴底面面积:102=5dm÷,,,;如图,,,.故答案为:或.【点睛】本题考查了垂线的性质及角的计算,EO CD ⊥ 90EOC ∴∠=︒60AOC ∠=︒ 906030AOE ∴∠=︒-︒=︒EO CD ⊥ 90EOC ∴∠=︒9060150AOE ∴∠=︒+︒=︒30︒150︒【答案】或【分析】分和,两种情况进行讨论求解即可.【详解】解:由题意,得:的运动时间为:秒,的运动时间为:秒;∴运动的时间相同;设运动时间为秒,则:,∵,∴,当时:,∴,,∴,∴,∴,即:;当,在上方时:如图,,2255x y +=2105x y -=90AOM ∠≤︒90AOM ∠>︒OM 180603︒÷︒=ON 90303︒÷︒=,OM ON t 60,30AOM t BON t ∠=︒∠=︒OE AB ⊥90AOE BOE ∠=∠=︒90AOM ∠≤︒COM AOM AOC AOM AOE COE ∠=∠+∠=∠+∠-∠6090156075x t t =+-=+NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()29075x y =-+2255x y +=90AOM ∠>︒ON OD 1180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠∴,,∴,∴,∴,即:;当,在下方时:如图2,,∴,,∴,∴,∴,即:;综上:与之间的数量关系为或;故答案为:或.【点睛】本题考查几何图形中角度的计算.正确的识图,理清角之间的和差关系,是解题的关键.三、解答题(共52分)18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=90AOM ∠>︒ON OD 180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=x y 2255x y +=2105x y -=2255x y +=2105x y -=移项得:,合并得:,解得:.19.如图是由棱长都为的6块小正方体搭成的简单几何体.(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.【答案】(1)(2)见解析【分析】本题考查求简单组合体的表面积,以及三视图.熟练掌握三视图的画法,是解题的关键.(1)先数出各个方向正方形的个数,相加后乘一个小正方形的面积即可求解..(2)从正面看得到从左往右4列正方形的个数依次为1,2,1,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右4列正方形的个数依次为2,1,1,1,依此画出图形即可.【详解】(1),∴这个几何体的表面积为.(2)如图所示.20.郑州地铁10号线于2023年9月28日开通运营,起于荥阳市郑州西站,途经中原区,止于二七区郑州火车站,线路主要沿中原路、康复后街呈东西向布置,其中的12个站点如图所示.91014312y y -=-++1y -=1y =-1cm 226cm ()211665226cm⨯⨯⨯-⨯=226cm小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A 站是郑州西站(2)小墩在志愿者服务期间乘坐地铁行进的路程是45千米(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;1.518AB =8DE =DE AB E BC AD为中点,,E BC 3CE EF +=设,,则设,,则CE x =DC y =DE CE x =DC y =DE y =-(1)点表示的有理数是 ,点表示的有理数是 ,点A C元;当时,甲的用水量超过,乙的用水量超过但不超过,∴元,当时,甲的用水量超过,乙的用水量不超过,∴元;综上所述,当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元.【点睛】本题主要考查了有理数的四则混合计算的实际应用,整式加减计算的实际应用,正确理解题意利用分类讨论的思想求解是解题的关键.24.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米).,,,,,,,,.(1)请你帮忙确定地位于地的什么方向,距离地有多少千米?(2)救灾过程中,冲锋舟离出发点最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【答案】(1)地位于地东方,距离地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.【详解】(1)解:∵,∴地位于地东方,距离地有22千米;()116x =-2028x <<320m 312m 320m ()()()1222012 1.52202212240122 1.5x x ⨯+-⨯⨯+-⨯⨯+⨯+--⨯⨯242448024843x x=++-++-()76x =+2840x ≤≤320m 312m ()()()1222012 1.522022402x x ⨯+-⨯⨯+-⨯⨯+-⨯2424480802x x=++-+-()248x =+1220x <≤()116x -2028x <<()76x +2840x ≤≤()248x +A B 14+9-8+7-13+6-12+5-2+B A A A B A A (14)(9)(8)(7)(13)(6)(12)(5)(2)22++-+++-+++-+++-++=+B A A(1)如图1,,,请判断70AOB ∠=︒50AOC ∠=︒∴,∵,∴,即:,∴,此时:,故这种情况不存在;综上:当为的“分余线”时,或或100°.【点睛】本题考查角的和差计算.理解并掌握“分余线”的定义,是解题的关键.注意分类讨论.24∠∠=1234155AOB ∠=∠+∠+∠+∠=︒334155∠+∠=︒902434155︒-∠+∠=︒465∠=︒390240∠=︒-∠<︒OC MON ∠88AOC ∠=︒775︒.。

福建南平2023-2024学年七年级上学期期末考试数学试题

福建南平2023-2024学年七年级上学期期末考试数学试题

南平市2023-2024学年第一学期七年级期末质量抽测数学试题(考试时间:90分钟;满分:150分)友情提示:①本试卷仅供选用学校使用;②所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.有理数2024的相反数是A. 2024 B.2024-C.12024D.12024-2.计算32a a+的结果是A.6a2B.5C.5a D.a3.下列各式中,是一元一次方程的是A.10x-=B.x y-C.3=1x D.210x-=4.2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13 000 000人次,将数据13 000 000用科学记数法表示为A.61.310⨯B.71.310⨯C.80.1310⨯D.61310⨯5.从不同方向看某几何体得到如图所示的三个图形,那么该几何体是A.长方体B.圆锥C.正方体D.圆柱6.飞机上有一种零件的尺寸标准是2005±(单位:mm),则下列零件尺寸不合格的是A.196mm B.198mm C.204mm D.210mm7.若关于x 的一元一次方程36x m +=的解是x =2,则m 的值为A .0B .1C .2D .38.若单项式223m x y -与85n x y 是同类项,则m ,n 的值分别是A .22m n ==,B .41m n ==,C .42m n ==,D .23m n ==,9.若一个角是它的余角的5倍,则这个角的大小是A .15°B .30°C .75°D .150°10.定义一种新运算“※”的计算规则是:a ※b =a +b (其中a ,b 都是有理数).例如 3※4=3+4=7. 下列等式成立的个数是①a ※b =b ※a ②( a ※b )※c =a ※(b ※c ) ③ a ※(b+c )=a ※b +a ※cA .3B .2C .1D .0二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. 如果+20元表示增加 20元,那么-6元表示__________.12.单项式7xy 的系数是__________.13.把原来弯曲的河道改直,则河道的长度变短了,这里用到的数学知识是__________.14.若∠A =53°,则∠A 的补角的大小为_________.15.数轴上的点A 到原点的距离是4,则点A 表示的数为_________. 16.如图是用围棋棋子摆成的“T ”字图案,按这样的规律摆下去,那么摆成第n 个“T ”字图案所需棋子数为_________.(用含n 的代数式表示)三、解答题(本大题共7小题,共86分.请在答题卡的相应位置作答) 17.(本题满分12分)计算 :2312(13)-+⨯-18.(本题满分12分)先化简,再求值:2(23)(325)a b a b ++-+,其中a =1,b =2-.19.(本题满分12分) 解方程:31+2=23x x -20.(本题满分12分)已知线段AB 与点C 的位置如图所示,按下列要求画出图形.(1)画射线BC 和直线AC ;(2)画线段AB 的延长线,在AB 的延长线上截取点E ,使得AE =2AB ,若AB =3,点D 是AB 的中点,求线段DE 的长度.21.(本题满分12分)如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形.(1)若a =20,b =4,分别求S 1,S 2的面积;(2)若将图1的阴影部分沿虚线剪开,重新拼成图2的长方形,且长为30,宽为15,求S 1∶S 2的值.第20题图第21题图22.(本题满分12分)我国明代数学著作《算法统宗》中有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客空一房。

2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)

2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)

最新华东师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2、港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资1269亿元,将1269亿用科学记数法表示,结果并精确到百亿约为()A.13×1010B.1.2×1011C.1.3×1011D.0.12×1012 3、如图是由5个大小相同的正方体组成的立体图形,其俯视图是()A.B.C.D.4、下列去括号正确的是()A.a﹣(b+c)=a﹣b+c B.a﹣(b﹣c)=a+b﹣cC.a﹣(b﹣c)=a﹣b﹣c D.a﹣(b+c)=a﹣b﹣c5、如图,下列各组条件中,能得到AB∥CD的是()A.∠1=∠3 B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°6、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OBC.射线OC D.射线OD7、a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣aC.﹣b<a<﹣a<b D.a<﹣b<﹣a<b8、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.115°B.110°C.120°D.130°9、下列哪个图形是正方体的展开图()A.B.C.D.10、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°11、当x=2时,整式ax3+bx﹣1的值等于﹣100,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.100B.﹣100C.98D.﹣9812、如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.4B.5C.6D.7二、填空题(每小题3分,满分18分13、比较大小:﹣﹣14、在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是.15、若2a3b n+3与4a m﹣1b4的和是单项式,则﹣m+n=.16、若关于x、y的二次多项式﹣3x2+y3+nx2﹣4y+3的值与x的取值无关,则n=.17、如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.18、由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形个(用含n的代数式表示).最新华东师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计66分,解答题要有必要的文字说明)19、计算:.20、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.21、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.22、某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?23、如图,AD∥EF,∠1+∠2=180°.(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠ADB=120°,求∠B的度数.24、如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.25、对于一个四位自然数N,如果N满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N为“差同数”.对于一个“差同数”N,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t,规定:.例:N=7513,因为7﹣3=5﹣1,故:7513是一个“差同数”.所以:s=73﹣51=22,t=71﹣53=18,则:.(1)请判断4378是否是“差同数”.如果是,请求出F(N)的值;(2)若自然数P,Q都是“差同数”,其中P=1000x+10y+616,Q=100m+n+3042(1≤x≤9,0≤y≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:,当3F(P)﹣F(Q)能被11整除时,求k的最小值.26、如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若过G点作GE∥AB交AD于E,连接CE,CE恰好平分∠BCD,∠1﹣∠2=20°求∠AGE的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.最新华东师大新版七年级上学期数学期末考试试卷(参考答案)13、>14、﹣2或415、﹣3 16、3 17、40°18、(3n﹣1)三、解答题19、.20、-821、解:(1)>、<、>(2)﹣2a﹣4b22、(1)减少了57吨(2)257吨(3)这7天要付(58a+115b)元装卸费23、解:(1)6 (2)5cm (3)BE的长是4或10cm24、解:(1)证明(略)(2)30°25、解:(1)(2)k的最小值为26、(1)证明(略)(2)65°(3)或5。

七年级数学上册期末考卷(含答案)

七年级数学上册期末考卷(含答案)

七年级数学上册期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列数中,最小的无理数是()A. √2B. √3C. πD. √52. 已知a=3,b=2,则a+b的值是()A. 1B. 5C. 5D. 13. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x+y)² = x² + 2xy + y²C. (xy)² = x² y²D. (xy)² = x² 2xy y²4. 下列关于单项式的说法,错误的是()A. 单项式中的数字因数叫做单项式的系数B. 单项式中的所有字母的指数和叫做单项式的次数C. 单项式是数或字母的积组成的式子D. 单项式中不含加减号5. 下列各式中,多项式的是()A. 5x² + 3x 2B. √x + 1C. 2x³ 4x² + 5D. 1/a + 3a²6. 已知一个等差数列的首项为2,公差为3,第五项是()A. 14B. 16C. 18D. 207. 下列关于平行线的说法,正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 线段B. 等腰三角形C. 正方形D. 梯形9. 已知直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 810. 下列关于概率的说法,错误的是()A. 概率是0到1之间的数B. 必然事件的概率为1C. 不可能事件的概率为0D. 随机事件的概率一定大于0二、填空题(每题4分,共40分)11. 已知|x|=3,则x的值为______。

12. 若3x6=0,则x的值为______。

13. 已知a²=9,则a的值为______。

14. 若(x2)(x+2)=0,则x的值为______。

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷满分为48分;
第Ⅱ卷满分为102分,试题共8页,满分为150分.考试时间为120分钟,答卷前
,考生务必用0.5毫米黑色签字笔将自己的考点、姓名、准考证号、座位号写在
答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回,本考试
不允许使用计算器.
第Ⅰ卷(选择题共48分)
注意事项:
第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案
标号涂黑;
4.下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查
5.以下说法中正确的是()
A.延长射线AB B.延长直线AB
C.画直线AB直线等于1cm D.延长线段AB到C
6.若-5a2m b 与b3-n a4 是同类项,则m +n =()
A.2 B.3 C.4 D.6
7.若关于x 的一元一次方程2x +a = 4 的解是x = 3 ,则a 的值是()
如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效A.2 B.-2
C.4 D.10
一、选择题(本大题共12 个小题,每小题4 分,共48 分.在每小题给出的选项
中,只有一
8.若a -b = 1,则代数式2b - 2a - 3 的值是()
项是符合要求的.请将答案写在下面的表格中.)A.1 B.-1
C.5 D.-5
9.某品牌服装店将某件衣服按进价提高50% 后标价,再打8 折(标价的80%)
销售,售价为
240 元,设这件衣服的进价为x 元,根据题意,下面所列的方程正确的是()
1.在-4,2,-1,3这四个数中,比-2小的数是()A.x⨯50%⨯80%=240
C.
240⨯50%⨯80%=x
B.x ⨯(1+50%)⨯80%
=240
D.x ⨯(1+50%)= 240⨯80%
A.3 B.2 C.
-1
D.-4
10.某校为开展第二课堂,组织调查了本校150 名学生各自最喜爱的一项体育活动,制成了如
123456789101112
2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()
A.B.C.D.
3.2019年11月27 日下午槐荫区数学文化年闭幕式暨“槐荫区第二届‘勾股数学
’杯初中校际联赛”隆重举行,全市各初中学校代表、家长代表、学生代表共计500
人现场观摩了比赛,其中数字500用科学记数法可表示为()
下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30 ,40 B.45,60 C.30 ,60 D.45,40 11.如图,长方形纸片ABCD的∠C沿着GF折叠(点F 在BC上,不与B、C重合),使点
C 落在长方形内部点E 处,若FH 平分∠BFE ,则∠GFH 的度数α是()
第10 题图第11题图
A.α=90︒B.0︒<α<90︒C.90︒<α<180︒D.α随着折痕GF的变化而变化
A.
0.5⨯104 B.5⨯103 C.5⨯102 D.50 ⨯10
12.已知整数a1 ,a2 ,a3 ,a4 …满足下列条件:a1= 0 ,a2=-a1 +1 ,
a3=-a2+ 2 ,
a4 =-a3 + 3 ,……依次类推,则a2020 的值为()
20.(本小题满分6 分)
如图,线段AB = 14 ,C 是AB 上一点,且AC = 9 ,点O 为AB 中点,求线段OC
的长度.
A.
-1007
B.
-1009
C.
-1010
D.-2020
第Ⅱ卷(非选择题共102分)
二、填空题(本大题共6 个小题,每小题4分,共24 分.把答案填在题中的横线上.)
13.-6的相反数是.
-
3πa2b4
14.单项

的系
数是.
5
15.如图这是一个正方体展开图,则原正方体中与“创”字所在的面相对的
面上标的字是.
21.(本小题满分6 分)
(1)化简:4a + 2(a - 3b)
16.下午12:20分,钟表
上时针与分针所夹角的度数为度(所求夹角小于180︒).
17.已知a、b、c的位置如图:则-a-c-b-a-c=.
18.一动点P 从数轴上的原点出发,沿数轴的正方向以每前进5 个单位,后退3 个
单位的程序运动,已知P 每秒前进或后退1 个单位,设x n 表示第n 秒点P 在数轴的位
置所对应的的数.
22.(本小题满分8 分)
(1)解方程:3(x-4)=12.
三、解答题(本大题共9 个小题,共78 分.解答应写出文字说明、证明过程或演算步骤.)19.(本小题满分6分)计算:
23.(本小题满分8 分)某一天,蔬果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50 千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
(1)他购进的猕猴桃和芒果各多少千克?
(2)如果猕猴桃和芒果全部卖完,他能赚多少钱?
24.(本小题满分10分)
某农户承包荒山若干亩,今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b 表示两种方式出售水果的收入;
(2)若a =1.3 元,b =1.1 元,且两种出售水果方式都在相同的时间内售完全部水
果,请你通过计算说明选择哪种出售方式较好.
25.(本小题满分10 分)为了解七年级学生的身体素质情况,体育老师对该年级部分学生进行了一分钟跳绳次数的测试,并把测试成绩绘制成如图所示的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
(1)参加测试的学生有多少人?
(2)求a,b 的值,并把频数直方图补充完整.
(3)若该年级共有320 名学生,估计该年级学生一分钟跳绳次数不少于120 次的人数.
某校七年级部分学生一分钟跳绳次数测试的频
数表
组别(次)频数频率
80~10050.125
100~12080.2
120~140a0.225
l40~16012b
160~18060.15
品名猕猴桃芒果批发价(元/千克)2040零售价(元/千克)2650
26.(本小题满分12 分)
甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24 千米.甲队步行速度为4 千米/时,乙队步行速度为6 千米/时.甲队出发1 小时后,乙队才出发,
同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿)
,他跑步的速度为10 千米/时.
(1)乙队追上甲队需要多长时间?
(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?
(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1 千米?
27.(本小题满分12 分)如图,点O为直线AB 上一点,过点O作射线OC,使∠BOC =135°,将一个含45°角的直角三角尺的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.
(1)将图1 中的三角尺绕着点O 逆时针旋转90°,如图2 所示,此时∠BOM=度(答案直接填写在答题卡的横线上);在图2 中,OM是否平分∠CON ?请说明理由;
(2)紧接着将图2 中的三角板绕点O 逆时针继续旋转到图3 的位置所示,使得由;
(3)将图1 中的三角板绕点O 按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC,请你直接写出t 的值为多少.。

相关文档
最新文档