中性点直接接地系统的零序电流保护汇总

合集下载

中性点直接接地电网中接地短路的零序电流及方向保护

中性点直接接地电网中接地短路的零序电流及方向保护

•3I0(1) =
•3E •2 +
•两相接地短路的零序电流为:
•3I0(1,1)=•
•3E +2
•单相接地
•= •+ •+
•故障点的等效零序电势
•故障点的等效正序、负序、零序阻 抗

2) 躲开断路器三相触头不同期合闸时所出现的最大 零序电流 ,引入可靠系数
•3I0.unb的计算,一相先合与两相断线情况类同, 两相先合与一相断线情况类同。 •具体可参见电力系统分析之短路计算

c. 当系统中发生某些不正常运行状态时(如系统振荡,短时 过负荷等)零序保护不受影响。
d. 在110kV及以上的高压或超高压系统中,单相接地故障占 全部故障的70%-90%,而且其它故障也往往是由单相接 地引起的,故采用零序保护具有显著的优越性。
•缺点:
a. 对于短线路或运行方式变化很大的情况,保护往往不能满 足系统运行所提出的要求。

•~
•T1 •A •1
•2•B •T2 •C
•A
•XT10
•系统接线
•X’k0
•X’’k0
•B
•若母线A还
•XT2. 接有中性点
0
接地的变压
器,则零序
阻抗变小,
流过A侧零
序电流增大

•T2中性点接地:
•零序等效网络
•= •=
•X’’k0+XT2.0
•X’k0+XT1.0+X’’k0+XT2.
0
•X’k0+XT10
•(c)零序电流变化曲线 中断开,此时

• 3)零序Ⅱ段灵敏系数:
•零序Ⅱ段的灵敏系数,应按照本线路 末端接地短路时的最小零序电流来校 验,并应满足Ksen≥1.5的要求。

电力系统继电保护—零序保护

电力系统继电保护—零序保护

IK1
Z1
I K1
Z2
将I
K1代入I
表达式,整理
K0
Z0
得:
I K0
UK 0 Z1 2Z0
I K0
16/58
如何求取单相、两相接地的最大零序电流?
已知:
I (1) K0
UK 0 2Z1 Z0
I (1,1) K0
UK 0 Z1 2Z0
1 2 Z0
I (1) K0
I (1,1) K0
Z1 2Z0 2Z1 Z0
35/58
I K I III
III
set
rel unb. max
31/58
2.3.6 方向性零序电流保护 通常为多接地点——类似于“多电源”点。
因此,需要方向判别元件。
32/58
2.3.7 对零序电流保护的评价
1)灵敏度高——几乎不受负荷电流影响。 2)受运行方式影响较小——间接影响。 3)三相对称时,几乎没有影响。如振荡、
如果零序电流Ⅱ段的灵敏度不够,则与下一级
线路的零序Ⅱ段电流定值进行配合。
26/58
Z0M
1 Im0
IM0
Z0P
Im0
Z0P Z0M Z0P
IM0
1 Kb0
IM 0
Kb0
IM0 Im0
Z0M Z0P Z0P
——反映了:分流关系
27/58
由I m 0
1 Kb0
IM 0
得到零序Ⅱ段电流定值计算公式:
I (1) K0
UK 0 2Z1 Z0
I (1,1) K0
UK 0 Z1 2Z0
19/58
求单相、两相接地的最大零序电流:
(b)Z1 Z0 时,

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理(2007-01-07 22:41:40)转载▼分类:工作目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。

为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。

由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。

为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。

这两种保护的原理接线如图23所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。

第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。

定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。

中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。

间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。

零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。

一次启动电流通常取100A 左右,时间取0.5s。

110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。

中性点直接接地电网零序电流保护.

中性点直接接地电网零序电流保护.

动作时间与相间电流保护III段的整定原则相同。
4.零序方向保护的原理和实现 (1)零序电流保护采用方向闭锁的必要性
A T1
M
PD1 1QF 2QF
N
PD2 PD3 3QF
k
PD4 4QF
P
T2
图10 零序电流保护采用方向闭锁的说明图
k点发生接地故障时,对于保护2而言是反方向故障,如果
t 02 t 03
N侧的零序电流为
" ' I0 I k0 I 0 I k0
' Z k0 Z T1 0 ' " Z k0 Z T1 0 Z k0 Z T2 0
结论:零序电流是由故障点零序电压产生的,零序电流的大 小和分布,主要取决于输电线路的零序阻抗和中性点接地变压 器的零序阻抗及其所处位置,零序电流仅在中性点接地的电网 中流通。
②反方向故障分析
M N
PD1
ZM0
k
Zk0 Rg +
Zl0
ZN0
+ _
. U
. U
. I
. U
M0
. = I
0
(ZN0+Zl0)
0
M0
k0
_
k0
. I
0
图6 反方向接地短路故障时的零序网络图及向量图
结论:反方向接地短路故障时,零序电压超前零序电 流700~800
二、中性点直接接地电网的零序电流保护 1.零序电流的获取方法 根据数据采集系统得到的三相电流值再用软件进行相加得 到3I0值或外接3I0 。
Kaper ——非周期分量系数,t=0s时取1.5~2,t=0.5 s时取1;
K ss ——TA同型系数。TA型号相同时取0.5、型号不同时取1;

电力系统接地保护

电力系统接地保护

接地保护一、中性点直接接地系统的零序电流保护中性点直接接地系统发生接地短路时产生很大的短路电流,要求继电保护必须及时动作切除故障,保证设备和系统的安全。

(一)接地短路特点及零序电流测量1.接地短路特点电力系统发生接地故障,包括单相接地故障和两相接地故障,在三相中出现大小相等、相位相同的零序电压和零序电流。

对于中性点直接接地系统,零序电流具有以下特点:(1)零序电流通过系统接地中性点和短路故障点形成短路通路,因此零序电流通过变压器接地中性点构成回路;(2)零序电流的大小不仅与中性点接地变压器的多少、分布有关,而且与系统运行方式有关;(3)线路零序电流的大小与短路故障位置有关,短路点越靠近保护安装地点,零序电流数值越大,零序电流的大小与短路故障位置的关系如图3-14所示。

另外注意,接地故障点的零序电压最高。

根据以上零序电流的特点,可以构成中性点直接接地系统的线路零序电流保护。

2.变压器中性点接地考虑考虑变压器中性点接地的多少、分布时,应使电网中对应零序电流的网络尽可能保持不变或变化较小,以保证零序电流保护有较稳定的保护区和灵敏度,同时防止单相接地故障时非故障相出现危险过电压。

3.零序电压和零序电流测量接地短路时三相的零序电压大小相等、相位相同,根据序分量的概念有C B A U U U U ••••++=03。

通常采用三个单相式电压互感器或三相五柱式电压互感器取得零序电压,如3-11所示。

图中m 、n 端子输出为零序电压TV C B A TV mm n U U U U n U 03)(1•••••=++=(3-14) 式中 TV n ——电压互感器一相变比。

接地短路时三相的零序电流大小相等、相位相同,根据序分量的概念有C B A I I I I ••••++=03。

通常通过零序电流滤过器测量零序电流,如图3-12(a)所示。

流人电流继电器的电流为TA C B A TA m n I I I I n I 03)(1•••••=++= (3-15) 式中 TA n ——电流互感器变比。

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。

为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。

由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。

为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。

这两种保护的原理接线如图E-127所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。

第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。

定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。

中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。

间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。

零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。

一次启动电流通常取100A左右,时间取0.5s。

110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。

当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。

电力系统中性点接地方式及其零序保护

电力系统中性点接地方式及其零序保护

电力系统中性点接地方式及其零序保护电力系统中性点是指发电机、变压器的中性点且指变压器Y形接线,通常情况下,接地中性点管理方式主要有两种,中性点不接地和中性点接地,而中性点接地根据接地方式不同又可以分为中性点经消弧线圈接地以和中性点直接接地。

本文主要介绍了中性点三种接地方式的特点及其在单相接地故障发生时,常见零序保护方式及其特点。

标签:中性点接地方式;零序保护;电力系统0 前言电力系统中绝大多数故障都是单相接地故障。

为提高其动作灵敏性,均装设专门的接地保护装置。

该装置构成简单,易于实现。

通常反映接地故障时的零序电流和电压,称为零序保护装置。

零序保护装置的装设可以使相间短路的保护接线用电流互感器不完全星形接法来实现,简化了设备。

而中性点不接地、中性点经消弧线圈接地系统在发生单相接地故障时,由于故障电流小,线电压仍然对称,系统还可以持续运行1-2小时,故称为小电流接地系统。

除非有特殊要求,该系统的接地保护才作用于跳闸,否则接地保护只作用于信号,提醒运行人员注意。

下面就本人在工作学习过程中的知识点,做一简单介绍。

1 中性点运行方式及其特点介绍1.1 中性点不接地系统当出现故障时,造成单相接地现象,单向回路短路,造成使故障相动作电压降低为零,同时非故障相电压相对升高,成为高线电压。

而中性点电压由于发生偏移变化,等同于一相电压。

接地点电流也因此产生变化,等同于非故障相对地电容电流的和,而数值也因此成为正常运行时单相对地电容电流的3倍。

虽然出现中性点的偏移导致电相、电压以及电流的变化,但线压仍然以对称的形式存在保证对称供应,可以连续继续运行2小时以上。

此外,由于中性点发生接地现象,导致接地容性电流的产生并且较强,因此导致接地点在一定范围内产生电弧,对周边安全造成影响。

此种方法为小电流接地系统方法,通常针对与电流相对较小的电力系统,如6kV以下系统。

1.2 中性点接地系统1.2.1 中性点经消弧线圈接地系统当采用中性点经消弧线圈接地系统时,其正常运行状态下电压、电流以均衡、对称额形式存在。

中性点直接接地电网的零序电流保护

中性点直接接地电网的零序电流保护
k . max k . min
2.1 单侧电源网络相间短路的电流保护
三、电流速断保护
1、对应于短路电流幅值增大而瞬时动作的电流 保护,称为电流速断保护。 2、以图2-3中线路AB的保护2为例分析 为保证选择性,在相邻线路 BC出口短路时, 保护2瞬时电流速断保护不应起动,为此其动作 电流应躲过线路末端 B 点的最大短路电流,因 此瞬时电流速断保护的动作电流按躲过本线路 末端短路时流过保护的最大短路电流来整定, 即:
III I set .2 I L. max
2.1 单侧电源网络相间短路的电流保护
当相邻元件三相短路故障切除后,负荷自起动时, 保护 2 在最大自起动电流 I ss .max 下应可靠地返回。 所以,保护2的返回电流 I re 应满足:
I ss .max Kss I L.max
引入可靠系数 K rel ,可选择返回电流(一次值)满足:
路的主保护。
2.1 单侧电源网络相间短路的电流保护
六、阶段式电流保护的配合及应用
1、电流保护I段、II段和III段的整定原则 2、主保护、后备保护 3、阶段式电流保护配合实例分析 主要在35KV及以下的电网中使用。缺点是送 电网电网接线及系统运行方式的影响较大。
2.1 单侧电源网络相间短路的电流保护
K I
II I rel set .1
式中
II I set .2
II K rel
I I set .1
—— 限时电流速断的动作电流; —— 可靠系数,取1.1~1.2; —— 下一级线路电流速断的动作电流。
2.1 单侧电源网络相间短路的电流保护
2、限时电流速断保护动作时限
为保证选择性,限时电流速断应有时限,其动作时限 t1. II应比相邻线路瞬时电流速断保护的动作时间 t 2. II (约 0.1s)大一个 t ,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。

但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。

图3-31( b )为其短路计算的零序等效网络。

在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。

零序电压的方向采用线路高于大地的电压为正。

这样,A 母线的零序是电压表示为。

11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。

二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。

(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。

当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。

(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。

如图3-32所示的系统发生接地短路时,可以清楚看出零序电流的数值和分布与变压器中性点接地有很大关系。

只有变压器T1的中性点直接接地,当F 点发生单相接地短路时,由于变压器T2的中性点不接地,所以零序电流只流经T1而不流向T2。

T1的△侧绕组中虽然感应有零序电流,但它只在△侧绕组中环流而不能流向△侧的引出线。

在图3-32(b )中,变压器T1、T2的中性点都直接接地。

所以在F 点发生单相接地时,零序电流经由T1、T2两条路径形成回路。

在图3-32(c )中,变压器T1和T2的三个中性点都直接接地,当T2的低压侧F 点发生单相接地时,不仅T2低压侧线路有零序电流,而且T1与T2之间的线路上也有零序电流。

三、三段式零序电流保护的整定采用三相完全星形接线方式的相间电流保护,由于其动作电流较大,用来反应单相接地短路,灵敏性可能不满足要求。

为了反应接地短路,必须装设专用的接地保护。

1. 零序电流速断保护零序电流速断保护为了保证选择性,其保护范围不超过本线路末端,启动电流应按以下原则整定。

(1)躲过被保护线路末端接地短路时的最大零序电流3I 0max ,即m ax ''1.3o rel ost I K I ∙= (3-49)式中relK '——可靠系数,取1.2~1.3。

在接地短路中,应以常见的故障类型和故障方式为依据。

1)只考虑单一设备故障。

对两个或两个以上设备的重叠故障,可视为稀有故障,不作为整定保护的依据。

2)只考虑常见的,在同一点发生单相接地或两相短路接地简单故障,不考虑多点同时短路的复杂故障。

当网络的正序阻抗等于负序阻抗时,即Z 1=Z 2,则在同一地点发生单相接地或两相接地短路的短路电流分别为:011)1(233Z Z E I o +=; 011)1.1(233Z Z E I o +=如果Z 0>Z 1时,(1)(1.1)0033I I >,启动电流应采用单相接地短路时的零序电流(1)03I 来整定;而当Z 1> Z 0时,(1.1)(1)0033I I >,启动电流应采用两相接地短路时的零序电流来整定。

(2)躲过断路器三相触头不同时接通时所引起的最大零序电流。

1)断路器先接通一相,相当两相断线时,零序电流为∑∑∙∙+-=012102Z Z E E I (3-50)2)断路器先接通两相,相当一相断线时,零序电流为∑∑∙∙+-=012102Z Z E E I (3-51)上两式1E 、E 2——断线点两端系统的等值电势,考虑最严重情况,1E 与2E 的相位差为 180°。

1Z ∑、0Z ∑——从断线点看进去网络正序、零序综合阻抗。

对于(3-50)、(3-51)两式,取其中的较大者进行整定计算。

(3)在装有综合重合闸的线路上,应躲过非全相状态下又发生振荡所出现的最大零序电流。

保护装置的灵敏性是以保护范围的长度来衡量。

零序电流速断保护的长度不小于被保护线路全长的(15~20)%。

如果按这一条件整定,在正常情况下发生接地故障时,其保护范围太小,不满足要求,通常可以设置两个零序I 段保护,一个按条件(1)、(2)整定的零序I 段(称灵敏I 段),其主要任务是对全相运行状态下的接地故障起保护作用,在单相重合闸启动时,将其闭锁,另一个是按条件(3)整定的I 段(称不灵敏I 段)装设的目的是在单相重合闸过程中,又发生接地故障时起保护作用。

2.零序电流限时速断保护零序电流限时速断保护的动作范围应包括线路的全长,启动电流按以下原则整定。

(1)启动电流应与下一线路零序电流速断保护配合,即躲过下一线路零序I 段保护范围末端接地短路时,通过本保护的最大零序电流。

'2''''1ost obrel ost I K K I = (3-52) 相邻线路有多条出线时,上式的2ostI '应选择其中的最大者。

rel K ''为可靠系灵敏,取1.1;K ob 为最小分支系数,其值等于下一线路零序I 段保护范围末端接地短路时,流经故障线路与本线路的零序电流之比的最小值。

动作时限为0.5秒。

用被保护线路末端接地短路时,流过保护的最小零序电流进行灵敏度校验,灵敏系灵敏5.1~3.1≥sen K 。

若灵敏度校验不合格,改用下面两种方法整定。

(2)与下一段线路零序电流限时速断保护相配合进行整定,即, ''2''''1ost obrel ost I K K I = (3-53) 时限再抬高一级,取1~1.2秒。

(3)保留灵敏度校验不满足要求,时限为0.5秒的零序Ⅱ段。

一人定值较大,能在正常运行方式或最大运行方式下,以较短的延时切除本线路的接地短路,另一个则具有较长的延时,保护各种运行方式下线路末端接地短路时,具有足够的灵敏系数。

3、零序过电流保护零序过电流保护主要作为本线路零序I 段和零序Ⅱ段的近后备和相邻线路、母线、变压器接地短路的远后备保护。

在终端线路上可以作为主保护使用。

启动电流以下面原则进行整定。

(1)躲过相邻线路出口处三相短路时所出现的最大不平衡电流,max '''∙=ub rel ost I K I (3-54)(2)启动电流按逐渐配合的原则整定,即本线路零序过电流保护的保护范围不能超出相邻线路上零序过电流的保护范围。

逐级配合的原则是保证电网保护有选择性动作的重要原则,不遵守这条原则就难免出现保护越级跳闸。

例如:假定图3-33中三段式零序电流保护A 没有按上述原则严格地与相邻线三段式零序电流保护B 相配合。

尽管保护B 的第二段对线路B 末端故障有足够灵敏度,保护A 的第三段在动作时间上大于保护B 的第二段动作时间,但是保护A 第三段在灵敏度上与保护B 的二、三段不配合,其动作特性如图3-33所示,出现相互交错的情况,如图中打叉部分。

此时,虽然在线路B 上发生的金属性接地故障,仍可以由保护B 的第一段或第二段动作,有选择地切除故障,但在下述许多情况下,如果保护B 第二段不能可靠动作,则可以导致保护A 越级跳闸。

1)在线路B 末端发生经大过渡电阻的接地故障(如对树放电,对竹子放电等)时,保护B 第二段不一定能动作,但第三段可以动作。

然而保护A 第三段因为其动作特性与保护B 第三段重迭,也可能同时动作,后果是造成线路A 不必要地被切断。

2)线路B的始端断路器因故断开一相,但负荷较轻,其两相运行零序电流较小,不足以起动保护B第三段。

这本来完全可以由运行人员手动处理,或依靠断路器非全相保护动作,跳开三相断路器,但由于保护A第三段的灵敏度与保护B第三段不配合,它反而可能动作而越级跳开A断路器。

3)在线路C发生金属性接地故障而其断路器因故拒绝动作时,本来可以靠保护B作为后备,跳开B断路器,但由于保护A与保护B动作特性重迭,因而可能导致断路器A 越级跳闸。

上述配合原则,不仅适用于第一次故障的情况,还应该同样适用于重合闸过程中又发生故障(单相重合过程中健全相又故障)和重合于永久性故障的情况。

当零序电流保护作近后备时,校验接地短路点在被保护线路的末端,要求灵敏系数≥K;而作为远后备时,校验接地短路点在相邻线路的末端,要求灵敏系数3.1~5.1senK≥。

1.2sen按上述原则整定的零序过电流保护,起动电流一般较小,因此,当本电压级电网内发生接地短路时,凡零序电流流过的各个保护都能起动,为了保证各保护之间动作的选择性,它们的动作时限应按阶梯原则来选择,与相同故障电流保护时限特性一样,所不同的时是接地故障零序电流保护的动作时限不须从离电源最远处的保护开始逐级增大,而相间故障的电流保护的动作时限则必须从离电源最远处的保护开始逐级增大,如图3-34所示(其中时间阶梯特性1代表零序电流保护的时限特性,2代表相同短路电流保护的时限特性)。

这是因为变压器T1的△侧以后无零序电流流通之故。

四、零序电流滤过器线路零序电流保护的零序电流,除了单台Y ,d 变压顺单回出线的变电所,可以取自变压器中性点电流互感器之外,一般都取自线路三相电流互感器组成的零序电流滤过器。

微机保护用的0I ,一般由软件构成03A B C I I I I =++。

一般变压器的零序电流保护,可以自变压器中性点电流互感器取得零序电流。

但对自耦变压器,由于不是所有接地故障都能在变压器中性点产生具有一定方向、并且幅值足够的零序电流,所以它的零序电流保护,一般不是从变压器中性点取得零序电流,而是从变压器出口零序电流滤过器取得零序电流。

相关文档
最新文档