塔分子筛脱水计算
分子筛吸附脱水塔

分子筛吸附脱水塔一、引言分子筛吸附脱水塔是一种常见的工业设备,主要用于去除气体或液体中的水分。
它利用分子筛的吸附性能,通过物理吸附作用将水分分离出来,从而实现脱水的目的。
本文将介绍分子筛吸附脱水塔的工作原理、结构特点以及应用领域。
二、工作原理分子筛是一种具有规则孔径的多孔晶体材料,其孔径大小可以根据不同的需求进行调整。
在分子筛吸附脱水塔中,分子筛通常以颗粒或颗粒填充剂的形式存在。
当湿气通过分子筛层时,水分子可以通过物理吸附作用被分子筛表面的孔道所吸附,而其他气体分子则可以通过分子筛层无阻碍地通过。
这样,湿气中的水分就会被分子筛吸附下来,从而实现脱水的效果。
三、结构特点1. 分子筛层:分子筛吸附脱水塔的核心部分是分子筛层,它通常由多孔材料制成,具有高度的孔隙度和表面积,以增强吸附效果。
分子筛层的厚度可以根据实际需求进行调整。
2. 进出口管道:分子筛吸附脱水塔通常设有进出口管道,用于将待处理的湿气引入和排出。
这些管道通常采用耐腐蚀材料制成,以适应不同的工作环境。
3. 控制装置:分子筛吸附脱水塔通常还设有控制装置,用于控制湿气的进出和分子筛层的工作状态。
这些控制装置可以根据需要进行手动或自动操作,以实现脱水效果的调节和监控。
四、应用领域分子筛吸附脱水塔广泛应用于许多工业领域,特别是那些对湿气含量要求较高的行业。
以下是一些常见的应用领域:1. 石油化工:在石油、天然气和化工生产过程中,湿气的存在会对设备的正常运行和产品质量造成不利影响。
分子筛吸附脱水塔可以有效地去除湿气,保证生产过程的稳定性和产品的质量。
2. 制药工业:在制药过程中,湿气的存在可能导致药品的稳定性和保存期限的降低。
分子筛吸附脱水塔可以帮助去除湿气,提高制药产品的质量和稳定性。
3. 食品工业:在食品加工和储存过程中,湿气的存在可能导致食品腐败和变质。
分子筛吸附脱水塔可以帮助去除湿气,延长食品的保存期限和保持食品的新鲜度。
4. 电子工业:在电子产品的生产过程中,湿气的存在可能导致电子元件的腐蚀和故障。
分子筛三塔脱水

分子筛三塔脱水
分子筛三塔脱水工艺是一种先进的脱水技术,主要应用于天然气、炼厂气等气体脱水领域。
相比于传统的两塔脱水工艺,三塔脱水工艺具有更高的效率和稳定性,能够更好地满足工业生产的需求。
在分子筛三塔脱水工艺中,通常采用三个塔进行脱水操作。
第一个塔为原料气进入的塔,用于初步脱水和预处理;第二个塔为再生塔,用于对分子筛进行再生和循环使用;第三个塔为产品气出塔,用于最终的产品气处理和干燥。
在具体操作中,原料气首先进入第一个塔进行初步脱水处理,脱去大部分的水分和杂质。
然后,经过预处理的原料气进入第二个塔进行深度脱水,使气体达到更高的干燥度。
最后,经过第二个塔处理后的气体进入第三个塔,进行最终的产品气处理和干燥。
相比传统的两塔脱水工艺,分子筛三塔脱水工艺具有以下优点:
更高的脱水效率:由于采用三个塔进行脱水操作,分子筛三塔脱水工艺能够更好地控制每个塔的操作条件,从而提高整体的脱水效率。
更好的产品气质量:采用三塔脱水工艺,可以更好地控制产品的干燥度和纯度,从而获得更高质量的产品气。
更高的稳定性:三塔脱水工艺中每个塔的功能明确,操作稳定,从而提高了整个系统的稳定性。
更长的分子筛寿命:由于三塔脱水工艺中的再生塔可以更好地对分子筛进行再生和循环使用,从而延长了分子筛的使用寿命。
更低的能耗:由于三塔脱水工艺中每个塔的操作条件可以得到更好的控制,从而降低了整个系统的能耗。
总之,分子筛三塔脱水工艺是一种高效、稳定、节能的脱水技术,在工业生产中得到了广泛应用。
分子筛脱水工艺简述

第26卷第1期2008年2月天 然 气 与 石 油Na tura l Ga s And O ilVol .26,No .1Feb .2008 收稿日期:2007205211 作者简介:胡晓敏(19792),女,四川广安人,工程师,双学士,2001年毕业于中国石油大学(华东),主要从事天然气净化的研究与设计工作。
电话:(028)86014138。
分子筛脱水工艺简述胡晓敏,陆永康,曾亮泉(中国石油工程设计有限公司西南分公司,四川成都610017)摘 要:分子筛脱水是目前国内外应用较广泛,技术较成熟的脱水工艺。
脱水后干气含水量可低至10-6。
该法操作简单,占地面积小,对进料气的温度、压力和流量变化不敏感。
天然气分子筛工艺一般分为两塔流程、三塔或多塔流程。
总结了天然气分子筛脱水装置的一些重要操作参数,供工程设计参考。
关键词:分子筛;脱水;流程;操作参数文章编号:100625539(2008)0120039203 文献标识码:A0 概述目前国内外应用较广泛,技术较成熟的天然气脱水工艺有:低温分离、固体吸附和溶剂吸收三种方法。
而固体吸附法中以分子筛脱水的应用最广泛,技术最成熟可靠。
分子筛脱水是一个物理吸附过程。
物理吸附主要由范氏引力或扩散力所引起,气体的吸附类似于气体的凝聚,一般无选择性,是可逆过程,吸附热小,吸附所需的活化能小,所以吸附速度快,较易达到平衡。
分子筛脱水一般适用于下列场合[1]:a.要求天然气水露点低于-40℃的场合,例如使用膨胀机的NG L 回收装置的原料气脱水。
b .同时脱水脱烃以满足水露点、烃露点销售要求的烃露点控制装置———适用于贫的高压天然气的烃露点控制。
c .天然气同时脱水和净化。
d .含H 2S 的天然气脱水,当H 2S 溶解在甘醇中引起再生气的排放问题时。
e .LPG 和NG L 脱水同时要脱除微量的硫化物(H 2S,COS,CS 2,硫醇)时。
1 分子筛脱水工艺流程目前天然气工业用的脱水吸附器主要是固定床吸附塔,为保证装置连续操作,至少需要两个吸附塔。
天然气脱水设计计算(分子筛吸附塔)

三:床层
长度的计
算
原料气的
饱和含水
量
g/1000m3气体流动
系数C:
从上到下
(0.25~0.3
2);从下到
上0.1670.29需脱除水量Kg/hr
分子筛堆
积密度:
Kg/m3660操作周期天然气工
作状态下
的密度:
Kg/m348.26733总共需脱水量Kg
天然气工
作压力:
Mpa 4.3天然气的压缩系数
分子筛的
平均直
径:Dp
m0.0032工作状态下气体量m3/s
允许气体质量流
速:G
Kg/(m*S) 5.437166工作温度0K
空塔流速:W0
m/s
0.112647
分子筛有
效吸附容
积Kg水
/100Kg分
子筛一:吸附周期:两塔--8小时。
三塔--24小时。
二:吸附器直径:
天然气脱水计算(分子筛吸附塔)
气体处理
量
104m3/d2所需分子筛重量Kg
气体质量
流量Kg/s0.248016所需分子筛体积m3
气体分子
量24床层高度m
空塔截面
积m20.045615高径比吸附塔直
径Dm0.241056
确定塔的
直径Dm0.241056
实际塔截
面积m20.043581
实际气体
流速m/s0.117904
)
1200
1
8
8
0.86
0.01
303
8
100 0.15 3.48 14.4。
c天然气分子筛脱水装置工艺设计

1概述1.1设计要求原料气压力为4.5MPa,温度30℃,工艺流程要求脱水后含水量在1ppm以下(质),采用球形4A分子筛吸附脱水,已知4A分子筛的颗粒直径为3.2mm,堆密度为660kg/m3,吸附周期采用8小时。
其具体内容如下:1.绘制天然气脱水工艺流程图;2.确定工艺流程的主要工艺参数;3.对脱水系统中主要设备进行工艺计算,并确定主要设备的结构尺寸和型号。
4.确定流程中主要管线的规格(材质、壁厚、直径)。
5.编写工程设计书。
1.2设计范围分子筛吸附塔装置导热油换热单元过滤器再生气分离器连接管道排污放空系统安全阀,调压阀1.3设计原则1)贯彻国家建设基本方针政策,遵循国家和行业的各项技术标准、规范。
2)贯彻“安全、可靠”的指导思想,紧密结合上、下游工程,以保证中央处理厂安全、稳定地运行。
3)根据高效节能、安全生产的原则,采用先进实用的技术和自控手段,实行现代化的管理模式,实现工艺、技术成熟可靠、节省投资、方便生产。
4)充分考虑环境保护,节约能源。
1.4气质工况及处理规模气体处理规模:100×104 m3/d原料气压力:4.5MPa原料气温度:30 ℃脱水后含水量:≤1ppm天然气气质组成见表1-1。
表1-1天然气组成表(干基)组分H2 He N2 CO2 C1 C2mol% 0.097 0.052 0.55 0.026 94.595 3.305组分C3 iC4 nC4 iC5 nC5 C6+ mol% 0.73 0.121 0.156 0.056 0.052 0.2621.5分子筛脱水工艺流程1.5.1流程选择本装置所处理的湿净化气流量为100×104m3/d(20℃、101.325kPa标准状态下)。
对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。
而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。
分子筛脱水计算

1.分子筛脱水工艺参数:处理量100410⨯Nm 3/d (0℃,101325Pa ),即4.1667410⨯Nm 3/h吸附周期:T=8小时分子筛有效吸附容量:取8kgH 2O/100kg 分子筛 按全部脱去考虑,需脱水量:h kg /53.809663.024101004=⨯⨯(0℃?,101325Pa )。
操作周期T=8h ,总共脱水:kg 24.64453.808=⨯。
天然气的压缩系数Z=0.9023。
则操作条件下气体量:Q=877.74m 3/h (30℃,4.5MPa ),工况下密度为3g m /kg 89.33=ρ(30℃,4.5MPa ),所以,气体质量流量:h kg G g /34.29743=。
已知3b m /kg 660=ρ,m 0032.0D p =即可根据雷督克斯的半经验公式求得吸附塔直径,半经验公式如下:()5.0p g b D C G ρρ= 式中 G ——允许的气体质量流速,)s m /(kg 2⋅;C ——系数,气体自上向下流动,取0.25~0.32;自下向上流动,取0.167; b ρ——分子筛的堆密度,kg/3m ;g ρ——气体在操作条件下的密度,kg/3m ;D p ——分子筛的平均直径(球形)或当量直径(条形),m 。
因此,())/(525.164010032.089.3366029.0360025.0h m kg G ⋅=⨯⨯⨯⨯=吸附塔的截面积:m F 8134.1525.1640134.29743=÷=。
直径:m D 52.1)785.0/8134.1(5.0==,取 1.5m 。
则,F=1.76625m 2,气体流速s m h m v g /138.0/951.49676625.1/74.8772===(30℃,4.5MPa )。
吸附器高径比计算原料气饱和水含量 mol%为0.001112原料气的摩尔流量为1736.835 kgmole/hh kg /76.34018.01000835.1736001112.0=⨯⨯⨯操作周期T=8h ,总共脱水:kg 12.27876.348=⨯分子筛有效吸附容量取8kg (水)/100kg (分子筛),吸附塔需装分子筛:kg 358908.0/12.287=,其体积为344.5660/3589m V ==, 床层高m F V H 08.376625.144.5===,取3m.高径比约25.1/0.3=。
某分子筛吸附脱水工艺设计——再生工艺计算(内容清晰)

重庆科技学院《油气集输工程》课程设计报告学院: 石油与天然气工程学院专业班级:学生姓名:学号:设计地点(单位) K804 设计题目: 某分子筛吸附脱水工艺设计——再生工艺计算完成日期:年月日指导教师评语:成绩(五级记分制):指导教师(签字):________________摘要井口流出的天然气几乎都为气相水所饱和,甚至会携带一定量的液态水。
天然气中水分的存在往往会造成严重的后果:含有CO2和H2S的天然气在有水存在的情况下形成酸而腐蚀管路和设备;在一定条件下形成天然气水合物而堵塞阀门、管道和设备;降低管道输送能力,造成不必要的动力消耗。
水分在天然气的存在是非常不利的事,因此,需要脱水的要求更为严格。
天然气脱水的方法一般包括低温法、溶剂吸收法、固体吸附法、化学反应法和膜分离法等。
低温法脱水是利用高压天然气节流膨胀降温或利用气波机膨胀降温而实现的,这种工艺适合于高压天然气;而对于低压天然气,若要使用则必须增压,从而影响了过程的经济性。
溶剂吸收法和固体吸附法目前在天然气工业中应用较广泛。
本文主要研究固体吸附法脱水。
固体吸附法就是利用多孔固体颗粒选择性地吸附流体中一定组分在其内外表面上,从而使流体混合物得以分离的方法。
具有一定吸附能力的固体材料称为吸附剂,被吸附的物质称为吸附质。
而本文的固体吸附剂以分子筛作为探讨的对象。
分子筛具有很好的选择吸附性、在高温下吸附脱水等优点,尤其是在气体和液体进行深度脱水时特别适合。
分子筛在使用过程中被气体中所含水量饱和,为了使分子筛能够继续循环使用,就有了分子筛的再生工艺过程。
本文主要通过选取合适的分子筛然后计算分子筛的吸附水量,和吸附的双塔轮换过程和轮换时间,通过要脱附的水量计算出再生气的气量以及冷凝气的气量,和所需加热炉的热量,以此来探讨分子筛的再生工艺过程。
关键词:分子筛再生工艺再生气冷凝气热量目录摘要 (2)1 绪论 (4)1.1 国内外现状 (4)1.2脱水系统吸附剂的选择 (5)1.3分子筛的种类与特点 (6)1.4 分子筛吸附脱水原理流程 (7)1.4.1 吸附周期 (8)1.4.2 再生过程 (8)1.4.3 再生操作 (9)1.4.4 再生加热与冷却 (10)2 再生工艺计算 (12)2.1物性基础 (12)2.1.1天然气的基本组成 (12)2.1.2工艺选择 (12)2.2 在生热负荷计算 (13)2.3 再生气量计算 (15)2.3 冷却气量计算 (16)2.4再生气空塔速度计算 (17)3 总结 (19)参考文献 (20)1 绪论1.1 国内外现状天然气作为清洁优质能源,在近年来,其世界总气产量和消费量呈持续增长的趋势。
某分子筛吸附脱水工艺设计再生工艺设计计算

某分子筛吸附脱水工艺设计再生工艺设计计算分子筛吸附脱水工艺设计再生工艺设计计算,是指对一种分子筛吸附
脱水工艺进行设计,并对再生工艺进行计算。
下面将详细介绍该过程。
一、分子筛吸附脱水工艺设计:
1.确定分子筛类型:首先需要选择合适的分子筛类型,根据分子筛的
吸附性能和经济性进行权衡选择。
2.确定操作参数:确定脱水过程中的操作温度、压力和流量等参数,
这些参数对吸附脱水效果有重要影响。
3.确定吸附装置:根据分子筛吸附特性和操作参数选择合适的吸附装置,例如固定床吸附塔、旋转吸附塔等。
4.设计吸附脱水过程:根据吸附过程中分子筛与水分子之间的相互作用,设计吸附脱水过程中的物料流动路径、吸附结构以及干燥等工艺。
5.进行实验验证:进行实验室规模或中试规模的实验验证,检验吸附
脱水效果,并调整设计参数以提高吸附效率。
二、再生工艺设计计算:
1.确定再生剂:根据吸附过程中的吸附剂性质以及工艺要求,确定再
生剂的种类和用量。
2.设计再生装置:根据再生过程中再生剂与吸附剂间的物质传递规律,选择合适的再生装置,例如蒸汽再生装置、热风再生装置等。
3.计算再生过程:根据再生剂与吸附剂之间的传质过程,进行传热、
传质方面的计算分析,确定再生过程中的操作温度和压力。
4.进行实验验证:进行实验室规模或中试规模的实验验证,检验再生效果,并调整设计参数以提高再生效率。
以上就是分子筛吸附脱水工艺设计再生工艺设计计算的基本过程。
通过合理的分子筛选择、操作参数设计和再生工艺设计计算,可以提高吸附脱水过程的效果,并实现可持续发展的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三:床层长度的计算原料气的饱和g/1000
气体流动系数C :从上到下(0.25~0.32);从下到上0.1670.29需脱除水量Kg/hr 分子筛堆积密度:Kg/m 3
660操作周期天然气工作状态下的密度:Kg/m 348.26733总共需脱水量Kg 天然气工作压力:Mpa 4.3天然气的压缩系数分子筛的平均直径:Dp m 0.0032工作状态下气体量m3/s 允许气体质量流速:G Kg/(m*S) 5.437166工作温度0K
空塔流速:W 0 m/s 0.112647
分子筛有效吸附容积Kg 水/气体处理量104m 3/d 2所需分子筛重量Kg 气体质量流量Kg/s 0.248016所需分子筛体积m 3气体分子量24床层高度m 空塔截面积m 20.045615高径比
吸附塔直径Dm 0.241056确定塔的直径Dm 0.241056实际塔截面积m 20.043581实际气体流速m/s
0.117904
一:吸附周期:两塔--8小时。
三塔--24小时。
二:吸附器直径:
三:床层长度的计算
的饱和含水量g/1000m31200
水量Kg/hr1
8脱水量Kg8
的压缩系数0.86
态下气体量m3/s0.01
度0K303
有效吸附容积Kg水/100Kg分子筛8
子筛重量Kg100
子筛体积m30.15
度m 3.48
14.4。