重点初中中考复习三角函数知识点及经典题型

合集下载

初中三角函数知识点+题型总结+课后练习

初中三角函数知识点+题型总结+课后练习

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

45、 锐角三角函数题型训练类型一:直角三角形求值1.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,178sin=A ,求A cos ,A tan 的值类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为 ( )A.34 B.43 C.35D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠=,则AD 的长为( )A.2 C .1 D .22 4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=3sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值例1.求下列各式的值︒-︒+︒30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0-33tan30°-tan45°= 030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+=︒-︒+︒60tan 45sin 230cos 2tan 45sin 301cos 60︒+︒-︒=B在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数. 例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数. 例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B Atan tan 1______. ④直角三角形中成比例的线段(如图所示). 在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ; (3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ; (5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长. 例4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长. 类型二:解直角三角形的实际应用 仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球0020B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3(昌平)19.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4 .如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB 为1.7米,求这棵树的高度.例5.已知:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向米米 米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,60千米/小时≈16.7米/秒) 类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .C .150mD .mA BCECBA类型五. 方位角1.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少?(精确到0.1海里,732.13≈) 综合题:三角函数与四边形:(西城二模)1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,tan ∠BDC=63. (1) 求BD 的长; (2) 求AD 的长.(2011东一)2.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC F . (1)求证:∠BAE =∠DAF ; (2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长. 三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( )A .12 B C .35 D .45(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D, (1) 求证:∠AOD=2∠C(2) 若AD=8,tanC=34,求⊙O 的半径。

(完整版)新北师大初三三角函数知识点总结及中考真题汇总有答案

(完整版)新北师大初三三角函数知识点总结及中考真题汇总有答案

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 C A90B 90∠-︒=∠︒=∠+∠得由B A8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

新北师大初三三角函数知识点总结及中考真题汇总有答案

新北师大初三三角函数知识点总结及中考真题汇总有答案

锐角三角函数知识点总结1、勾股定理:直角三角形两直角边 a 、b的平方和等于斜边 c 的平方。

a 2b2 c 22、以以下图,在Rt△ABC中,∠ C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值范围关系正A的对边sin A a0 sin A1sin A cosBsin Ac(∠A 为锐角 )弦斜边cos A sin B余A的邻边cos A b0 cos A1sin2A cos2A1cos Ac弦斜边(∠A 为锐角 )正的对边a tan A0tan A cot Btan A A tan Acot A tan B切A的邻边b(∠A 为锐角 )1tan A(倒数 )余A的邻边cot A b cot A0cot Acot AA的对边a(∠A 为锐角 )tan A cot A1切3、随意锐角的正弦值等于它的余角的余弦值;随意锐角的余弦值等于它的余角的正弦值。

sin A cosB由 A B90sin A cos(90A)B 对cos A sin B得 B90A cos A sin(90A)斜边c a 边AbC邻边4、随意锐角的正切值等于它的余角的余切值;随意锐角的余切值等于它的余角的正切值。

tan A cot B由 A B90tan A cot(90 A)cot A tan B得 B90A cot A tan(90A)5、 0°、 30°、 45°、 60°、 90°特别角的三角函数值(重要 )三角函数0°30°45°60°90°sin01231 222cos13210 222tan0313-3cot-313036、正弦、余弦的增减性:当 0°≤≤ 90°时, sin随的增大而增大, cos随的增大而减小。

7、正切、余切的增减性:当 0°< <90°时, tan随的增大而增大, cot随的增大而减小。

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。

余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。

正切函数tanA=对边a/邻边b,取值范围为R(实数集)。

3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。

4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。

7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。

8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。

依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。

9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。

方位角:从某点的指北方向按顺时针转到目标方向的水平角。

方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。

例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。

初中三角函数知识点总结及典型习题

初中三角函数知识点总结及典型习题

初中三角函数知识点总结及典型习题初中三角函数知识点总结及典型习题一、角度和弧度制1. 角度制:以度(°)作为单位来度量角的大小,一周为360°,一个直角为90°。

2. 弧度制:以弧长等于半径长度的圆心角为一弧度(rad),一周为2π rad,一个直角为π/2 rad。

二、常用三角函数1. 正弦函数(sin):在直角三角形中,正弦值为对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,余弦值为邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,正切值为对边与邻边的比值。

三、三角函数的周期性1. 正弦函数与余弦函数的周期均为2π。

2. 正切函数的周期为π。

四、三角函数的基本性质1. 正弦函数和余弦函数的值域为[-1,1],在[-π/2,π/2]内单调递增。

2. 正切函数的值域为(-∞,∞),在每个周期内交替上升和下降。

3. 正弦函数与余弦函数的图像为波形,以坐标原点为对称中心。

4. 正切函数的图像为周期为π的波形。

五、三角函数的正负关系1. 在第一象限,正弦函数、余弦函数和正切函数均为正。

2. 在第二象限,正弦函数为正,余弦函数和正切函数为负。

3. 在第三象限,正弦函数和正切函数为负,余弦函数为正。

4. 在第四象限,正弦函数为负,余弦函数和正切函数为正。

六、三角函数的基本公式1. 正弦函数的基本公式:sin(α±β) = sinαcosβ± cosαsinβ2. 余弦函数的基本公式:cos(α±β) = cosαcosβ∓ sinαsinβ3. 正切函数的基本公式:tan(α±β) = (tanα± tanβ) / (1∓tanαtanβ)七、三角函数之间的倒数关系1. 正弦函数与余弦函数的关系:sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ2. 正弦函数与正切函数的关系:tanθ = sinθ / cosθ,cotθ = cosθ / sinθ3. 余弦函数与正切函数的关系:tan(π/2-θ) = 1 / tanθ,cot(π/2-θ) = 1 / cotθ八、特殊角的三角函数值1. 30°的正弦值为1/2,余弦值为√3/2,正切值为1/√3。

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。

余弦:邻边与斜边的比值,即cosθ =邻边/斜边。

正切:对边与邻边的比值,即tanθ =对边/邻边。

二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。

2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。

3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。

4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。

余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。

正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。

三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。

解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。

设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。

解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。

中考三角函数题型归纳总结(一)

中考三角函数题型归纳总结(一)

中考三角函数题型归纳总结(一)
前言
•本文总结了中考三角函数题型的归纳内容,旨在帮助同学们系统地了解并掌握相关题型,提高解题技巧和能力。

正文
1. 基本概念
•介绍三角函数的定义、基本关系和性质,包括正弦、余弦、正切等函数的图像、周期和定义域等内容。

2. 基本公式
•列举常用的三角函数基本公式,如和差化积、倍角公式、半角公式等,以及它们在解题中的应用。

3. 特殊角的计算
•整数倍角的简化计算,引入30°、45°、60°等特殊角,介绍其对应三角函数值的计算方法,并结合例题进行说明。

4. 图像与周期
•利用三角函数的周期性质,通过画函数图像或利用函数值的对称关系,解答与函数图像有关的题目。

5. 方程与恒等式
•介绍解三角方程和证明三角恒等式的基本方法,解析和计算过程需清晰明了,拓展到包含两个或多个三角函数的复杂方程和恒等式。

6. 三角函数与三角比例关系
•特殊角的三角函数值与三角比例的关系,如斜边与直角边的比值等,以及利用这些关系解题的思路和方法。

7. 综合题型
•综合运用以上知识点解答综合题目,要求分析问题所用到的具体概念和方法,建立解题的思路和步骤。

结尾
•通过学习与掌握以上总结的内容,相信同学们在中考三角函数题型的解题过程中能够更加自信和熟练,取得理想的成绩。

希望同学们在备考中积极运用所学,加深对三角函数的理解与应用,为未来的学习打下坚实的基础。

三角函数知识点归纳总结及例题

三角函数知识点归纳总结及例题

《三角函数》一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈锐角:{}090αα<< 小于90的角:{}90αα<例题 :1.下列各角中,与27︒角终边相同的是( ) A .63︒ B .153︒C .207︒D .387︒2.已知cos0,sin0,22αα<<且cos α<0,则角α为( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角3.若角α为第二象限角,则角2α为( )象限角 A .第一 B .第一或第二C .第二D .第一或第三5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2α在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=︒π815730.571801'︒=︒≈︒=π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制. 例题:4.512π=( ) A .70°B .75°C .80°D .85°5.300︒-化成弧度制为( ) A .103πB .56π-C .53π-D .73π二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,r =例6.已知角θ的顶点为坐标原点,始边为x 轴正半轴,若(4,3)P 是角θ终边上的一点,则cos θ=( )A .35B .45C .43D .347.已知角α的顶点在坐标原点,始边在x 轴非负半轴上,终边与单位圆交于12P ⎛- ⎝⎭,则sinα=()A.3-B.12-C.3-D.38.已知tan2α=,则2221sin2cossin2cosαααα++=-()A.32B.52C.4 D.52、三角函数值对应表:口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c”)sinαtanαcosα第一象限:0,0.>>yx sinα>0,cosα>0,tanα>0,第二象限:0,0.><yx sinα>0,cosα<0,tanα<0,第三象限:0,0.<<yx sinα<0,cosα<0,tanα>0,度030456090120135150180︒270360弧度06π4π3π2π23π34π56ππ32π2πsinα01222321322212010cosα132221212-22-32-1-01 tanα03313无3-1-33-0无0第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、同角三角函数基本关系式22sin cos 1αα+=sin tan tan cot 1cos ααααα=⇒= ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin •,三式之间可以互相表示)5.诱导公式口诀:奇变偶不变,符号看象限(所谓奇偶指的是απ+2n 中整数n 的奇偶性,把α看作锐角)212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数;212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数. ①.公式(一):α与()2,k k Z απ+∈απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k②.公式(二):α与α-()sin sin αα-=-;()cos cos αα-=;()tan tan αα-=-③.公式(三):α与πα+()sin sin παα+=-;()cos cos παα+=-;()tan tan παα+=④.公式(四):α与πα-()sin sin παα-=;()cos cos παα-=-;()tan tan παα-=-⑤.公式(五):α与2πα+sin cos 2παα⎛⎫+= ⎪⎝⎭;cos sin 2παα⎛⎫+=- ⎪⎝⎭; ⑥.公式(六):α与2πα-sin cos 2παα⎛⎫-= ⎪⎝⎭;cos sin 2παα⎛⎫-= ⎪⎝⎭;⑦.公式(七):α与32πα+ 3sin cos 2παα⎛⎫+=- ⎪⎝⎭;3cos sin 2παα⎛⎫+= ⎪⎝⎭; ⑧.公式(八):α与32πα- 3sin cos 2παα⎛⎫-=- ⎪⎝⎭;3cos sin 2παα⎛⎫-=- ⎪⎝⎭;例题:9.已知α为第三象限角,且sin α=,则cos α=( )A B .C D .10.在[]0,2π上满足1sin 2x ≥的x 的取值范围是( )A .06,π⎡⎤⎢⎥⎣⎦B .5,66ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦D .5,6ππ⎡⎤-⎢⎥⎣⎦11.若sin 3α=,2a ππ<<,则sin 2πα⎛⎫+= ⎪⎝⎭( )A .B .12-C .12 D12.已知1cos 2α=-,()0,απ∈,则α=( ).A .6πB .56πC .3π D .23π13.sin330︒等于( )A .2-B .12-C .12D .214.sin 3π⎛⎫- ⎪⎝⎭的值是( )A .12B .12-C .2D .15.若α是第三象限角,则点()()()tan 3,cos παπα-+在( )A .第一象限B .第二象限C .第三象限D .第四象限16.2sin 3π=( )A .12 B .12-C D . 17.sin 210︒的值为( )A .12B .12-C .2D .三、三角函数的图像与性质5、三角函数的图像与性质表格 sin y x =cos y x =tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上是减函数.在[]()2,2k k k Z πππ-+∈上是增函数; 在[]2,2k k πππ+()k Z ∈上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k Z ∈上是增函数.对称性对称中心()(),0k k Z π∈ 对称轴()2x k k Z ππ=+∈对称中心(),02k k Z ππ⎛⎫+∈⎪⎝⎭ 对称轴()x k k Z π=∈对称中心(),02k k Z π⎛⎫∈⎪⎝⎭无对称轴函数 性 质21.已知函数()sin 022f x x ππϕϕ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象过点30,2⎛⎫ ⎪ ⎪⎝⎭,则()f x 图象的一个对称中心为( ) A .1,03⎛⎫ ⎪⎝⎭B .()1,0C .4,03⎛⎫ ⎪⎝⎭D .()2,022.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则8f π⎛⎫= ⎪⎝⎭( ) A .1B .12C .1-D .12-23.函数sin 2y x =的图象的一条对称轴的方程是( ) A .2x π=-B .4πx =-C .8x π=D .58x π=24.若α,β为锐角,且2cos()sin()63ππαβ-=+,则( ) A .3παβ+=B .6παβ+=C .3παβ-= D .6παβ-=25.函数3cos 1()x f x x+=的部分图象大致是( ) A . B .C .D .26.函数cos(),[0,2]y x x π=-∈的简图是( )A .B .C .D .27.函数2cos 53y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .5πB .52πC .2πD .5π28.已知[]0,x π∈,则满足1cos 2x >-的x 的取值范围是( ) A .2,33ππ⎛⎫⎪⎝⎭B .20,,33πππ⎡⎤⎛⎤⎢⎥⎥⎣⎦⎝⎦C .50,6π⎡⎤⎢⎥⎣⎦D .20,3π⎡⎫⎪⎢⎣⎭29.函数3cos 28y x π⎛⎫=-⎪⎝⎭的一个对称中心是( ) A .,08π⎛⎫⎪⎝⎭B .5,016π⎛⎫⎪⎝⎭C .3,08π⎛⎫⎪⎝⎭D .7,016π⎛⎫⎪⎝⎭1、将函数sin y x =的图象上所有的点,向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y A x ωϕ=+的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点1:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点2:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点3:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点4:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1.3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°. 2.矩形是正多边形.3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x 的根为 .A .x=2B .x=-2C .x 1=2,x 2=-2D .x=4 2.方程x 2-1=0的两根为 .A .x=1B .x=-1C .x 1=1,x 2=-1D .x=2 3.方程(x-3)(x+4)=0的两根为 .A.x 1=-3,x 2=4B.x 1=-3,x 2=-4C.x 1=3,x 2=4D.x 1=3,x 2=-44.方程x(x-2)=0的两根为 .A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-2 5.方程x 2-9=0的两根为 .A .x=3B .x=-3C .x 1=3,x 2=-3D .x 1=+3,x 2=-3知识点12:方程解的情况及换元法1.一元二次方程02342=-+x x 的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根2.不解方程,判别方程3x 2-5x+3=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根4.不解方程,判别方程4x 2+4x-1=0的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根5.不解方程,判别方程5x 2-7x+5=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根6.不解方程,判别方程5x 2+7x=-5的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根7.不解方程,判别方程x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根8. 不解方程,判断方程5y 2+1=25y 的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换 元 法 解方 程 4)3(5322=---xx x x 时, 令 32-x x = y ,于是原方程变为 . A.y 2-5y+4=0 B.y 2-5y-4=0 C.y 2-4y-5=0 D.y 2+4y-5=010. 用换元法解方程4)3(5322=---x x x x 时,令23x x -= y ,于是原方程变为 .A.5y 2-4y+1=0 B.5y 2-4y-1=0 C.-5y 2-4y-1=0 D. -5y 2-4y-1=0 11. 用换元法解方程(1+x x )2-5(1+x x )+6=0时,设1+x x=y ,则原方程化为关于y 的方程是 .A.y 2+5y+6=0B.y 2-5y+6=0C.y 2+5y-6=0D.y 2-5y-6=0知识点13:自变量的取值范围1.函数2-=x y 中,自变量x 的取值范围是 . A.x ≠2 B.x ≤-2 C.x ≥-2 D.x ≠-2 2.函数y=31-x 的自变量的取值范围是 . A.x>3 B. x ≥3 C. x ≠3 D. x 为任意实数 3.函数y=11+x 的自变量的取值范围是 . A.x ≥-1 B. x>-1 C. x ≠1 D. x ≠-1 4.函数y=11--x 的自变量的取值范围是 . A.x ≥1 B.x ≤1 C.x ≠1 D.x 为任意实数 5.函数y=25-x 的自变量的取值范围是 . A.x>5 B.x ≥5 C.x ≠5 D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 .A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=x8- 2.下列函数中,反比例函数是 . A. y=8x 2 B.y=8x+1 C.y=-8x D.y=-x8 3.下列函数:①y=8x 2;②y=8x+1;③y=-8x ;④y=-x8.其中,一次函数有 个 . A.1个 B.2个 C.3个 D.4个知识点15:圆的基本性质1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 .•DBCAO ••BOCAD•BOCAD•BOCAD•BOCADA.100°B.130°C.80°D.50 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 .A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50°12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm知识点16:点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 .A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交 8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 . A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定知识点17:圆与圆的位置关系1.⊙O 1和⊙O 2的半径分别为3cm 和4cm ,若O 1O 2=10cm ,则这两圆的位置关系是 . A. 外离 B. 外切 C. 相交 D. 内切2.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=9cm,则这两个圆的位置关系是 . A.内切 B. 外切 C. 相交 D. 外离3.已知⊙O 1、⊙O 2的半径分别为3cm 和5cm,若O 1O 2=1cm,则这两个圆的位置关系是 . A.外切 B.相交 C. 内切 D. 内含•CBA O•CBAO4.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2==7cm,则这两个圆的位置关系是 . A.外离 B. 外切 C.相交 D.内切5.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm ,两圆的一条外公切线长43,则两圆的位置关系是 .A.外切B. 内切C.内含D. 相交6.已知⊙O 1、⊙O 2的半径分别为2cm 和6cm,若O 1O 2=6cm,则这两个圆的位置关系是 . A.外切 B.相交 C. 内切 D. 内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为 .A. 1条B.2条C.3条D.4条 2.如果两圆外切,它们的公切线的条数为 . A. 1条 B. 2条 C.3条 D.4条3.如果两圆相交,那么它们的公切线的条数为 . A. 1条 B. 2条 C.3条 D.4条 4.如果两圆内切,它们的公切线的条数为 . A. 1条 B. 2条 C.3条 D.4条5. 已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=9cm,则这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条6.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=7cm,则这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条知识点19:正多边形和圆1.如果⊙O 的周长为10πcm ,那么它的半径为 . A. 5cm B.10cm C.10cm D.5πcm 2.正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B.3 C.1 D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为 . A. 2 B. 1 C.2 D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= . A.30° B.60° C.90° D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .A.2C π B.π2C C.π22C D.π42C7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:3C.3:2D.1:2 8. 圆的周长为C,那么这个圆的半径R= . A.2C π B. C π C.π2C D. πC 9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 . A.2 B.4 C.22 D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 . A. 3 B.3 C.32 D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3.一次函数y=x+1的图象在 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限 4.函数y=2x+1的图象不经过 .A.第一象限B. 第二象限C. 第三象限D. 第四象限 5.反比例函数y=x2的图象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限9.一次函数y=-2x+1的图象经过 . A .第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 . A.y 3<y 1<y 2 B. y 2<y 3<y 1 C. y 3<y 2<y 1 D. y 1<y 3<y 2知识点21:分式的化简与求值1.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 . A. 22x y - B. 22y x - C. 224y x - D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 . A. a a +2B. a a -2C. -a a +2D. -a a -23.计算:)21(22x x x -÷-的正确结果为 .A.xB.x1C.-x 1D. -x x 2-4.计算:)111()111(2-+÷-+x x 的正确结果为 . A.1 B.x+1 C.x x 1+ D.11-x5.计算)11()111(-÷-+-x x x x 的正确结果是 .A.1-x xB.-1-x xC.1+x xD.-1+x x 6.计算)11()(yx x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy + D.- yx xy +7.计算:22222222222)(y xy x xy y x y x y xy x y x +++-+--⋅-的正确结果为 . A.x-y B.x+y C.-(x+y) D.y-x8.计算:)1(1xx x x -÷-的正确结果为 . A.1 B.11+x C.-1 D.11-x9.计算x x x x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x 知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2xy x -的正确结果为 .A.yB.y -C.-yD.-y -2.化简二次根式21a a a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a3.若a<b ,化简二次根式aba -的结果是 . A.ab B.-ab C.ab - D.-ab -4.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --5. 化简二次根式23)1(--x x 的结果是 . A.x x x --1 B.x x x ---1 C.x x x --1 D.1--x xx 6.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --7.已知xy<0,则y x 2化简后的结果是 .A.y xB.-y xC.y x -D.y x -8.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --9.若b>a ,化简二次根式a 2ab -的结果是 .A.ab aB.ab a --C.ab a -D.ab a - 10.化简二次根式21a a a +-的结果是 .A.1--aB.-1--aC.1+aD.1--a11.若ab<0,化简二次根式321b a a-的结果是 . A.b b B.-b b C. b b - D. -b b -知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.2 2.分式方程x x x x --=+--23121422的解为 . A.x=-2或x=0 B.x=-2 C.x=0 D.方程无实数根 3.用换元法解方程05)1(2122=--++x x x x ,设x x 1-=y ,则原方程化为关于y 的方程 .A.y 2+2y-5=0B.y 2+2y-7=0C.y 2+2y-3=0D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 . A.-4 B. 1 C.-4或1 D.4或-1 5.关于x 的方程0111=--+x ax 有增根,则实数a 为 . A.a=1 B.a=-1 C.a=±1 D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 .A.x 2+23x-1=0B.x 2+23x+1=0 C.x 2-23x-1=0 D.x 2-23x+1=07.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 . A.k>-23 B.k>-23且k ≠3 C.k<-23 D.k>23且k ≠3 知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 . A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 .A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 .A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk(k<0)的图象上,则下列各式中不正确的是 .A.y 3<y 1<y 2B.y 2+y 3<0C.y 1+y 3<0D.y 1•y 3•y 2<0 2.在反比例函数y=xm 63-的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 .A.m>2B.m<2C.m<0D.m>0 3.已知:如图,过原点O 的直线交反比例函数y=x2的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC 的面积为S,则 .A.S=2B.2<S<4C.S=4D.S>4 4.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x2的图象上, 下列的说法中: ①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个. A.1个 B.2个 C.3个 D.4个 5.若反比例函数xky =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 .A. k>1B. k<1C. 0<k<1D. k<06.若点(m ,m1)是反比例函数x n n y 122--=的图象上一点,则此函数图象与直线y=-x+b(|b|<2)的交点的个数为 .A.0B.1C.2D.47.已知直线b kx y +=与双曲线xky =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1·x 2的值 . A.与k 有关,与b 无关 B.与k 无关,与b 有关 C.与k 、b 都有关 D.与k 、b 都无关知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 .A. 正三边形B.正四边形C.正五边形D.正六边形2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 .A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是 . A.正四边形、正六边形 B.正六边形、正十二边形 C.正四边形、正八边形 D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C. 正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是.A.正三边形B.正四边形C.正六边形D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是.A.正四边形B.正六边形C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2×105B.6×105C.2.02×105D.6.06×1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2×108B.4.2×107C.4.2×106D.4.2×105知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A. 45B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内; ③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是 .A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n 岁年龄组”只允许满n 岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是 . A.报名总人数是10人; B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有 .①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖, 则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 .A.43B.44C.45D.48 6.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 . A 45 B 51 C 54 D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分 析,各分数段人数如图所示,下列结论,其中正确的有( )①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组; ④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④ 8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格,则下列结论:其中正确的有 个 . ①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①②知识点29: 增长率问题女男810121416绩组距频率1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12+万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是 .A. ①②B. ①③C. ②③D. ① 2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C.%1013.16+ D. %1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 .A.71500B.82500C.59400D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为 元. 78元 B.100元 C.156元 D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( ) A.700元 B.800元 C.850元 D.1000元6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元. A.44 B.45 C.46 D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元.A.a 元B.1.08a 元C.0.96a 元D.0.972a 元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 .A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价2n m +%,再降价2nm +% D.先涨价mn %,再降价mn %9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 .A.1600元B.3200元C.6400元D.8000元 10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金 元.16360元 B.16288 C.16324元 D.16000元知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点D,若AD=4AC,则∠ABC 的度数为 .• oAPBDE ••O 2O 1BCA DA.15°B.30°C.45°D.60°2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD ⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= .A.75°B.60°C.50°D.45° 3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O 的切线交DC 的延长线于E 点,则∠CEB= . A. 60° B.65° C.70° D.75°4.已知EBA 、EDC 是⊙O 的两条割线,其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 .A.30°B.35°C.45°D.75 5.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= .A.40°B.20°C.25°D.30° 6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P 点,则∠ADP 的度数为 . A.40º B.45º C.50º D.65º7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 . A.70° B.90° C.110° D.1308. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB 切⊙O 2于C 点,若∠APB=30º, 则∠BPC= .A.60ºB.70ºC.75ºD.90º 知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7)A.8.66B.8.67C.10.67D.16.672.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为 米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P 为⊙O 外一点,P A 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,P A=8,设∠ABC=α,∠ACP=β,则sin α:sin β= . A.31 B.21C.2D. 4 4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,· B A CDOP •E OADBC • E DB OA C • • O 1 O 2AB C P •D B OA C E • A BOE DC A•┑αβO ADBC P则窗户的上檐到教室地面的距离AC 为 米. A. 23米 B. 3米 C. 3.2米 D.233米 5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC 于E 点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 . A.3 B.123 C.243 D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则rR的值为 . A .2 B .3 C .2 D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,O 1E ⊥AB 交⊙O 2于F 点,BC=9,EF=5,则CO 1= A.9 B.13 C.14 D.163.已知:如图,⊙O 1、⊙O 2内切于点P , ⊙O 2的弦AB 过O 1点且交⊙O 1于C 、D 两点,若AC :CD :DB=3:4:2,则⊙O 1与⊙O 2的直径之比为 . A.2:7 B.2:5 C.2:3 D.1:34.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且r:R=4:5,P 为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则P A= .A.2B.3C.4D.56.已知:如图,P A 为⊙O 的切线,PBC 为过O 点的割线,P A=45,⊙O 的半径为3,则AC 的长为为 .A.413B.13133C.13265D.1326154.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径R 1,⊙O 2的半径为R 2,则21R R= .A.21B.32C.43D.545.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 .A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交BE DAC•O BPAC· ·O 1O 2BAC • •BE C AO 2O 1F• •APO 2CO1DB• • O 2 O 1 APB •BAO CD E••O 1 O 2BA••O 2 O 1 ADBC•ODCBAEFCD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 . A.7145 B.14145 C.714 D.14147.已知:如图, ABCD ,过B 、C 、D 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 .A.2B.59C.516D.18. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21D.41知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.34110 B.27 C.43110 D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升. A.15 B.16 C.17 D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 .A.12天B.13天C.14天D.15天 4. 某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是分钟.A.16分钟B.20分钟C.24分钟D.44分钟5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y 是时间t 的函数,则这个函数的大致图像只能是 .• •DPO 1O 2A BC 分)))。

相关文档
最新文档