高中化学平衡归纳总结

合集下载

高中化学平衡重点知识复习

高中化学平衡重点知识复习

高中化学平衡重点知识复习化学平衡是高中化学课程中的重要部分,是理解化学反应过程和掌握化学方程式平衡的核心内容之一。

在学习化学平衡知识时,有一些重点内容需要特别关注和复习,以确保对这一部分知识点的掌握。

本篇文章将针对高中化学平衡的重点知识进行复习总结和讲解。

一、化学平衡的定义化学平衡是指在一定条件下,反应物与生成物的浓度达到一定比例关系,反应速率相等,系统呈现动态平衡的状态。

在化学平衡时,反应物会不断被消耗,生成物不断生成,但总物质的量保持不变。

二、平衡常数平衡常数K是用来描述在特定温度下,反应物与生成物的浓度之比的关系,用数值来表示平衡状态的稳定程度。

对于一般的反应aA + bB ⇌ cC + dD,其平衡常数的表达式为K = [C]c[D]d / [A]a[B]b,其中括号内的字母表示各物质的摩尔浓度。

三、影响平衡位置的因素1. 温度:温度的升高会使化学平衡朝向吸热反应的方向移动,也就是方程式的右侧,反之则向左侧移动。

2. 压力:对固态和液态反应体系而言,增加压力会使平衡位置移向物质较少的一侧;而对气态反应体系而言,增加压力会使平衡位置移向气体分子数较少的一侧。

3. 浓度改变:当向不活动方向加入反应物或生成物浓度时,平衡位置会移向反应物或生成物的方向。

四、平衡常数和反应商的关系反应商Q是用来描述反应物与生成物浓度之比的量,在平衡状态下,Q值等于平衡常数K。

若Q<K,则说明生成物浓度较低,系统朝向生成物的方向移动以达到平衡;若Q=K,则系统处于平衡状态;若Q>K,则说明生成物浓度较高,系统朝向反应物的方向移动以达到平衡。

五、Le Chatelier原理Le Chatelier原理是指当外界对处于平衡状态的系统施加影响时,系统会通过反应方式减小这种影响,使平衡得以保持或者移向新的平衡状态。

Le Chatelier原理包括温度、压力、浓度等对平衡位置的影响,通过调整这些因素可以控制反应的方向和速率。

高中化学四大平衡知识点总结

高中化学四大平衡知识点总结

高中化学四大平衡知识点总结一、化学平衡的基本概念化学平衡是指反应物和生成物之间的反应速率相等时达到的状态。

在平衡态下,反应物和生成物的浓度保持不变,但是反应仍然在进行,只是前后反应速率相等而已。

二、平衡常数及其计算平衡常数(K)是在特定条件下,在平衡态时各种物质的浓度的乘积的比值。

对于一般反应aA + bB ⇌ cC + dD,平衡常数(Kc)的表达式为:Kc = [C]^c [D]^d / [A]^a [B]^b其中,[A]、[B]、[C]和[D]分别代表反应物A、B和生成物C、D的浓度。

计算平衡常数的方法:1. 已知反应物和生成物的浓度,直接代入表达式计算;2. 已知平衡态下各种物质的浓度,可根据反应方程式得出表达式;3. 已知反应物和生成物的摩尔数,可以根据摩尔比关系计算。

三、平衡常数的意义和计算结果的判断平衡常数的大小反映了反应体系的平衡位置,当平衡常数(K)大于1时,说明生成物的浓度较大;当K小于1时,说明反应物浓度较大。

当K接近于1时,说明反应物与生成物的浓度相差不大。

根据平衡常数计算结果的判断:1. 如果K >> 1,则可以认为反应向右进行,生成物浓度较大;2. 如果K <<1,则可以认为反应向左进行,反应物浓度较大;3. 如果K ≈1,则可以认为反应体系处于动态平衡状态,反应物与生成物的浓度相差不大。

四、影响平衡的因素及其调节1.温度的影响温度变化会改变反应物和生成物的浓度,从而影响平衡常数。

根据Le Chatelier原理,当温度升高,平衡常数K变大;当温度降低,平衡常数K变小。

此外,温度对平衡态的影响还取决于反应是否吸热或放热。

2.浓度的影响改变反应物或生成物的浓度可以改变平衡常数K的大小。

增加任一物质的浓度将促使反应往反应物一侧移动,使K减小;反之,如果减小某物质的浓度,则使K增大。

根据这个原理,可以通过改变物质的浓度来促使反应朝着我们所需的方向进行。

高中化学平衡知识点总结

高中化学平衡知识点总结

高中化学平衡知识点总结一、化学平衡的基本概念1. 化学平衡是指在封闭的容器内,反应物与生成物浓度不再发生明显变化的状态。

在平衡状态下,反应物和生成物的浓度保持不变,但是反应仍然在进行。

2. 平衡状态下,正向反应的速率等于反向反应的速率,正向反应和反向反应达到动态平衡。

3. 平衡常数(K)描述了反应在特定温度下达到平衡时,正向反应和反向反应中各个组分的浓度之间的比例关系。

二、平衡常数1. 平衡常数K是在反应达到平衡时,反应物和生成物的浓度之比的一个指标。

2. 平衡常数可以通过平衡反应的速率常数得到,对于一般的平衡反应aA + bB ⇌ cC + dD,其平衡常数表达式为K = [C]^c [D]^d / [A]^a [B]^b。

3. 平衡常数K与反应进行的速率无关,只与反应物和生成物的数量有关。

4. 平衡常数K只与温度有关,与反应物和生成物的浓度、压强、催化剂等无关。

5. 平衡常数的大小可以达到10^12数量级,也可以非常小,接近零。

三、影响化学平衡的因素1. 温度温度对反应平衡常数K值的影响是显著的,通常而言,反应温度越高,平衡常数越大;反之,反应温度越低,平衡常数越小。

化学反应的平衡常数与与温度的关系通过Gibbs自由能与温度的关系来解释。

2. 浓度改变反应物的浓度,可以导致平衡移动到反向或正向。

通常来说,增加反应物的浓度会导致反应向正向移动以达到新的平衡状态。

反之,减少反应物的浓度会导致反应向反向移动以达到新的平衡状态。

3. 压力对于气相反应,改变反应物分子的压力会影响平衡的位置。

通常来说,增加压力会导致反应向物质分子数量较少的方向移动;减小压力则会导致反应向物质分子总数较多的方向移动。

4. 添加催化剂催化剂可以加速反应达到平衡状态,但催化剂对平衡常数K无影响。

四、化学平衡的应用1. 工业生产在工业反应中,通过控制反应条件,可以合理利用化学平衡来提高产品的产率。

2. 环境化学通过对环境中各种物质的化学平衡研究,可以更好地了解环境中的化学反应过程。

高中化学平衡移动知识点总结

高中化学平衡移动知识点总结

高中化学平衡移动知识点总结:
1. 平衡常数(Kc)和平衡表达式:
-平衡常数是表示在平衡时各物质浓度的关系,通常用Kc表示。

-平衡表达式根据反应物和生成物的摩尔比例关系写出,每个物质的浓度用方括号表示。

2. 影响平衡的因素:
-反应物浓度:增加反应物浓度会驱使反应向生成物方向移动,减少反应物浓度则会导致反应向反应物方向移动。

-生成物浓度:增加生成物浓度会导致反应向反应物方向移动,减少生成物浓度则会促使反应向生成物方向移动。

-温度:温度升高通常会使反应向吸热方向移动,降低温度则使反应向放热方向移动。

-压力(对于气体反应):增加压力会使反应向分子数较少的方向移动,减小压力则会促使反应向分子数较多的方向移动。

3. Le Chatelier原理:
-当系统处于平衡状态下,当外界对系统进行扰动时,系统会通过移动平衡来减小扰动。

- Le Chatelier原理指出,当系统受到温度、浓度或压力等因素
的改变时,系统会通过移动平衡来抵消这种改变。

4. 平衡移动的影响:
-加热反应体系:增加温度会使平衡向吸热方向移动,即吸热反应向前进。

-压缩气体反应体系:增加压强会使平衡向分子数较少的方向移动,减小压强则促使平衡向分子数较多的方向移动。

-改变浓度:增加某个物质的浓度会使平衡向相应生成物的方向移动,减小浓度则导致平衡向反应物的方向移动。

5. 平衡移动的时间:
-平衡移动并不是瞬间发生的,它需要一定的时间。

具体时间取决于反应速率和反应机制。

理解平衡移动知识点对于理解化学反应的平衡态及其变化非常重要,帮助我们预测和解释实验结果,并在实际应用中优化反应条件。

高中化学知识点归纳化学平衡

高中化学知识点归纳化学平衡

高中化学知识点归纳化学平衡高中化学知识点归纳——化学平衡化学平衡是化学反应过程中的重要概念,它描述了反应物转化为产物的速率相等时的状态。

在这种状态下,反应物与产物的浓度或者其他相关指标在一段时间内保持不变。

下面将对高中化学中与化学平衡相关的知识点进行归纳。

一、化学平衡的定义和特征化学平衡是指当化学反应以一定速率进行时,反应物和产物的浓度之间达到一个相对稳定的状态。

“相对稳定”表示在平衡状态下,反应物和产物之间并非完全停止转化,而是反应物向产物的转化速率与产物向反应物的转化速率相等。

二、平衡常数和平衡表达式平衡常数是描述化学平衡状态的一个重要参数,用K表示。

平衡常数与反应物和产物的浓度之间存在一定的关系,可以通过实验测定或者根据反应方程式推导得到。

平衡表达式是表示化学平衡状态下各物质浓度关系的数学表达式。

一般而言,平衡表达式的形式与反应方程式的系数关系密切相关。

例如,对于反应方程式:aA + bB ⇌ cC + dD,其平衡表达式可以写为:[C]^c[D]^d / [A]^a[B]^b = K,其中,[A]、[B]、[C]、[D]分别表示反应物A、B和产物C、D的浓度。

三、平衡常数与平衡位置平衡常数的大小直接影响着化学反应向正向或逆向进行的趋势。

当平衡常数大于1时,反应趋向于产物一侧,反应偏向正向进行;当平衡常数小于1时,反应趋向于反应物一侧,反应偏向逆向进行;当平衡常数接近于1时,说明反应物和产物的浓度相对接近,反应趋向于两侧的转化速率相等。

四、影响化学平衡的因素多种因素会对化学平衡产生影响,包括温度、压强、浓度和催化剂等。

1. 温度:温度变化会改变化学反应的速率和平衡位置。

对于放热反应,温度升高会导致平衡位置向反应物一侧移动;对于吸热反应,温度升高会导致平衡位置向产物一侧移动。

2. 压强:只对气体反应有影响。

增加压强会导致平衡位置向摩尔数较少的一侧移动,以抵消压力增加。

3. 浓度:改变反应物或产物的浓度会引起平衡位置的移动。

高中化学平衡知识点整理

高中化学平衡知识点整理

高中化学平衡知识点整理在高中化学学习中,平衡是一个十分重要且基础的概念。

平衡反应是指在一个封闭系统中,反应物转变为生成物的速率相等时达到的一种动态平衡状态。

平衡反应又可以细分为物理平衡和化学平衡。

下面对高中化学平衡知识点进行整理。

1. 平衡反应的特点在平衡反应中,反应物和生成物的浓度保持不变,但它们仍在转化,并处于动态平衡状态。

平衡反应的速率恒定且相等,这也是动态平衡的一种表现。

2. 平衡常数平衡常数是用来描述一个反应达到平衡时反应物和生成物浓度的比例。

平衡常数通常用Kc、Kp来表示,取决于反应方程式中各物质的浓度或分压。

3. 影响平衡位置的因素平衡位置的位置取决于平衡常数以及反应温度、压力等因素。

当平衡常数Kc大于1时,表示生成物浓度较高;当Kc小于1时,表示生成物浓度较低。

4. 平衡常数的计算平衡常数的计算需要通过反应方程式来确定各物质浓度或分压,从而得出平衡常数的数值。

平衡常数的大小可以告诉我们反应的进行方向。

5. 平衡位置的变化通过调节温度、压力或者浓度等因素,可以改变平衡位置。

Le Chatelier原理指出,在受到外界因素影响时,系统会通过调整以恢复平衡,以维持平衡动态状态。

6. 平衡常数与反应热力学反应在不同温度下的平衡常数会发生变化,这与热力学原理有关。

反应的焓变和熵变可以帮助我们理解平衡常数变化的原因。

以上就是对高中化学平衡知识点的整理,希望可以帮助大家更好地理解平衡反应的相关概念。

学习化学需要多加练习和实验,加深对平衡反应的理解,有助于提高学习效果。

愿大家取得更好的成绩!。

高中化学平衡的知识点总结

高中化学平衡的知识点总结

高中化学平衡的知识点总结高中化学平衡的知识1化学平衡的移动1.化学平衡的移动(1)定义达到平衡状态的反应体系,条件改变,引起平衡状态被破坏的过程。

(2)化学平衡移动的过程2.影响化学平衡移动的因素(1)温度:在其他条件不变的情况下,升高温度,化学平衡向吸热反应方向移动;降低温度,化学平衡向放热反应方向移动。

(2)浓度:在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,化学平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,化学平衡向逆反应方向移动。

(3)压强:对于反应前后总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,化学平衡向气体体积减小的方向移动;减小压强,化学平衡向气体体积增大的方向移动。

(4)催化剂:由于催化剂能同时同等程度地增大或减小正反应速率和逆反应速率,故其对化学平衡的移动无影响。

3.勒夏特列原理在密闭体系中,如果改变影响化学平衡的一个条件(如温度、压强或浓度等),平衡就向能够减弱这种改变的方向移动。

高中化学平衡的知识2外界条件对化学平衡移动的影响1.外界条件的变化对速率的影响和平衡移动方向的判断在一定条件下,浓度、压强、温度、催化剂等外界因素会影响可逆反应的速率,但平衡不一定发生移动,只有当v正≠v逆时,平衡才会发生移动。

2.浓度、压强和温度对平衡移动影响的几种特殊情况(1)改变固体或纯液体的量,对平衡无影响。

(2)当反应混合物中不存在气态物质时,压强的改变对平衡无影响。

(3)对于反应前后气体体积无变化的反应,压强的改变对平衡无影响。

但增大(或减小)压强会使各物质的浓度增大(或减小),混合气体的颜色变深(或浅)。

(4)恒容时,同等程度地改变反应混合物中各物质的浓度时,应视为压强的影响,增大(减小)浓度相当于增大(减小)压强。

(5)在恒容容器中,当改变其中一种气态物质的浓度时,必然会引起压强的改变,在判断平衡移动的方向和物质的转化率、体积分数变化时,应灵活分析浓度和压强对化学平衡的影响。

高中化学平衡总结

高中化学平衡总结

1.可逆反应1概念:在同一条件下,同时向正、反两个方向进行的化学反应称为可逆反应;2对可逆反应概念的理解1可逆反应的特征:“两同”是指条件相同、同时进行;2表示方法:在可逆反应的化学方程式中用“”表示可逆反应;3可逆反应的重要特征是转化率永远不可能达到100%,也就是反应一旦开始,那么,就不可能只存在反应物,或只存在生成物;4存在平衡状态2.化学平衡状态在一定条件下的可逆反应里,当正反应速率与逆反应速率相等时,反应混合物中各组分的浓度保持一定的状态,叫做化学平衡状态,简称化学平衡;1定义中的要点关系化学平衡的研究对象:可逆反应;“平衡”是在一定条件下建立起来的,对于一个给定的可逆反应,若起始条件相同则平衡状态也相同,不同的起始条件,平衡状态不同;“v正= v逆”是平衡的本质,“百分含量保持一定”,“浓度保持一定”是化学平衡的现象;(2)化学平衡的特征“逆”:是可逆反应;“动”:是动态平衡;“等”:平衡的v正= v逆 >0;“定”:平衡时组分的百分含量不变;“变”:若改变条件,平衡可被打破,并在新的条件下建立新的化学平衡;A:化学平衡的移动化学平衡是有条件的动态平衡,当影响化学平衡的条件改变时,原来的平衡被破坏,进而在新的条件下逐渐建立新的平衡,这个原平衡向新平衡的转化过程叫做化学平衡的移动;化学平衡移动研究的对象是可逆化学反应的化学平衡状态;从正逆化学反应速率的角度来看:1若外界条件改变,引起v正>v逆时,正反应占优势,化学平衡向正反应方向移动;2若v正<v逆,逆反应占优势,化学平衡向逆反应方向移动;3若v正=v逆均发生变化,但仍保持相等,化学平衡就没有发生移动;1.浓度对化学平衡的影响在其他条件不变的情况下,增大反应物浓度,或减小生成物浓度;化学平衡向正方向移动;减小反应物浓度,或增大生成物浓度;化学平衡向反方向移动;注意:1固体物质和纯液体无所谓浓度,其量改变,不影响平衡;2在溶液中的反应,若稀释溶液,反应物浓度减小,生成物浓度也减小,正、逆反应速率均减小,但减小的程度不同;总的结果是化学平衡向反应方程式中化学计量数增大的方向移动;可以同增大气体反应平衡系统的体积而减小压强引起的平衡移动进行对照记忆;3在生产过程中可通过增加廉价反应物的浓度以使化学平衡向正反应方向移动,从而提高价格较高的反应物的转化率,以降低成本;2.压强对化学平衡移动的影响对于有气体参加的可逆反应来说,气体的压强改变,也能引起化学平衡的移动;对反应前后气体总体积发生变化的化学反应,在其他条件不变的情况下,增大压强,会使化学平衡向着体积减少移动;减小压强,会使化学平衡向着体积增大的方向移动;注意:1对于有些可逆反应里,反应前后气态物质的总体积没有发生变化,如2HIgH 2g+I 2g 在这种情况下,增大或减小压强都不能使化学平衡移动; 2固态物质或液态物质的体积,受压强的影响很小,可以忽略不计;因此,如果平衡混合物都是固体或液体 ,可以认为改变压强不能使化学平衡移动;3同等程度的改变反应混合物中的各物质的浓度,应视为压强对平衡的影响;如合成氨反应平衡体系中,N 2、H 2、NH 3的浓度分别由L 、L 、L 同时增加一倍,即L 、L 、L,此时相当于压强增大一倍,平衡向正反应方向移动;4在恒容的容器中,当改变其中一种浓度时,必然同时引起压强的改变,但判断平衡移动的方向时,应仍以浓度的影响去考虑;但是考虑对最终平衡状态的影响时,则应该从压强改变上去考虑;详见技巧思维5加入惰性气体后平衡体系是否发生移动,取决于平衡体系所占据的体积是否发生变化;例如1恒温恒容时:充入惰性气体−−−→引起体系总压强增大,但是平衡体系的压强并没有改变,所以化学反应速率不变,化学平衡也不移动;2恒温恒压时:充人惰性气体−−−→引起容器容积增大−−−→引起体系总压强不变,但是平衡体系压强减小−−−→引起 反应速率减小,平衡向气体体积增大的方向移动;还有一种类型题,表面上看与压强没有什么关系,但其实就是用压强来解释的;例如常见的有两个起始体积相同的密闭容器甲和乙,甲保持恒容,乙保持恒压;我们在解决这类问题时,可以把它转化为压强对平衡的影响;甲保持恒容了,随着反应的进行,如果是向气体体积缩小的方向来进行的话,那就等于是压强减小了;如果是向气体体积增大的方向来进行的话,那就等于是压强增大了;然后再和乙对比就可以了;3.温度对化学平衡的影响任何反应都伴随着能量的变化,通常表现为放热或吸热;所以温度对化学平衡移动也有影响;如果升高温度,平衡向吸热的方向移动;降低温度平衡向放热的方向移动;注意:1若某反应正反应为吸热或放热反应,则其逆反应则为放热或吸热反应;吸收的热量与放出的热量数值相等,符号相反;2升高反应温度,正逆反应速率均增加,但是吸热反应方向的速率增大的程度更大,因而使平衡向吸热反应方向移动;4.催化剂对化学反应平衡的影响催化剂能够同等程度的改变正逆反应的速率,所以使用催化剂不能使平衡发生移动,但是可以改变达到平衡所需要的时间;注意平衡的移动方向,与速率增大还是减小无关,只与正逆反应速率的相对大小有关;勒夏特列原理:如果改变影响平衡的条件之一如温度、压强、以及参加反应的化学物质的浓度,平衡就向着能够减弱这种改变的方向移动;可见化学平衡有自我调节能力,总是力求保持原状;这和物理上的惯性定理有点相似,物体有保持原来运动状态的性质,化学反应也可以看做一种特殊物质的运动状态,外界条件改变时,化学平衡也力求保持原状态;化学平衡移动也有点像生物上讲的自我调节作用,炎热的夏天,人体的毛孔扩张,不断出汗散发多余的热量,以维持体温在37℃左右;可见化学、生物、物理这些自然科学之间是有联系的,学好物理和生物,对学好化学很有帮助;法国科学家勒夏特列把我们化学上的这种“自我调节”作用概括为平衡移动原理,后人为了纪念这位科学家,把这个原理叫做勒夏特列原理;注意:①平衡向“减弱”外界条件变化的方向移动,但不能“抵消”外界条件的变化;②对“减弱这种改变的理解”:增加反应物的浓度时,平衡应该向使反应物的浓度减小的方向移动;增大压强的时候,平衡将向使气体体积减小的方向移动;提高反应温度的时候,平衡向吸热反应方向移动;③v正增大并不意味着平衡一定向正反应方向移动,只有v正> v逆时才可以肯定平衡向正反应方向移动④当平衡向正反应方向移动的时候,反应物的转化率不一定提高,生成物的体积分数也不一定增大因为反应物或反应混合物的总量增大了,增大一种反应物的浓度会提高另一种反应物的转化率;⑤温度一定的时候平衡常数一定,浓度、压强对平衡的影响应满足平衡常数不变这一要素;⑥存在平衡且平衡发生移动时才能应用平衡移动原理,如果不存在平衡如铁的电化学腐蚀或虽存在平衡但不能移动,均不能应用平衡移动原理;B:化学平衡常数1化学平衡常数的表示方法对于一般的可逆反应:mA+nB pC+qD;其中m、n、p、q分别表示化学方程式中各反应物和生成物的化学计量数;当在一定温度下达到化学平衡时,这个反应的平衡常数可以表示为:k=[][] [][]p qm n C D A B••在一定温度下,可逆反应达到化学平衡时,生成物的浓度,反应物的浓度的关系依上述规律,其常数用K表示叫该反应的化学平衡常数2化学平衡常数的意义1平衡常数的大小不随反应物或生成物的改变而改变,只随温度的改变而改变;2平衡常数表示的意义:可以推断反应进行的程度;K很大,反应进行的程度很大,转化率大K的意义 K居中,典型的可逆反应,改变条件反应的方向变化;K很小,反应进行的程度小,转化率小3注意:①化学平衡常数只与温度有关,而与反应物与生成物的浓度无关;②反应物与生成物中只有固体或是液体存在的时候,由于其浓度可看作是“1”,因而不代入公式;③化学平衡常数是指某一具体反应的平衡常数;若反应方向改变,则平衡常数改变;若方程式中的各物质的计量数等倍扩大或是缩小,尽管是同一反应,平衡常数也会改变;3化学平衡常数的应用1化学平衡常数数值的大小是可逆反应进行程度的标志;2可利用平衡常数的值作为标准判断正在进行的可逆反应是否平衡以及不平衡时向何方向进行以建立平衡;浓度熵的概念如对于可逆反应mAg+nBg pCg+qDg,在一定温度的任意时刻,反应物与生成物的浓度如下关系,Qc叫该反应的浓度商;a.当Qc>K时,反应要达到平衡,必须减小cC和cD,增大cA和cB,所以反应向逆向进行达到平衡,即v逆>v正b.当Qc=K时,反应即为平衡状态,平衡不移动c.当Qc<K时,反应要达到平衡,必须增大cC和cD,减小cA和cB,所以反应向正向进行达到平衡,即v正>v逆3利用平衡常数K的值来判断反应的热效应;升高温度,K变大,则说明正反应为吸热反应;升高温度,K减小,则说明正反应是放热反应;化学反应的方向1、焓判据和熵判据①焓是与物质内能有关的物理量,科学家提出用焓变来判断反应进行的方向,这就是所谓的焓判据;焓变化量称之为焓变,符号:△H;不用借助于外力就可以自动进行的自发过程的共同特点是,体系倾向于从高能状态转变为低能状态这时体系会对外做功或释放热量;在化学反应中,放热反应过程中体系能量降低,因此具有自发进行的倾向;我们经常用焓变来判断化学反应进行的方向; 但是有些吸热反应也可以自发进行,例如在25℃和×105Pa时,NH42CO3s=NH4HCO3+NH3g;△H=+ kJ/mol可以自发进行;因此只根据焓变来判断反应进行的方向是不全面的;这就涉及到与“有序”“无序”相关的“熵判据”;②人们提出在自然界还存在着另一种能够推动体系变化的因素,即在密闭条件下,体系有从有序自发地转变为无序的倾向与有序相比无序更加稳定;科学家用熵来度量这种混乱的程度;在与外界隔离体系中,自发过程将导致体系的熵增大,即熵变符号△S大于零;这个原理也叫做熵增加原理;在用来判断过程的方向时,就称为熵判据;同一物质存在着气态时的熵值最大、液态时次之、固态时最小这样普遍规律;但是有些熵减少的过程也能自发进行,例如-10℃时的水就会自动结冰成为固态,这是熵减小的过程;因此只根据熵变来判断反应进行的方向也是不全面的;焓变和熵变都与反应的自发性有关,又都不能独立地作为自发性的判据,要判断反应进行的方向,必须综合考虑体系的焓变和熵变;2、反应进行方向的判断注意事项选讲①在讨论过程的方向问题时,我们指的是没有外界干扰时体系的性质;如果允许外界体系施加某种作用,就可能出现相反的结果;如高温高压可以使石灰石分解,石墨转化成金刚石等;②大量事实告诉我们,过程的自发性只能用于判断过程的方向,不能确定过程是否一定会发生和过程的速率;③自由能变化△G,体系自由能变化综合考虑了焓变和熵变对体系的影响:△G=△H-T△S;这是恒温、恒压下,判断化学反应自发性的判据,它不仅与焓变和熵变有关,还与温度有关,由上述关系式可推知:当△H<0,△S>0时,反应自发进行;当△H>0,△S<0时,反应不能自发进行;当△H>0,△S>0或△H<0,△S<0时,反应是否自发与温度有关,一般低温时,焓变影响为主,高温时,熵变影响为主,而温度影响的大小要视△H、△S的具体数值而定;思维技巧1.化学平衡计算的三段法可逆反应mA+nB pC+qD达到平衡时:①用各物质表示的反应速率之比等于化学方程式中的化学计量数之比.即:V A∶V B∶V C∶V D=m∶n∶p∶q②各物质的变化量变化浓度之比等于化学方程式中相应化学计量数之比③反应物的平衡量或浓度=起始量或浓度-消耗量或浓度生成物的平衡量或浓度=起始量或浓度+增加量或浓度mA + nB pC + qD起始量mol a b c d变化量mol x nxmpxmqxm平衡量mol a-xnxbm-pxcm+qxdm+2.阿伏加德罗定律的两个重要推论的应用恒温、恒容时:1122p np n=,即混合气体的压强与其物质的量成正比;恒温、恒压时:1122V n=V n,即混合气体的体积与其物质的量成正比;3.混合气体平均式量的计算由A、B、C三种气体组成的混合气体中,其平均式量即平均相对分子质量:其中MA、MB、MC分别表示A、B、C的相对分子质量;a%、b%、c%分别表示这3种气体的体积或质量分数.同时还有:M=混合气体的总质量g/混合气体的总物质的量mol=W总/n总4.分析化学平衡移动的一般思路判断化学平衡移动的方向的一般思路是:运用勒夏特列原理原理分析外界条件的改变对v正、v逆的影响,再通过比较v正、v逆的相对大小,来判定平衡是否移动及平衡移动的方向;图示:注意:1不要把平衡的移动和反应速率的变化等同起来; 2不要把平衡的移动与物质浓度的变化等同起来; 3不要把平衡的移动与反应物的转化率等同起来; 改变条件 速率不变:如向定容容器中充入惰性气体;速率改变程度相同 程度不同 使用催化剂气体总体积不变的反应改变压强改变浓度改变压强改变温度平衡不发生移动 平衡将发生移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中化学平衡的归纳总结化学反应速率与化学平衡一、高考展望:化学反应速率和化学平衡理论的初步知识是中学化学的重要基本理论。

从历年高考经典聚焦也不难看出,这是每年高考都要涉及的内容。

从高考试题看,考查的知识点主要是:①有关反应速率的计算和比较;②条件对反应速率影响的判断;③确定某种情况是否是化学平衡状态的特征;④平衡移动原理的应用;⑤转化率的计算或比较;⑥速率、转化率、平衡移动等多种图象的分析。

要特别注意本单元知识与图象结合的试题比较多。

从题型看主要是选择题和填空题,其主要形式有:⑴根据化学方程式确定各物质的反应速率;⑵根据给定条件,确定反应中各物质的平均速率;⑶理解化学平衡特征的含义,确定某种情况下化学反应是否达到平衡状态;⑷应用等效平衡的方法分析问题;⑸应用有关原理解决模拟的实际生产问题;⑹平衡移动原理在各类平衡中的应用;⑺用图象表示外界条件对化学平衡的影响或者根据图象推测外界条件的变化;⑻根据条件确定可逆反应中某一物质的转化率、消耗量、气体体积、平均式量的变化等。

预计以上考试内容和形式在今后的高考中不会有太大的突破。

从考题难度分析,历年高考题中,本单元的考题中基础题、中档题、难题都有出现。

因为高考中有几年出现了这方面的难题,所以各种复习资料中高难度的练习题较多。

从新大纲的要求预测命题趋势,这部分内容试题的难度应该趋于平缓,从2005年高考题看(考的是图象题),平衡方面的题目起点水平并不是太高。

在今后的复习中应该抓牢基础知识,掌握基本方法,提高复习效率。

二、考点归纳:1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。

但这些数值所表示的都是同一个反应速率。

因此,表示反应速率时,必须说明用哪种物质作为标准。

用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。

如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢。

因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。

⑵. 影响化学反应速率的因素:I. 决定因素(内因):反应物本身的性质。

Ⅱ. 条件因素(外因)(也是我们研究的对象):①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。

值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。

值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。

③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。

④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率。

⑤. 其他因素。

如固体反应物的表面积(颗粒大小)、光、不同溶剂、超声波等。

2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应。

⑵. 化学平衡的概念(略);⑶. 化学平衡的特征:动:动态平衡。

平衡时v正=v逆 ≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡。

⑷. 化学平衡的标志:(处于化学平衡时):①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化。

【例1】在一定温度下,反应A2(g) + B2(g) 2AB(g)达到平衡的标志是( C )A. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸. 化学平衡状态的判断:举例反应 mA(g) + nB(g) = pC(g) +qD(g)混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定(其他条件一定)平衡②m+n=p+q时,总压力一定(其他条件一定)不一定平衡混合气体的平均分子量()①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴、勒沙持列原理:如果改变影响平衡的一个条件(如浓度、压强和温度等),平衡就向着能够减弱这种改变的方向移动。

其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度),当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱(不可能抵消)外界条件的变化。

⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程。

一定条件下的平衡体系,条件改变后,可能发生平衡移动。

即总结如下:⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来。

具体分析可参考下表:反应实例条件变化与平衡移动方向达新平衡后转化率变化2SO2 +O2 = 2SO3(气)+热增大O2浓度,平衡正移 SO2 的转化率增大,O2的转化率减小增大SO3浓度,平衡逆移从逆反应角度看,SO3的转化率减小升高温度,平衡逆移 SO2 、O2的转化率都减小增大压强,平衡正移 SO2 、O2的转化率都增大2NO2(气)= N2O4体积不变时,无论是加入NO2或者加入 N2O4 NO2的转化率都增大(即新平衡中N2O4的含量都会增大)2HI = H2+I2(气)增大H2的浓度,平衡逆移 H2的转化率减小,I2的转化率增大增大HI的浓度,平衡正移 HI的转化率不变增大压强,平衡不移动转化率不变⑷、影响化学平衡移动的条件:化学平衡移动:(强调一个“变”字)①浓度、温度的改变,都能引起化学平衡移动。

而改变压强则不一定能引起化学平衡移动。

强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动。

催化剂不影响化学平衡。

②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动。

③平衡移动原理:(勒沙特列原理):如果改变影响平衡的一个条件(浓度、温度或压强),平衡就向能够减弱这种改变的方向移动。

④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动。

⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aA(g) bB(g) + cC(g),在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:(可用等效平衡的方法分析)。

①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小。

Ⅱ、若反应物不只一种:aA(g) + bB(g) cC(g) + dD(g),①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大。

②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B 的转化率都减小。

4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡。

⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡。

②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡。

③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡。

【例2】在一个固定体积的密闭容器中,保持一定温度进行以下反应:H2(g) + Br2(g) = 2HBr(g)已知加入1mol H2和2mol Br2时,达到平衡后生成a mol HBr(见下表已知项)在相同条件下,且保持平衡时各组分的体积分数不变,对下列编号①~③的状态,填写表中空白。

已知编号起始状态物质的量n/mol 平衡时HBr的物质的量n/molH2 Br2 HBr1 2 0 a① 2 4 0 2a② 0 0.5 1 0.5a③ m g(g≥2m) 2(g-2m) a(g-m)【例3】(2003年全国12)某温度下,在一容积可变的容器中,反应2A(g)+B(g) 2C(g)达到平衡时,A、B和C的物质的量分别为4mol、2mol 和4mol。

保持温度和压强不变,对平衡混合物中三者的物质的量作如下调整,可使平衡右移的是 ( C )A.均减半 B.均加倍 C.均增加1mol D.均减少1mol5、速率和平衡图像分析:⑴、分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点。

相关文档
最新文档