七年级上册数学常考题型

合集下载

有理数(压轴必刷30题8种题型专项训练)—2023-2024学年七年级数学上册(人教版)(解析版)

有理数(压轴必刷30题8种题型专项训练)—2023-2024学年七年级数学上册(人教版)(解析版)

有理数(压轴必刷30题8种题型专项训练)一.正数和负数(共1小题)1.(2022秋•江都区期中)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如表: 高度变化记作 上升4.4km4.4km 下降3.2km﹣3.2km 上升1.1km+1.1km 下降1.5km ﹣1.5km(1)此时这架飞机比起飞点高了多少千米?(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?【分析】(1)根据表格列出算式,计算即可得到结果;(2)求出表格中数据绝对值之和,再乘以2即可得到结果.【解答】解:(1)4.4﹣3.2+1.1﹣1.5=0.8(千米),答:这架飞机比起飞点高了0.8千米;(2)|4.4|+|﹣3.2|+|+1.1|+|﹣1.5|=10.2(千米)10.2×2=20.4升.答:一共消耗了20.4升燃油.【点评】此题考查了有理数的加减混合运算,正数和负数,弄清题意是解本题的关键.二.有理数(共1小题) 2.(2022秋•浏阳市期中)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a ,b ,c 满足abc >0,求的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.z①a ,b ,c 都是正数,即a >0,b >0,c >0时,则;②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设a >0,b <0,c <0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc <0,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即a <0,b <0,c <0时,则:=++=﹣1﹣1﹣1=﹣3; ②a ,b ,c 有一个为负数,另两个为正数时,设a <0,b >0,c >0,则=++=﹣1+1+1=1. (2)∵a ,b ,c 为三个不为0的有理数,且,∴a ,b ,c 中负数有2个,正数有1个,∴abc >0,∴==1. 【点评】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.三.数轴(共11小题)3.(2022秋•阳新县校级期末)已知在数轴上A ,B 两点对应数分别为﹣4,20.(1)若P 点为线段AB 的中点,求P 点对应的数.(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①几秒后点M到点A、点B的距离相等?求此时M对应的数.②是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.【分析】(1)利用中点坐标计算方法直接得出答案即可;(2)①画出图形,设t秒后点M到点A、点B的距离相等,分别表示出AM和BM的长度,建立方程求得答案即可;②利用(2)中的AM和BM的长度,分两种情况:M在AB之间,A在BM之间,结合3MA=2MB建立方程求得答案即可.【解答】解:(1)P点表示的数是=8;(2)①如图,设t秒后点M到点A、点B的距离相等,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,则2t+4=20﹣6t,z解得t=2,M表示2×4=8.A、B重合时,MA=BM,此时t=6,此时M表示24.②如图①,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,∵3MA=2MB,∴3(2t+4)=2(20﹣6t),∴t=,∴点M表示×4=;z 如图②,AM =4t ﹣(﹣4+2t )=2t+4,BM =2t+4t ﹣20=6t ﹣20,∵3MA =2MB ,∴3(2t+4)=2(6t ﹣20),∴t =,∴点M 表示×4=. 【点评】此题考查数轴,一元一次方程的实际运用,利用图形,得出数量关系是解决问题的关键.4.(2022秋•鲤城区校级期末)如图,数轴上点A 、C 对应的数分别为a 、c ,且a 、c 满足|a +4|+(c ﹣1)2=0.,点B 对应的数为﹣3,(1)求a 、c 的值;(2)点A ,B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒,若运动时间为t 秒,运动过程中,当A ,B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动到点C 处后立即以原速返回,到达自己的出发点后停止运动,点A 运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C 运动,当点B 停止运动时,点A 随之停止运动,在此运动过程中,A ,B 两点同时到达的点在数轴上表示的数是 .(说明:直接在横线上写出答案,答案不唯一,不解、错解均不得分,少解、漏解酌情给分)【分析】(1)根据非负数的性质列式求解即可得到a 、c 的值;(2)求出AB ,再根据到原点距离相等时,分两种情况:①点A 、B 重合,②点A 在原点的右边,点B 在原点的左边,列出方程求解即可;(3)由(2)可知A ,B 两点第一次同时到达的点为﹣2,A ,B 两点第二次同时到达的点,是在A 点到达C 点返回与B 点相遇的点,A ,B 两点第三次同时到达的点,是在A 点返回到出发点后又折返向点C 运动,与B 点运动到点C 处后返回的相遇点.【解答】解:(1)∵|a+4|+(c ﹣1)2=0,且|a+4|≥0,+(c ﹣1)2≥0,∴a+4=0,c ﹣1=0,∴a =﹣4,c =1;(2)由(1)可知A点表示的数为﹣4,C点表示的数为1,∵点B对应的数为﹣3,∴AB=1,由A,B两点到原点O的距离相等,分两种情况:①点A、B重合,②点A在原点的右边,点B在原点的左边①当点A、B重合时,A、B均在原点的左边,此时A点运动的距离等于B点运动的距离+1,即:2t=t+1,解得:t=1;②当点A在原点的右边,点B在原点的左边时,A、B两点表示的数互为相反数,即:(2t﹣4)+(﹣3+t)=0,解得:t=,综上所述当t=1或t=时,A,B两点到原点O的距离相等;(3)由(2)可知A,B两点第一次同时到达的点,在数轴上表示的数为:﹣2;A,B两点第二次同时到达的点,A点从﹣2到达C点(C点表示1)时,用时1.5秒,此时B点运动1.5个单位长度,到达﹣2+1.5=﹣0.5的位置,A、B之间相距1.5个单位长度,经过1.5÷(1+2)=0.5秒,A、B相遇,此时A、B两点均在原点,即A,B两点第二次同时到达的点在数轴上表示的数为:0;A,B两点第三次同时到达的点,在第二次相遇后,B到C点用时1秒,A点到出发点(表示﹣4的点)用时2秒,此时B点有到达原点,A、B两点再一次相遇用时4÷(2+1)=秒,此时A、B两点均在数轴上表示的数为﹣.综上所述,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是﹣2,0,﹣.故答案为:﹣2,0,﹣.【点评】此题考查了数轴的有关知识,解题的关键是:借助数轴分析A,B两点同时到达的点.5.(2022秋•新城区期中)一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;(2)1+3+|﹣6|+|﹣1|+|﹣2|+5=18,答:该货车共行驶了18千米;(3)100×5+50﹣15+25﹣10﹣15=535(千克),答:货车运送的水果总重量是535千克.z【点评】本题考查了正数和负数和数轴,掌握数轴的画法,掌握正负数所表示的意义是解决问题的关键.6.(2022秋•法库县期中)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为 ;点B表示的数为 ;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t=3时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【分析】(1)利用绝对值的非负性即可确定出a,b即可;(2)①根据运动确定出运动的单位数,即可得出结论.②根据(I)0<t≤2,(Ⅱ)t>2,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.【解答】解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.【点评】此题主要考查了数轴,点的运动特点,解本题的关键是抓住运动特点确定出结论.7.(2022秋•宜兴市期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?【分析】(1)根据几个非负数的和为0的性质得到a﹣1=0,b+2=0,求出a、b的值;(2)分类讨论:点C在点B的左边时或点C在点A的右边,利用数轴上两点间的距离表示方法得到关于c 的方程,解方程求出c的值即可;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得到t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),解方程得t=4,点D表示的有理数是1﹣2×4,小蜗牛甲共用的时间为3+4.【解答】解:(1)根据题意得a﹣1=0,b+2=0,解得a=1,b=﹣2.(2)①当点C在点B的左边时,1﹣c+(﹣2﹣c)=11,解得c=﹣6;②当点C在点A的右边时,c﹣1+c﹣(﹣2)=11,解得c=5;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得:t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),∴t=4,∴1﹣2×4=﹣7,3+4=7.答:点D表示的有理数是﹣7,小蜗牛甲共用去7秒.【点评】本题考查了数轴的三要素:正方向、原点和单位长度.也考查了几个非负数的和为0的性质以及数轴上两点间的距离.8.(2022秋•天河区校级期中)如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.z(1)求a 、b 、c 的值;(2)若点P 到A 点的距离是点P 到B 点的距离的2倍,求点P 对应的数;(3)当点P 运动到B 点时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c ﹣10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P 的对应的数;(3)分类讨论:当P 点在Q 点的右侧,且Q 点还没追上P 点时;当P 在Q 点左侧时,且Q 点追上P 点后;当Q 点到达C 点后,当P 点在Q 点左侧时;当Q 点到达C 点后,当P 点在Q 点右侧时,根据两点间的距离是4,可得方程,根据解方程,可得答案.【解答】解:(1)∵|a+24|+|b+10|+(c ﹣10)2=0∴a+24=0,b+10=0,c ﹣10=0解得a =﹣24,b =﹣10,c =10(2)﹣10﹣(﹣24)=14,①点P 在AB 之间,AP =14×=, ﹣24+=﹣,点P 的对应的数是﹣; ②点P 在AB 的延长线上,AP =14×2=28,﹣24+28=4,点P 的对应的数是4;(3)设在点Q 开始运动后第a 秒时,P 、Q 两点之间的距离为4,当P 点在Q 点的右侧,且Q 点还没追上P 点时,3a+4=14+a ,解得a =5;当P 在Q 点左侧时,且Q 点追上P 点后,3a ﹣4=14+a ,解得a =9;当Q 点到达C 点后,当P 点在Q 点左侧时,14+a+4+3a ﹣34=34,a =12.5;当Q 点到达C 点后,当P 点在Q 点右侧时,14+a ﹣4+3a ﹣34=34,解得a =14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.9.(2022秋•临平区月考)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【分析】(1)根据中点坐标公式即可求解;(2)此题是相遇问题,先求出相遇所需的时间,再求出点Q走的路程,根据左减右加的原则,可求出﹣20向右运动到相遇地点所对应的数;(3)此题是追及问题,分相遇前两只蚂蚁间的距离为20个单位长度,相遇后两只蚂蚁间的距离为20个单位长度,列出算式求解即可.z【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)A,B之间的距离为120,它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.【点评】此题考查的是数轴上点的运动,还有相遇问题与追及问题.注意用到了路程=速度×时间.10.(2022秋•南安市月考)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{ M,N}中,前面的点M是到后面的数N的距离的3倍,从而z得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知,分2种情况讨论:①P是{A,B}的奇点;②P是{B,A}的奇点.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{ M,N}的奇点;数﹣1所表示的点是{N,M}的奇点.故答案为:3;﹣1;(2)∵A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30,∴AB=30﹣(﹣50)=80.分2种情况:①P是{A,B}的奇点,PA=3PB,∴PB=20,P点表示的数为10;②P是{B,A}的奇点,PB=3PA,∴PB=60,P点表示的数为﹣30;故P点运动到数轴上的10或﹣30的位置时,P、A和B中恰有一个点为其余两点的奇点.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A 的距离是到后面的数B的距离的3倍,列式可得结果.11.(2022秋•魏都区校级月考)操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数 表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【分析】(1)1与﹣1重合,可以发现1与﹣1互为相反数,因此﹣3表示的点与3表示的点重合;(2)①﹣1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数﹣3表示的点重合;z②由①知折痕点为1,且A、B两点之间距离为11,则A表示1﹣5.5=﹣4.5,B点表示1+5.5=6.5.【解答】解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.【点评】题目考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.12.(2022秋•槐荫区校级月考)如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB 的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x= 秒时,点P到达点A.(2)运动过程中点P表示的数是 (用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;(2)根据题意得出P点运动的距离减去4即可得出答案;(3)利用当点P运动到点C左侧2个单位长度时,当点P运动到点C右侧2个单位长度时,分别得出答案.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,z∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.【点评】此题主要考查了数轴,正确分类讨论得出PC的长是解题关键.13.(2022秋•和平区校级期中)数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a= ,c= ;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m= ;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?【分析】(1)根据非负数的性质得出a、c的值,再在数轴上描点即可得;(2)分m<﹣6、﹣6≤m≤1、m>1三种情况去绝对值符号,再解所得方程可得;(3)设运动时间为t,则点A表示的数为﹣6+2t,点B表示的数为﹣2+t,根据点A到点C的距离是点B到点C距离的3倍列出方程|﹣6+2t﹣1|=3|﹣2+t﹣1|,解之可得.【解答】解:(1)∵|a+6|+(c﹣1)2=0,∴a+6=0且c﹣1=0,z解得:a=﹣6、c=1,如图所示:,故答案为:﹣6、1;(2)若m<﹣6,则1﹣m﹣m﹣6=15,解得:m=﹣10;若﹣6≤m≤1时,1﹣m+m+6=5≠15,此情况不存在;若m>1,则m﹣1+m+6=15,解得:m=5;综上,m=﹣10或5,故答案为:﹣10或5;(3)设t秒时,点A到点C的距离是点B到点C距离的3倍,则此时点A表示的数为﹣6+2t,点B表示的数为﹣2+t,则|﹣6+2t﹣1|=3|﹣2+t﹣1|,整理,得:|2t﹣7|=3|t﹣3|,∴2t﹣7=3(t﹣3)或2t﹣7=﹣3(t﹣3),解得:t=2或t=,∴点A表示的数为﹣2或,答:点A到点C的距离是点B到点C距离的3倍,点A对应的数为﹣2或.【点评】本题考查了一元一次方程的应用与数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.四.绝对值(共6小题)14.(2022秋•包河区期末)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 .【分析】数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.【解答】解:数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.画数轴易知,|x﹣2|+|x+3|+|x﹣1|+|x+1|表示x 到﹣3,﹣1,1,2这四个点的距离之和.令y=|x﹣2|+|x+3|+|x﹣1|+|x+1|,x=﹣3时,y=11,x=﹣1时,y=7,x=1时,y=7,x=2时,y=9,可以观察知:当﹣1≤x≤1时,由于四点分列在x两边,恒有y=7,当﹣3≤x<﹣1时,7<y≤11,当x<﹣3时,y>11,当1≤x<2时,7≤y<9,当x≥2时,y≥9,综合以上:y≥7 所以:a≤7即|x﹣2|+|x+3|+|x﹣1|+|x+1|≥7对一切实数x恒成立.从而a的取值范围为a≤7.【点评】本题考查绝对值,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.15.(2022秋•深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.【分析】依题意a≤b≤c≤d 原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,所以d=9,a=1,即可求解.【解答】解:依题意a≤b≤c≤d,则原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,则d=9,a=1 四位数要取最小值且可以重复,故答案为1119.【点评】此题考查了绝对值的性质,同时要根据低位上的数字不小于高位上的数字进行逻辑推理.16.(2022秋•定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索(1)求|5﹣(﹣2)|= ;(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是 .(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【分析】(1)5与﹣2两数在数轴上所对的两点之间的距离为5﹣(﹣2)=7;(2)在数轴上,找到﹣1008和1005的中点坐标即可求解;(3)利用数轴解决:把|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,然后根据数轴可写出满足条件的整数x;(4)把丨x﹣3丨+丨x﹣6丨理解为:在数轴上表示x到3和6的距离之和,求出表示3和6的两点之间的距离即可.【解答】解:(1)|5﹣(﹣2)|=7;(2)(﹣1008+1005)÷2=﹣1.5;(3)式子|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x可为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(4)有,最小值为﹣3﹣(﹣6)=3.故答案为:7;﹣1.5;﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.【点评】此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.17.(2022秋•南城县校级月考)先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;z(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)如图,点B为所求点.B点表示的数﹣2.5,C点表示的数1,BC的长度是1﹣(﹣2.5)=3.5;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为|x﹣(﹣1)|,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1,3.5;|x﹣(﹣1)|,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.18.(2022秋•隆昌市校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= .(2)若|x﹣2|=5,则x=(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是 .【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.19.(2022秋•花垣县月考)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:。

人教版七年级数学上册期末常考题型过关练习:计算题专项(二)

人教版七年级数学上册期末常考题型过关练习:计算题专项(二)

人教版七年级数学上册期末常考题型过关练习:计算题专项(二)一.有理数混合运算1.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.2.计算(1)﹣32﹣(﹣1)3×﹣|﹣|(2)﹣14×[|﹣2|﹣(﹣3)3﹣(﹣2)2]÷(﹣)23.计算.(1)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)];(2)﹣12018﹣(﹣2)3﹣2×(﹣3).4.计算:(1)(﹣6)÷(﹣1)×0.75×|﹣1|÷|﹣3|2;(2)﹣92××[(﹣)2×(﹣)﹣240÷(﹣4)×].5.计算:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].二.解一元一次方程6.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=7.解方程:(1);(2)8.解方程:(1)2x﹣1=3(x﹣1);(2)﹣=2.9.解方程:(1)﹣8x=3﹣x;(2)=2﹣.10.解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.三.整式混合运算11.化简:(1)﹣12x2y3÷(﹣3xy2)•(﹣xy);(2)(2x+y)(2x﹣y)﹣(2x﹣y)2.12.计算:(1)(12x3y﹣4x2)÷(﹣2x)2;(2)(2x﹣1)2﹣(2x+3)(2x﹣3).13.化简:(1)(﹣a)3•a2+(2a4)2÷a3;(2)[(m+n)(2m﹣n)+n2]÷(﹣m).14.计算(1)(2x)3・(﹣5xy2)÷(﹣2x2y)2(2)(x+2y﹣3)(x﹣2y+3)15.计算:(1)(a+2)(a﹣3)﹣4(a﹣1)2;(2);四.一元一次方程应用16.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)17.已知高铁的速度比动车的速度快50km/h,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72min.求高铁的速度和苏州与北京之间的距离.18.如图,数轴上A、B、C三点表示的数分别为a、b、c,其中AC=2BC,a、b满足|a+6|+(b﹣12)2=0.(1)则a=,b=,c=.(2)动点P从A点出发,以每秒2个单位的速度沿数轴向右运动,到达B点后立即以每秒3个单位的速度沿数轴返回到A点,设动点P的运动时间为t秒.①P点从A点向B点运动过程中表示的数(用含t的代数式表示).②求t为何值时,点P到A、B、C三点的距离之和为18个单位?19.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?20.有甲、乙、丙三个人在操场跑道上步行,甲平均每分钟走80米,乙平均每分钟走120米,丙每分钟走70米,已知操场跑道周长为400米,如果三个人同时同向从同一地点出发,问至少几分钟后三个人可以相聚?参考答案1.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.2.解:(1)﹣32﹣(﹣1)3×﹣|﹣|=﹣9﹣(﹣)3×﹣=﹣9+﹣=﹣9+=﹣9+=﹣8;(2)﹣14×[|﹣2|﹣(﹣3)3﹣(﹣2)2]÷(﹣)2=﹣1+×[2﹣(﹣27)﹣4]÷=﹣1+×(2+27﹣4)×=﹣1+×25×=﹣1+=﹣.3.解:(1)原式=﹣16×(﹣2)+(﹣8+4)=32﹣4=28;(2)原式=﹣1﹣(﹣8)﹣(﹣6)=﹣1+8+6=﹣1+14=13.4.解:(1)原式=6××××=;(2)原式=﹣81××(﹣×+60×)=﹣27×(﹣+15)=45﹣405=﹣360.5.解:(1)16÷(﹣2)3﹣(﹣)×(﹣4)+(﹣1)2020=16÷(﹣8)﹣+1=﹣2﹣+1=﹣;(2)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=.6.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.7.解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.8.解:(1)∵2x﹣1=3(x﹣1),∴2x﹣1=3x﹣3,∴2x﹣3x=1﹣3,∴﹣x=﹣2,∴x=2.(2)∵﹣=2,∴2x+15﹣=2,∴3(2x+15)﹣(10x﹣1)=6,∴6x+45﹣10x+1=6,∴﹣4x+46=6,∴﹣4x=﹣40,∴x=10.9.解:(1)移项,得:x﹣8x=3﹣,合并同类项,得:﹣x=,系数化为1,得:x=﹣;(2)去分母,得:5(x﹣1)=20﹣2(x+2),去括号,得:5x﹣5=20﹣2x﹣4,移项,得:5x+2x=20﹣4+5,合并同类项,得:7x=21,系数化为1,得:x=3.10.解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.11.解:(1)原式=4xy•(﹣xy)=﹣x2y2;(2)原式=4x2﹣y2﹣4x2+4xy﹣y2=4xy﹣2y2.12.解:(1)原式=(12x3y﹣4x2)÷4x2=3xy﹣1;(2)原式=4x2﹣4x+1﹣4x2+9=﹣4x+10.13.解:(1)原式=﹣a5+4a5=3a5;(2)原式=(2m2﹣mn+2mn﹣n2+n2)÷(﹣m)=(2m2+mn)÷(﹣m)=﹣4m﹣2n.14.解:(1)原式=8x3•(﹣5xy2)÷4x4y2=﹣10;(2)原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.15.解:(1)原式=a2﹣a﹣6﹣4(a2﹣2a+1)=a2﹣a﹣6﹣4a2+8a﹣4=﹣3a2+7a﹣10;(2)原式===8x+24.16.解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.17.解:72min=h,设高铁的速度为xkm/h,则动车的速度为(x﹣50)km/h,依题意有6(x﹣50)=x,解得x=250,6(x﹣50)=6×(250﹣50)=1200.答:高铁的速度为250km/h,苏州与北京之间的距离为1200km.18.解:(1)∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12.∵AC=2BC,∴c﹣(﹣6)=2×(12﹣c),∴c=6.故答案为:﹣6;12;6.(2)①AB=12﹣(﹣6)=18,18÷2=9(秒),18÷3=6(秒),9+6=15(秒).当0≤t≤9时,点P表示的数为2t﹣6;当9<t≤15时,点P表示的数为12﹣3(t﹣9)=39﹣3t.故答案为:.②(方法一)当0≤t≤9时,PA=|2t﹣6﹣(﹣6)|=2t,PB=|2t﹣6﹣12|=18﹣2t,PC=|2t﹣6﹣6|=|2t﹣12|,∵PA+PB+PC=18,∴2t+18﹣2t+|2t﹣12|=18,解得:t=6;当9<t≤15时,PA=|39﹣3t﹣(﹣6)|=45﹣3t,PB=|39﹣3t﹣12|=3t﹣27,PC=|39﹣3t﹣6|=|33﹣3t|,∵PA+PB+PC=18,∴45﹣3t+3t﹣27+|33﹣3t|=18,解得:t=11.答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.(方法二)∵PA+PB=18,PA+PB+PC=18,∴PC=0,即点P与点C重合.[6﹣(﹣6)]÷2=6(秒),9+(12﹣6)÷3=11(秒).答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.19.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.20.解:400÷(120﹣80)=400÷40=10(分),400÷(120﹣70)=400÷50=8(分),400÷(80﹣70)=400÷10=40(分),∵10,8,40的最小公倍数是40,∴至少40分钟后三个人可以相聚.。

七年级数学上册《整数》的八种常考题型

七年级数学上册《整数》的八种常考题型

七年级数学上册《整数》的八种常考题型1. 整数的比较与运算这种题型要求学生比较两个整数的大小或进行基本的整数运算,如加法、减法、乘法和除法。

例题:求下列各题的结果。

a) 8 + (-5)b) 15 - (-9)c) 3 × (-4)d) (-12) ÷ 32. 整数的绝对值与相反数这种题型考察学生对整数的绝对值和相反数的理解和计算能力。

例题:计算下列各题的结果。

a) |-6| + |-9|b) 7 - |-5|c) 3 × (-12)d) |-24| ÷ 43. 数轴上的整数这种题型要求学生在数轴上标出指定整数的位置,或根据给定条件在数轴上标记符号。

学生需要通过对整数的正负性进行判断。

例题:在数轴上标出-5的位置。

4. 奇数与偶数这种题型让学生区分奇数和偶数,理解它们的规律,并进行相关的计算。

例题:判断以下各题中的数字是奇数还是偶数。

a) 12b) -9c) 0d) 275. 实际问题中的整数运算这种题型将整数的概念应用到实际问题中,要求学生根据题意进行整数运算、比较或判断。

例题:一个温度计的温度从-8℃上升到了4℃,升高了多少度?6. 整数的拓展应用这种题型要求学生通过对整数的拓展应用,解决实际生活中的问题,并进行逻辑推理和计算。

例题:小明去商店买东西,他付了20元,但是他只拿了一件商品,而且没有找零。

商品的价格是多少?7. 一元一次方程与整数这种题型将一元一次方程与整数结合起来,要求学生求解未知数为整数的方程,培养学生逻辑推理和运算能力。

例题:解方程2x + 3 = 9,其中x是一个整数。

8. 简单整数的应用问题这种题型以生活中的实际问题为背景,要求学生用整数解决简单的应用问题。

例题:距离北京有-800公里,请问你现在在哪里?以上是七年级数学上册《整数》的八种常考题型的简要介绍。

掌握这些题型和解题技巧,能够帮助学生更好地理解和应用整数的概念,提高数学能力。

部编数学七年级上册期末真题必刷基础60题(33个考点专练)(解析版)含答案

部编数学七年级上册期末真题必刷基础60题(33个考点专练)(解析版)含答案

期末真题必刷基础60题(33个考点专练)一.正数和负数(共3小题)1.(2022秋•昌图县期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣8,+9,﹣3,+7,﹣6,+10,﹣5.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)根据正数和负数的实际意义,将所有数据相加计算后根据所得结果进行判断即可;(2)由题意求得所有数据的绝对值,然后结合已知条件计算即可.【解答】解:(1)∵12﹣8+9﹣3+7﹣6+10﹣5=16(千米),∴B地在A地的东边16千米;(2)由题意可得这一天走的总路程为:|+12|+|﹣8|+|+9|+|﹣3|+|+7|+|﹣6|+|+10|+|﹣5|=60千米,那么应耗油60×0.6=36(升),故还需补充的油量为:36﹣30=6(升),即冲锋舟当天救灾过程中至少还需补充6升油.【点评】本题考查正数和负数的实际意义及绝对值,结合已知条件进行正确的计算是解题的关键.2.(2022秋•山亭区期末)某果农把自家果园的柑橘包装后放到了网上销售.原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日+4﹣3﹣5+7﹣8+21﹣6与计划量的差值(1)根据记录的数据可知前五天共卖出多少箱?(2)本周实际销售总量达到了计划数量没有?(3)若每箱柑橘售价为80元,同时需要支出运费7元/箱,那么该果农本周总共收入多少元?【分析】(1)将前五天的销售量相加即得结论;(2)将表格中记录的数据相加得出结果,结果的符号表示达到或不足,结果的绝对值表示达到或不足的数量;(3)利用本周的总收入减去总运费即得结论.【解答】解:(1)10×5+4﹣3﹣5+7﹣8=45 (箱),答:根据记录的数据可知前五天共卖出45箱;(2)4﹣3﹣5+7﹣8+21﹣6=10>0,答:本周实际销售总量达到了计划数量;(3)(10×7+10)×80﹣(10×7+10)×7=5840(元),答:该果农本周总共收入5840元.【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.3.(2022秋•千山区期末)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星期一二三四五六日产量+10﹣6﹣8+15﹣12+18﹣9(1)根据记录,求出前三天共生产多少个?(2)请问产量最多的一天比产量最少的一天多生产多少个?(3)该厂实行计件工资制,每生产一个玩具10元,若按周计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资,那么该厂员工这一周的工资总额是多少?【分析】(1)三天的计划总数加上三天多生产的个数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总个数,然后按照工资标准求解.【解答】解:(1)100×3+10﹣6﹣8=296(个),∴前三天共生产296个;(2)18﹣(﹣12)=18+12=30(个),∴产量最多的一天比产量最少的一天多生产30个;(3)这一周多生产的总个数是10﹣6﹣8+15﹣12+18﹣9=8(个),10×700+12×8=7096(元).答:该厂工人这一周的工资是7096元.【点评】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.二.相反数(共3小题)4.(2022秋•二七区校级期末)﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.5.(2022秋•宁阳县期末)2023的相反数是( )A.B.C.2023D.﹣2023【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.6.(2022秋•德州期末)﹣2023的相反数是 2023 .【分析】由相反数的概念即可解答.【解答】解:﹣2023的相反数是﹣(﹣2023)=2023.故答案为:2023.【点评】本题考查相反数的概念,关键是掌握:只有符号不同的两个数叫做互为相反数,求一个数的相反数的方法就是在这个数的前边添加“﹣”.三.绝对值(共1小题)7.(2022秋•福田区校级期末)的相反数( )A.2022B.﹣2022C.D.【分析】根据绝对值、相反数的意义即可得出答案.【解答】解:∵,又∵的相反数是,∴的相反数是,故选:D.【点评】本题考查绝对值、相反数的意义,掌握绝对值、相反数的意义是解题的关键.四.倒数(共1小题)8.(2022秋•新兴县期末)的倒数是 ﹣2 .【分析】直接根据倒数的概念解答即可.【解答】解:的倒数是:,故答案为:﹣2.【点评】本题考查了倒数的概念,即当a≠0时,a与互为倒数.特别要注意的是:负数的倒数还是负数,此题难度较小.五.有理数大小比较(共2小题)9.(2022秋•海门市期末)比较大小:﹣ > ﹣.(用“>”“=”或“<”连接)【分析】先通分,再比较其绝对值的大小,进而可得出结论.【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解题的关键.10.(2022秋•建邺区校级期末)有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b < 0,a+b < 0,a﹣c > 0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.【分析】观察数轴可知:c<a<0<b<﹣a<﹣c.(1)由c<a<0<b<﹣a<﹣c,可得出c﹣b<0、a+b<0、a﹣c>0,此题得解;(2)由c﹣b<0、a+b<0、a﹣c>0,可得出|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c),去掉括号合并同类项即可得出结论.【解答】解:观察数轴可知:c<a<0<b<﹣a<﹣c.(1)∵c<a<0<b<﹣a<﹣c,∴c﹣b<0,a+b<0,a﹣c>0.故答案为:<;<;>.(2)∵c﹣b<0,a+b<0,a﹣c>0,∴|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c)=b﹣c﹣a﹣b﹣a+c=﹣2a.【点评】本题考查了有理数的大小比较、数轴以及绝对值,观察数轴找出c<a<0<b<﹣a<﹣c是解题的关键.六.有理数的除法(共1小题)11.(2022秋•垫江县期末)计算(﹣6)÷(﹣)×6的结果是( )A.6B.36C.﹣1D.1【分析】将除法变为乘法,再约分计算即可求解.【解答】解:(﹣6)÷(﹣)×6=(﹣6)×(﹣6)×6=36.故选:B.【点评】本题考查了有理数的乘除法,关键是熟练掌握计算法则正确进行计算.七.有理数的乘方(共1小题)12.(2022秋•秀山县期末)把下列各数填在相应的大括号里.0.245,+7,0,﹣1.07,﹣|﹣3|,,﹣(﹣6),,(﹣2)2正数集合:{ 0.245,+7,,﹣(﹣6),(﹣2)2 …}正分数集合:{ 0.245, …}负整数集合:{ ﹣|﹣3| …}负数集合:{ ﹣1.07,﹣|﹣3|, …}非正整数集合:{ 0,﹣|﹣3| …}【分析】根据有理数的分类进行解答即可.【解答】解:﹣|﹣3|=﹣3,﹣(﹣6)=6,(﹣2)2=4;正数集合:{0.245,+7,,﹣(﹣6),(﹣2)2…},正分数集合:{0.245,…},负整数集合:{﹣|﹣3|…},负数集合:{﹣1.07,﹣|﹣3|,…},非正整数集合:{ 0,﹣|﹣3|…},故答案为:0.245,+7,,﹣(﹣6),(﹣2)2;0.245,;﹣|﹣3|;﹣1.07,﹣|﹣3|,;0,﹣|﹣3|.【点评】本题主要考查了有理数的分类,绝对值的意义,解题的关键是熟练掌握有理数的定义.八.非负数的性质:偶次方(共1小题)13.(2022秋•泉港区期末)已知|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣7B.7C.﹣1D.1【分析】直接利用非负数的性质得出m,n的值,进而代入得出答案.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得:m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.九.有理数的混合运算(共1小题)14.(2022秋•市中区期末)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)= 7 .【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点评】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.一十.近似数和有效数字(共2小题)15.(2022秋•平谷区期末)用四舍五入法把3.1415926精确到0.01,所得到的近似数为 3.14 .【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415926精确到0.01,所得到的近似数为3.14.故答案为:3.14.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.16.(2022秋•叙州区期末)用四舍五入法将0.05068精确到千分位的近似值为 0.051 .【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.05068≈0.051(精确到千分位).故答案为:0.051.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.一十一.科学记数法—表示较大的数(共2小题)17.(2022秋•西岗区校级期末)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,数据67500用科学记数法表示为( )A.6.75×103B.6.75×104C.67.5×105D.67.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:67500=6.75×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022秋•罗湖区期末)从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )A.7×103B.7×105C.7×106D.7×107【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:70000000=7×107.故选:D.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.一十二.代数式(共1小题)19.(2022秋•罗湖区期末)下列结论中正确的是( )A.对乘坐高铁的乘客进行安检,适宜采用普查的方式B.单项式的系数是C.a2+b2的意义是表示a,b两数的和的平方D.将弯曲的道路改直的数学道理是“过两点有且只有一条直线”【分析】根据抽样调查,单项式的定义,代数式的意义,线段的性质判断即可.【解答】解:A、对乘坐高铁的乘客进行安检,适宜采用普查方式,故符合题意;B、单项式的系数是π,故不符合题意;C、a2+b2的意义是表示a,b两数平方的和,故不符合题意;D、将弯曲的道路改直的数学道理是“两点之间,线段最短”,故不符合题意;故选:A.【点评】本题考查了抽样调查,单项式的定义,代数式的意义,线段的性质,熟练掌握抽样调查,单项式的定义,代数式的意义,线段的性质是解题的关键.一十三.代数式求值(共3小题)20.(2022秋•伊川县期末)若a+2b=3,则7+4b+2a= 13 .【分析】根据a+2b=3,可知2a+4b的值,进一步求解即可.【解答】解:∵a+2b=3,∴2a+4b=2(a+2b)=2×3=6,∴7+4b+2a=7+6=13,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.21.(2022秋•平江县期末)如图是一个简单的数值运算程序框图,如果输入x的值为﹣1,那么输出的数值是 27 .【分析】根据程序框图计算即可求出答案.【解答】解:﹣1+(﹣2)=﹣3,(﹣3)3=﹣27,﹣27×(﹣1)=27,故答案为:27.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.22.(2022秋•连云港期末)根据如图所示的计算程序,若输入的值x=﹣2,则输出的值y= 5 .【分析】根据程序图即可求出y的值.【解答】解:∵x=﹣2<0,∴把x=﹣2代入y=x2+1,得y=(﹣2)2+1=5.故答案为:5.【点评】本题考查代数式求值,解题的关键是正确理解程序图,本题属于基础题型.一十四.同类项(共2小题)23.(2022秋•紫金县期末)下列各组中两项属于同类项的是( )A.﹣x2y和xy2B.x2y和x2zC.﹣m2n3和﹣3n3m2D.﹣ab和abc【分析】根据同类项的定义逐个判断即可.【解答】解:A.﹣x2y和xy2,相同字母的指数分别不相等,不是同类项,故本选项不符合题意;B.x2y和x2z的字母不相同,不是同类项,故本选项不符合题意;C.﹣m2n3和﹣3n3m2的字母相同,相同字母的指数也分别相等,是同类项,故本选项符合题意;D.﹣ab和abc的字母不完全相同,不是同类项,故本选项不符合题意;故选:C.【点评】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项叫同类项,常数项是同类项.24.(2022秋•南海区校级期末)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是( )A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.【点评】本题主要考查了同类项的定义,根据相同字母的指数相同列出方程是解题的关键.一十五.合并同类项(共1小题)25.(2022秋•建昌县期末)若多项式a3b m﹣2a n b4+3可以进一步合并同类项,则m,n的值分别是( )A.m=4,n=3B.m=3,n=4C.m=3,n=3D.m=4,n=4【分析】据同类项的定义(所含字母相同,相同字母的指数相同),即可求得m、n的值.【解答】解:∵多项式a3b m﹣2a n b4+3可以进一步合并同类项,∴a3b m和﹣2a n b4是同类项,∴m=4,n=3.故选:A.【点评】本题考查了同类项的定义,掌握同类项定义中相同字母的指数相同是关键.一十六.去括号与添括号(共1小题)26.(2022秋•海丰县期末)去括号:﹣(2a﹣3b)= ﹣2a+3b .【分析】根据去括号法则求解即可.【解答】解:﹣(2a﹣3b)=﹣2a+3b.故答案为:﹣2a+3b.【点评】本题主要考查了去括号,熟知去括号法则是解题的关键,如果括号前面是“+”号,去括号时不变号,如果括号前是“﹣”,去括号时要变号.一十七.单项式(共2小题)27.(2022秋•息县期末)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.﹣2xy2B.3x2C.2xy3D.2x3【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,故本选项错误;B、3x2系数是3,故本选项错误;C、2xy3次数是4,故本选项错误;D、2x3符合系数是2,次数是3,故本选项正确;故选:D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.28.(2022秋•万柏林区期末)单项式的系数是 .【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式的系数是:.故答案为:.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.一十八.多项式(共1小题)29.(2022秋•铁锋区期末)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.一十九.整式的加减(共1小题)30.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是( )A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项【分析】根据整式的定义,整式的加减,可得答案.【解答】解:单项式和多项式统称作整式,整式的加减就是去括号,合并同类项,故选:D.【点评】本题考查了整式的相关概念,解题的关键是掌握单项式和多项式统称作整式,整式的加减就是去括号,合并同类项.二十.整式的加减—化简求值(共3小题)31.(2022秋•罗湖区期末)先化简,再求值:2(a2﹣2a)﹣(2a2﹣3a)+1,其中a=﹣3.【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【解答】解:原式=2a2﹣4a﹣2a2+3a+1=﹣a+1,当a=﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点评】此题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.32.(2022秋•东丽区期末)先化简,再求值:,其中a=﹣3,.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:==﹣3a+b2,当时,原式=.【点评】此题考查了整式的加减——化简求值,熟练掌握运算法则是解本题的关键.33.(2022秋•永定区期末)计算:已知A=b2﹣a2+5ab,B=3ab+2b2﹣a2.(1)化简:2A﹣B;(2)当a=1,b=2时,求2A﹣B的值.【分析】(1)根据整式的加减运算进行化简即可求出答案.(2)将a与b的值代入原式即可求出答案.【解答】解:(1)原式=2(b2﹣a2+5ab)﹣(3ab+2b2﹣a2)=2b2﹣2a2+10ab﹣3ab﹣2b2+a2=﹣a2+7ab,(2)当a=1,b=2时,原式=﹣1+7×1×2=﹣1+14=13.【点评】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,属于基础题型.二十一.方程的解(共2小题)34.(2022秋•罗湖区期末)定义一种新的运算“⊗”,它的运算法则为:当a、b为有理数时,a⊗,比如:6⊗4==1,则方程x⊗2=1⊗x的解为x= .【分析】根据定义直接求解即可.【解答】解:∵x⊗2=1⊗x,∴x﹣,解得x=,故答案为:.【点评】本题考查一元一次方程的解,理解定义,结合新定义,能将所求问题转化为一元一次方程的解是解题的关键.35.(2022秋•思明区校级期末)如果关于m的方程2m+b=m﹣1的解是﹣4,求b的值 3 .【分析】把m=﹣4代入方程,求出b的值即可.【解答】解:∵关于m的方程2m+b=m﹣1的解是﹣4,∴2×(﹣4)+b=﹣4﹣1,∴b=3.故答案为:3.【点评】本题考查方程的解,关键是掌握方程解的定义.二十二.等式的性质(共1小题)36.(2022秋•陵城区期末)下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.【点评】此题主要考查了等式的性质,正确把握相关性质是解题关键.二十三.一元一次方程的定义(共1小题)37.(2022秋•新泰市期末)如果(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,那么m 的值为( )A.±4B.4C.2D.﹣4【分析】依据一元一次方程的定义可知|m|﹣3=1且m﹣4≠0,从而可求得m的值.【解答】解:∵(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得m=﹣4.故选:D.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到|m|﹣3=1且m﹣4≠0是解题的关键.二十四.一元一次方程的解(共6小题)38.(2022秋•黄埔区校级期末)若x=1是关于x的方程2x+a=0的解,则a的值为( )A.﹣1B.﹣2C.1D.2【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题意得:当x=1时,2+a=0.∴a=﹣2.故选:B.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.39.(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个( )A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.40.(2022秋•沙依巴克区校级期末)如果x=3是关于x的方程3m﹣2x=6的解,则m的值是( )A.0B.C.﹣4D.4【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:3m﹣6=6,解得:m=4,故选:D.【点评】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m= ﹣1 .【分析】将x=﹣1代入方程mx+1=2,得到关于m的一元一次方程,解方程即可求出m 的值.【解答】解:∵关于x的一元一次方程mx+1=2的解为x=﹣1,∴﹣m+1=2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.42.(2022秋•兴化市校级期末)小王同学在解方程3x﹣2=☆x﹣5时,发现“☆”处的数字模糊不清,但察看答案可知该方程的解为x=3,则“☆”处的数字为 4 .【分析】根据方程的解满足方程,设☆=a,可得关于a的方程,根据解方程,可得a的值.【解答】解:设☆=a,由x=3是3x﹣2=ax﹣5的解,得3×3﹣2=3a﹣5,解得a=4.故答案为:4.【点评】本题考查解一元一次方程的解和解方程,解题的关键是掌握解一元一次方程.43.(2022秋•沅江市期末)若x=3是关于x的方程ax+4=1的解,则a= ﹣1 .【分析】根据方程解的定义,把x=3代入方程即可得出a的值.【解答】解:∵x=3是关于x的方程ax+4=1的解,∴3a+4=1,∴a=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的解,掌握方程解的定义,以及一元一次方程的解法是解题的关键.二十五.解一元一次方程(共5小题)44.(2022秋•交口县期末)下列方程的变形中,正确的是( )A.由﹣2x=9,得x=﹣B.由x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由3=x﹣2,得x=3+2【分析】应用等式的性质进行计算即可得出答案.【解答】解:A.由﹣2x=9,得x=﹣,所以A变形不正确,故A选项不符合题意;B.由x=0,得x=0,所以A变形不正确,故A选项不符合题意;C.由7=﹣2x﹣5,得2x=﹣5﹣7,所以C变形不正确,故C选项不符合题意;D.由3=x﹣2,得x=3+2所以D变形正确,故D选项不符合题意.故选:D.【点评】本题主要考查了等式的性质,熟练掌握等式的性质是解决本题的关键.45.(2022秋•南开区校级期末)定义运算法则:a⊕b=a2+ab,例如3⊕2=32+3×2=15.若2⊕x=10,则x的值为 3 .【分析】根据题意列出关于x的一元一次方程,求出x的值即可.【解答】解:∵2⊕x=10,∴22+2x=10,即4+2x=10,解得x=3.故答案为:3.【点评】本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解题的关键.46.(2022秋•平桥区期末)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6合并同类项得:﹣4x=﹣3系数化为1得:x=.【点评】注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.47.(2022秋•新泰市期末)解方程(1)4x﹣6=2(3x﹣1);(2)y﹣=3﹣【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣6=6x﹣2,移项合并得:﹣2x=4,解得:x=﹣2;(2)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项合并得:7y=21,解得:y=3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.48.(2022秋•望城区期末)解下列方程:(1)4x﹣3=2﹣5x;(2).【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x+5x=2+3,合并同类项得,9x=5,x的系数化为1得,x=;(2)去分母得,2(2x﹣1)﹣(10x+1)=12,去括号得,4x﹣2﹣10x﹣1=12,移项得,4x﹣10x=12+2+1,合并同类项得,﹣6x=15,x的系数化为1得,x=﹣.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.二十六.由实际问题抽象出一元一次方程(共1小题)49.(2022秋•罗湖区期末)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.二十七.认识立体图形(共1小题)50.(2022秋•泗阳县期末)在一个六棱柱中,共 18 有条棱.【分析】根据六棱柱的特点可得答案.【解答】解:在一个六棱柱中,共有3×6=18条棱,故答案为:18.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.二十八.点、线、面、体(共1小题)51.(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二十九.专题:正方体相对两个面上的文字(共1小题)52.(2022秋•新都区期末)一个正方体的平面展开图如图所示,将它折成正方体后“时”字对面的字是 分 .【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“时”字相对的面上的字是“分”.故答案为:分.。

七年级上册数学常考题型归纳

七年级上册数学常考题型归纳

七年级上册数学常考题型归纳
一、数学运算题
1、基本运算:要求熟练掌握加减乘除的运算,正确率控制在100%以上。

2、综合运算:要求能够将课上学过的计算方法运用至实际综合问题的求解中。

3、运算能力:要求能够在规定的范围内,特殊情况下或其它时候能够运用相应的运算方法,把复杂问题变为简单问题。

二、分析题
1、假设分析:要求能够从假设证明的角度出发,分析与解决问题。

2、计算分析:要求能够去解决一些特殊的数学问题,根据给出的数据作出相应的数据分析。

3、综合分析:要求能够根据所提供的一系列数据作出判断,做出正确的综合分析,推出正确的结论。

三、图形题
1、几何图形:要求能够识别几何图形,进行快速分析;形状分析;结论推导,形成最佳解决方案。

2、几何运算:要求能够运用几何图形运算,如:斜率求解,直线求斜率,圆的运算等。

3、几何变换:要求能够使用几何变换,如旋转,平移,缩放,翻转等
来解决几何图形位置及大小等问题。

四、代数题
1、代数方程:要求能够解决一元二次方程、一次不定方程、不等式等各类代数方程。

2、函数计算:要求有一定的数学基本运算能力,能够规范计算函数图像以及函数在特定点值。

3、解析几何:要求能够正确把握几何几率与代数几何的区别,在解决坐标几何、原点几何等问题中有所施展。

五、数论题
1、数列数组:要求熟练掌握等差数列、等比数列、级数等数列的特点与计算,能够迅速求解数组。

2、等式的比较:要求能够熟练掌握数论计算中的比较大小规律,知道如何快速判断含有未知数的等式的真假。

3、质数:要求能够判断哪些是质数,哪些是合数,并且能够列出某个定范围内的质数表。

初中数学七年级上册知识点与常考题型梳理

初中数学七年级上册知识点与常考题型梳理

七年级上册知识点与题型归纳讲次01 有理数的分类及数轴考点一、有理数分类按照整数和分数的分类【注意】0既不是正数也不是负数。

按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。

2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数考点二、数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. 实心点表示包括本数,空心点表示不包括本数。

命题角度一 正负数在实际生活中的应用例题1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【解析】若向东走2m 记作+2m ,则向西走3m 记作-3m ,选C .变式1.如果+20%表示增加20%,那么﹣6%表示( )A .增加14%B .增加6%C .减少6%D .减少26%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.选C .变式2.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5【解析】最符合规定的是﹣3,选C .变式3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( )A .在书店B .在花店C .在学校D .不在上述地方【解析】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.选C .命题角度二 有理数的分类例题2.把下列各数填入它所在的数集的括号里. ﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10% 正数集合:{ …};整数集合:{ …}非负数集合:{ …};负分数集合:{ …}.【解析】正数集合:{+5,245,6.9,210,0.031 …}; 整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …}; 负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【解析】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【解析】(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;-,(3)最大数是2016,最小数是72+-=.∴最大的数与最小的数之和2016(72)1944命题角度三数轴的三要素及画法例题3.下列数轴画正确的是()A.B.C.D.【解析】A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.选C.变式1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【解析】(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.选C.变式2.下列各图表示数轴正确的是()A.B.C.D.【解析】各图表示数轴正确的是:.选C.命题角度四用数轴上的点表示有理数例题4.如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【解析】由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5,选C.变式1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【解析】数轴上蝴蝶所在点表示的数可能为-1,选D.变式2.如图,25倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H【解析】25的倒数是52,∴52在G和H之间,选D.变式3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【解析】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧,选B.命题角度五利用数轴表示有理数的大小例题5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【解析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【解析】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,选D.变式2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.选D.变式3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【解析】由数轴可得,-1<m<0<2<n<3,选项A错误,选项B错误,∴m>-n,选项C错误,选项D正确命题角度六数轴上的动点问题例题6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合. 变式1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( ) A .﹣2 B .﹣6 C .﹣3 或﹣5 D .无法确定【解析】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.选C . 变式2.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a +1|表示为( ) A .A 、B 两点间的距离 B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和【解析】因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,选B变式3.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【解析】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.选B .讲次02 绝对值与相反数考点一 相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数) 注意:1、通常a 与-a 互为相反数;2、a 表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.考点二 绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

七年级数学上册《整式》的八种常考题型

七年级数学上册《整式》的八种常考题型

七年级数学上册《整式》的八种常考题型题型一:列代数式1.从车上取下x袋面粉后,车上还剩下的面粉数量可以用50(100-x)千克表示。

2.全部水蜜桃共卖的价格可以用70(1+20%)a + 30(a-b)元表示。

3.(1) 圆形草地的面积可以用πr²/4表示,空地的面积可以用ab-πr²表示。

2) 当长方形的长为300米,宽为200米,圆形草地的半径为10米时,广场空地的面积为-25π平方米。

4.这个长方形的周长可以用6a+4b表示。

5.这根铁丝还剩下3a+3b。

题型二:相关概念的考查6.单项式5mn²的次数为3.7.若单项式am⁻¹b²与n²bm⁻¹的和仍是单项式,则nm的值为6.8.解方程得到m=1,n=2.9.如果2xa+1y与x²yb⁻¹是同类项,则y的值为3.题型三:化简求值10.当a=-1/2,b=8时,2(3b²-a³b)-3(2b²-a²b-a³b)-4a²b的值为-364.题型四:与整式有关的阅读理解题11.3a+2b的值为7.12、XXX和XXX就多项式求值的问题产生了争议。

XXX认为给出a和b的值是多余的条件,而XXX则认为每一项都含有a和b,不给出值就无法求出多项式的值。

我认为XXX的观点是正确的,因为多项式中每一项都包含a和b,如果没有给出它们的值,就无法计算出多项式的值。

13、XXX在做一道题目时遇到了困难。

他将“”猜成了3,导致系数印刷不清楚。

他的妈妈告诉他,正确答案是一个常数。

我们需要通过计算来验证原题中的“”是多少。

14、这道题定义了一种新的运算,即a*b=ab/(1-ab)。

如果我们要计算2*3,我们需要将2和3代入公式中,得到2*3=6/(1-6)=6/-5=-1.2.15、观察这组数3、5、7、9、11……我们可以发现,这是一组奇数,每个数都比前一个数大2.因此,第10个数是19.16、这道题给出了一组数列,其中每个数的计算方式为n-(n+2)。

七年级上册数学必考题型

七年级上册数学必考题型

七年级上册数学必考题型(一)正负数1.正数: 大于0的数。

2.负数: 小于0的数。

3.0即不是正数也不是负数。

(易错点)4.正数大于0,负数小于0,正数大于负数。

相关题型:(1)考查±的实际意义例:某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适A.18—20℃B.20—22℃C.18—21℃D.18—22℃考查形式:选择、填空(2)考查正负数的运算考查形式:一般与幂运算和二3.分数: 正分数、负分数。

相关题型:排序,给几个不同形式的有理数和无理数,进行比较大小然后排序考查形式:选择题易错点:正确区分有理数和无理数,小数不一定是无理数,2/3这样的数是有理数。

(三) 数轴1.数轴: 用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向; 选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素: 原点、正方向、单位长度。

相关题型:(1)数轴上的点的几何意义:在数轴上表示数,求对应两点间的距离例:若数轴上表示2的点为M,那么在数轴上与点M相距4个单位的点所对应的数是_______(2)数轴与相反数综合例:有理数a、b、c在数轴上的位置如图所示,且a、b互为相反数,则a-c-b+c= (3)数轴与不等式综合:求不等式解集,判断不等式能否成立例:实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.ab>0B.a+b<0C.a-b<0D.a/b<考查形式:一般出现在选择题、填空题中居多3.相反数: 只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

相关题型:直接考查一个数的相反数是多少。

考查形式:中考必考点,出现于选择题。

4.绝对值: 正数的绝对值是它本身,负数的绝对值是它的相反数; 0 的绝对值是0;易错点:两个负数,绝对值大的反而小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 02A ab 0七年级上册数学常考题型归纳姓名第一章有理数一、正负数的运用1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A .18℃~20℃B .20℃~22℃C .18℃~21℃D .18℃~22℃2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期12月21日12月22日12月23日12月24日最高气温8℃7℃5℃6℃最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【】A .12月21日B .12月22日C .12月23日D .12月24日二、数轴(在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【】A .-1B .-2C .-3D .-4(思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M,那么在数轴上与点M 相距4个单位的点所对应的数是______.5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是()A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是()A .0ab >B .0a b +<C .1ab<D .0a b -<8、有理数a、b、c 在数轴上的位置如图3所示,且a 与b 互为相反数,则c b c a +--=.9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是.三、相反数(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是()A .)1(--与1B .(-1)2与1C .1-与1D .-12与1四、倒数(互为倒数的两数的积为1)11、-3的倒数是________.五、绝对值(|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a =±b)12、2-等于()A .-2B .12-C .2D .12-1a 01b图3ao c b 图313、若ab≠0,则等式a b a b+=+成立的条件是______________14、若有理数a,b 满足(a-1)2+|b+3|=0,则a-b=15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________.六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别;(-1)奇与(-1)偶的区别]16、下列计算中正确的是()A .532aa a =+B .22a a-=-C .33)(aa =-D .22)(aa --七、科学计数法(表示形式a×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【】A .精确到十分位B .精确到个位C .精确到百位D .精确到千位19、下面说法中错误的是().A .368万精确到万位B .2.58精确到百分位C .0.0450有精确到千分位D .10000精确到万位表示为“1万”或“1×104”九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25(2)22+2×[(-3)2-3÷12](3))23(24)32(412)3(22---×++÷÷(4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2].(6)()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有().A .1B .2C .3D .422、下列说,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。

A .1个B .2个C .3个D .4个23、出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km )如下:-2,+5,-1,+1,-6,-2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?若汽车耗油量为0.21L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(2)若出租车起步价为8元,起步里程为3km (包括3km ),超过部分每千米1.2元,问小李这天上午共得车费多少元?24、最大的负整数是,绝对值最小的有理数是;25、你会玩“二十四点”游戏吗?请你在“2,-4,12,1”这四个数中利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次),写出你的算式。

26、尊师重教.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?第二章整式一、单项式与多项式的定义、项、系数、次数、升降幂排列1、多项式3x 2-2xy 3-21y -1是().A .三次四项式B .三次三项式C .四次四项式D .四次三项式2、单项式12-xy 2的系数是_________.3、下列结论中,正确的是()A .单项式732xy 的系数是3,次数是2。

B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4。

D .多项式322++xy x 是三次三项式4、请写出一个系数为5,且含有x、y 两个字母的三次单项式。

5、下列式子中是单项式的是()A.2x 2-3x-1B.32y x 37-C.zxy2D.)y x (212-6、若单项式1275+n y ax 与457y ax m -的差仍是单项式,则m-2n=_____.二、同类项7、下面不是同类项的是().A .-2与21B .2m 与2nC .b a 22-与b a 2D .22y x -与2221y x 8、下列各组单项式中,为同类项的是()A .a 3与a2B .12a 2与2a 2C .2xy 与2x D .-3与a9、若-2X m+1y 2与3x 3y n-1是同类项,则m+n 的值()A.3 b.4 C.5 D.610、若-5a n b n-1与21m b a 31+是同类项,则(-n)m的值为()三、整式的化简与求值11、先化简,再求值,222963()3y x y x -++-,其中12-==y x ,.12、化简)323221(x --x (+的结果是…………………【】A .317+x -B .315+x -C .6115x --D .6115+x -13、先化简再求值:)2(3)2(4)2(2)2(522b a b a -b a -b a +++++,其中21=a ,9=b 14、先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.四、综合应用15、多项式223368x kxy y xy --+-不含xy 项,则k =;16、已知:22321A x xy x =+--,21B x xy =-+-(1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。

17、已知()0212=++-y x ,求()()16322222++--y x xyxyy x 的值.图第三章一元一次方程姓名一、一元一次方程的定义1、下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .21=+y y2、若方程(a-1)x a-2=3是关于x 的一元一次方程,则a 的值为_______3、若(m+3)x ︱m︱-2+2=1是关于x 的一元一次方程,则m 的值为.二、方程的解4、若x =3是方程a -x =7的解,则a 的值是().A .4B .7C .10D .735、请你写出一个解为x =2的一元一次方程.6、若x=-2是方程3x-4m=2的解,则m 的值为()A.1B.-1C.2D.-2三、方程的解法7、在解方程123123x x -+-=时,去分母正确的是().A .3(x -1)-2(2+3x )=1B .3(x -1)+2(2x +3)=1C .3(x -1)+2(2+3x )=6D .3(x -1)-2(2x +3)=68、解下列方程:(1)231x x -=+(2)13312x x --=-9、解方程:(1)513x +-216x -=1.(2)13421+=-x x 四、列方程解应用题10、甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程().A .98+x =x -3B .98-x =x -3C .(98-x )+3=x D .(98-x )+3=x -311、如图4,宽为50cm 的长方形图案由10个大小相等的小长方形拼成,其中一个小长方形的面积为…【】A.4000cm 2B.600cm 2C.500cm 2D.400cm 212、一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A .(1+50%)x×80%=x -28B .(1+50%)x×80%=x +28C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2813、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是()A.32428-=x x B .32428+=x x C .3262262+-=+x x D.3262262-+=-x x 14、已知y1=x +3,y 2=2-x ,当x =_________时,y 1比y2大5.15、根据图中提供的信息,可知一个杯子的价格是________元.16、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。

相关文档
最新文档