材料力学-正应力计算
材料力学三个主应力计算公式

材料力学三个主应力计算公式
1材料力学三个主应力计算公式
材料力学是用物理学的方法研究材料在外加拉力、轴向力、压力等机械荷载作用下的弹性和非弹性变形行为的一门学科。
这里我们主要讲解三个主要的应力计算公式,它们是拉伸应力公式、压缩应力公式和弯曲应力公式。
1拉伸应力公式
拉伸应力公式是研究材料受到拉力的变形的一个主要的应力计算公式。
对一般的条件,拉伸应力公式可以表示为:σ=F/A,其中σ是拉伸作用下材料的应力,F为拉力的大小,A是拉力所作用的面积。
2压缩应力公式
压缩应力公式是研究材料受到压缩的变形的一个主要的应力计算公式。
对一般的条件,压缩应力公式可以表示为:σ=F/A,其中σ是压缩作用下材料的应力,F为压缩力的大小,A是压缩力所作用的面积。
3弯曲应力公式
弯曲应力公式是研究材料受到弯曲的变形的一个主要的应力计算公式。
对一般的条件,弯曲应力公式可以表示为:σ=M/I,其中σ是弯曲作用下材料的应力,M为弯矩的大小,I是受到弯矩作用的轴状截面积的矩。
弯曲应力几何关系可以表示为:σm=E⋅(1/R)
⋅σ=E⋅(1/r)⋅截面有效截面积,其中R和r分别是弯曲的半径和有效截面的半径。
以上是关于材料力学三个主要的应力计算公式,也就是拉伸应力公式、压缩应力公式和弯曲应力公式的介绍。
通过对这些公式的学习,可以深入了解材料的变形以及如何从力学的角度来衡量材料的应力。
材料力学公式

1、材料力学的任务:强度、刚度和稳定性;应力单位面积上的内力。
平均应力(1.1)全应力(1.2)正应力垂直于截面的应力分量,用符号表示。
切应力相切于截面的应力分量,用符号表示。
应力的量纲:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3-1)式中为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力(3-2)正应力(3-3)切应力(3-4)式中为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成的斜截面上,达到最大值,即1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件的变形量表示为(3-6)式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
材料力学公式大全

材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。
材料力学应力

材料力学应力材料力学是研究材料在外力作用下的力学性能和变形规律的学科,而应力则是材料受力时内部分子间的相互作用所产生的结果。
在材料力学中,应力是一个非常重要的概念,它直接影响着材料的强度、变形和破坏行为。
因此,对于应力的理解和分析对于工程材料的设计、制造和使用具有重要意义。
首先,我们来看一下应力的定义。
应力是单位面积上的力,它是描述材料内部受力状态的物理量。
在工程力学中,通常将应力分为正应力和剪应力两种。
正应力是垂直于截面的力对截面积的比值,而剪应力则是平行于截面的力对截面积的比值。
正应力可以进一步分为拉应力和压应力,它们分别表示材料在拉伸和压缩状态下的受力情况。
接下来,我们需要了解应力的计算方法。
对于均匀材料,其应力可以通过受力分析和应力分布来计算。
在静力学中,我们可以利用受力平衡方程来计算材料受力的情况,然后根据材料的几何形状和受力情况来确定应力的分布。
而在实际工程中,通常会通过有限元分析等方法来计算复杂结构下的应力分布,以确保材料在受力情况下的安全性和稳定性。
此外,应力的影响因素也是我们需要重点关注的内容。
材料的性质、几何形状、受力方式等因素都会对材料的应力产生影响。
例如,材料的强度和韧性会直接影响其在受力时的应力情况,而材料的形状和尺寸也会对应力分布产生影响。
在工程实践中,我们需要综合考虑这些因素,对材料的应力进行合理的分析和设计,以确保材料在使用过程中不会因应力过大而导致破坏。
最后,我们需要注意应力的作用和应用。
应力不仅影响着材料的强度和变形性能,还直接关系到材料的使用寿命和安全性。
在工程实践中,我们需要根据材料的应力特点来选择合适的材料和结构设计,以确保材料在受力情况下能够满足设计要求。
同时,对于材料的使用和维护也需要考虑应力的影响,及时发现并处理材料受力过大的情况,以确保设备和结构的安全运行。
综上所述,材料力学中的应力是一个非常重要的概念,它直接关系到材料的强度、变形和破坏行为。
对于应力的理解和分析对于工程材料的设计、制造和使用具有重要意义。
材料力学公式超级大汇总

7.泊松比
8.胡克定律
9.受多个力作用的杆件纵向变形计算公式?
10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力 , 脆性材料 ,塑性材料
13.延伸率
14.截面收缩率
15.剪切胡克定律(切变模量G,切应变g)
16.拉压弹性模量E、泊松比 和切变模量G之间关系式
(6.13)
平面弯曲梁的剪应力强度条件
(6.14a)
(6.14b)
平面弯曲梁的主应力强度条件
(6.15a)
(6.15a)
圆截面弯扭组合变形构件的相当弯矩
(6.16)
螺栓的抗剪强度条件
(6.17)
螺栓的抗挤压强度条件
(6.18)
贴角焊缝的剪切强度条件
7刚度校核
序号
公式名称
公式
符号说明
(7.1)
构件的刚度条件
(9.17)
一次超静定结构的力法方程:
(9.18)
方向有位移 时的力法方程:
(9.19)
自由项公式:
(9.20)
主系数公式:
(9.21)
桁架的主系数与自由项公式:
材料力学公式汇总
一、应力与强度条件
1、拉压
2、剪切
挤压
3、圆轴扭转
4、 平面弯曲①
②
③
应力
(4.31)
矩形截面中性
轴各点的剪应力
(4.32)
工字形和T形截
面的面积矩
(4.33)
平面弯曲梁的挠
曲线近似微分方
程
V向下为正
X向右为正
(4.34)
平面弯曲梁的挠曲线上任一截面
材料力学-第三章正应力强度条件

解: 由公式
max
M max Wz
M max bh 2
6
可以看出, 该梁的承载能力将是原来的 2 倍。
例:主梁AB,跨度为l,采用加副梁CD的方 法提高承载能力,若主梁和副梁材料相同,截面 尺寸相同,则副梁的最佳长度a为多少?
a Pa
C2 A
2D B
l
l
2
2
CL8TU8
解:
主梁AB的最大弯矩
P M max AB 4 (l a)
y1
Wy1tzy2ycImzayxmamxax抗弯截面模y 量CL8TU4
max
M ymax IZ
M WZ
横截面上的应力分布图:
z
z
M 0
M 0 CL8TU5
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ
(D4 d 4)
64
D4
64
(1 4 )
P
A
x
dx C
2m
2m
300 B
200
例:我国营造法中,对矩形截面梁给出的尺 寸比例是 h:b=3:2。试用弯曲正应力强度证明: 从圆木锯出的矩形截面梁,上述尺寸比例接近 最佳比值。
解: b2 h2 d 2
bh2 b(d 2 b2 )
Wz 6
6
Wz d 2 b2 0 b 6 2
CL8TU3
梁在纯弯曲时的平面假设:
梁的各个横截面在变形后仍保持为平 面,并仍垂直于变形后的轴线,只是横截 面绕某一轴旋转了一个角度。
中性轴过截面形心
中性层的曲率公式: 1 M
EIz 正应力计算公式: M y
材料力学 正应力计算公式

材料力学正应力计算公式
《材料力学正应力计算公式》
正应力计算公式的一般表达式:
σ = P / A
其中:
P:作用于节点的外力
A:受力节点对应的横截面积
在材料力学中,应力是指材料在力的作用下,产生的变形程度。
可以用应力可以反映出材料承受力的强度,因此正应力计算公式是计算材料受力强度的重要工具。
正应力计算公式的应用:
1、塑料件应力计算:
塑料件在受力的时候,可以使用正应力计算公式计算出受力强度。
2、管道应力计算:
管道在受力时,也可以使用正应力计算公式,计算出受力强度。
3、焊接应力计算:
当焊接件遭受力时,也可以使用正应力计算公式,计算出受力强度。
- 1 -。
材料力学公式大全

材料力学常用公式1. 外力偶矩计算公式(P功率,n转速)2. 弯矩、剪力和荷载集度之间的关系式3. 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)5. 纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距l1 ;拉伸前试样直径d,拉伸后试样直径di)6. 纵向线应变和横向线应变7. 泊松比8. 胡克定律9. 受多个力作用的杆件纵向变形计算公式?10. 承受轴向分布力或变截面的杆件,纵向变形计算公式11. 轴向拉压杆的强度计算公式12. 许用应力 , 脆性材料 ,塑性材料13. 延伸率14. 截面收缩率15. 剪切胡克定律(切变模量G切应变g)16. 拉压弹性模量E、泊松比和切变模量G之间关系式17. 圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18. 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )19. 圆截面周边各点处最大切应力计算公式20. 扭转截面系数,(a)实心圆(b)空心圆21. 薄壁圆管(壁厚R o /10 , R0为圆管的平均半径)扭转切应力计算公式22. 圆轴扭转角与扭矩T、杆长I、扭转刚度GH的关系式23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24. 等直圆轴强度条件25. 塑性材料;脆性材料26. 扭转圆轴的刚度条件? 或27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28. 平面应力状态下斜截面应力的一般公式,29. 平面应力状态的三个主应力, ,30. 主平面方位的计算公式31. 面内最大切应力32. 受扭圆轴表面某点的三个主应力,,33. 三向应力状态最大与最小正应力,34. 三向应力状态最大切应力35. 广义胡克定律36. 四种强度理论的相当应力37. 一种常见的应力状态的强度条件,38. 组合图形的形心坐标计算公式,39. 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40. 截面图形对轴z 和轴y 的惯性半径? ,41. 平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42. 纯弯曲梁的正应力计算公式43. 横力弯曲最大正应力计算公式44. 矩形、圆形、空心圆形的弯曲截面系数? , ,45. 几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46. 矩形截面梁最大弯曲切应力发生在中性轴处47. 工字形截面梁腹板上的弯曲切应力近似公式48. 轧制工字钢梁最大弯曲切应力计算公式49. 圆形截面梁最大弯曲切应力发生在中性轴处50. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51. 弯曲正应力强度条件52. 几种常见截面梁的弯曲切应力强度条件53. 弯曲梁危险点上既有正应力(T又有切应力T作用时的强度条件或,54. 梁的挠曲线近似微分方程55. 梁的转角方程56. 梁的挠曲线方程?57. 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58. 偏心拉伸(压缩)59. 弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60. 圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61. 圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.62. 弯拉扭或弯压扭组合作用时强度计算公式63. 剪切实用计算的强度条件64. 挤压实用计算的强度条件65. 等截面细长压杆在四种杆端约束情况下的临界力计算公式66. 压杆的约束条件:(a)两端铰支11 =1(b)—端固定、一端自由1 =2(c )一端固定、一端铰支 (d )两端固定(1 =67. 压杆的长细比或柔度计算公式 ,68. 细长压杆临界应力的欧拉公式 69. 欧拉公式的适用范围70. 压杆稳定性计算的安全系数法 71. 压杆稳定性计算的折减系数法 72. 关系需查表求得1、材料力学的任务:强度、刚度和稳定性;应力 单位面积上的内力 平均应力p m A 正应力垂直于截面的应力分量,用符号 切应力相切于截面的应力分量,用符号 应力的量纲:2 2工程单位制:kgf / m 、kgf / cm线应变 单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变 形量的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
D
15
2、组合截面惯性矩
Iz y2dA y2dA IzΙIzII
A1
A2
PPT学习交流
16
平行移轴公式
Iz1 y12dA
A
Iz1 (ya)2dA y2dA 2a yd Aa2 dA
A
A
A
A
Ayd ASz ycA Ayd A0
且yc 0
I z1 I z a 2 A I y1 I y b 2 A
y II
2 2
1 cm
PPT学习交流
18
整个截面的形心C 在对称轴 y上的位置则为:
yC
Ai yi
A
AI yI AII yII AI AII
125121 3cm 1212
即中性轴 z 与轴 z 的距离为3cm。
(2)求各组合部分对中性 轴z的惯性矩
设两矩形的形心CⅠ和CⅡ;其形心轴为z1和z2,它们距z轴的
MC2.5KN0m
PPT学习交流
22
例:T型截面铸铁梁的受力如图所示,截面对中性轴的惯性矩为 IZ=763.7×104 mm4,求C截面和全梁的最大拉应力和压应力。
y
9KN
PPT学习交流
14
圆形与圆环截面
Ip
2dAD4
A
32
I P
2dA
A
空心圆
( y 2 z 2 )dA A
y 2dA
A
A z 2 dA I z I y
IzIyI2 P6 4 D 4d4
IP 2Iz 2Iy
IzIyI2P6D4414
实心圆
Iz
Iy
IP 2
d4 64 PPT学习交流
• 中性轴 中性层与横截面的交线。
梁弯曲时,实际上各个截面绕着中性轴转动。
如果外力偶矩如图作用在梁上,该梁下部将伸长、上部 将缩短
PPT学习交流
6
弯曲正应力分布规律
• 与中性轴距离相等的点, 正应力相等;
• 正应力大小与其到中性 轴距离成正比;
E E y
• 弯矩为正时,正应力 以中性轴为界下拉上 压;
Z h
d 3 Z d
WZ 32
PPT学习交流
21
例:T型截面铸铁梁的受力如图所示,截面对中性轴的惯性矩为 IZ=763.7×104 mm4,求C截面和全梁的最大拉应力和压应力。
y
9KN
4KN
A
B D
Z
C
RA 1m
1m RB 1m
y
解1、计算C截面弯矩
X MC
RA 2.5KN
RB 10.5KN
C截面
PPT学习交流
17
例 求T字形截面的中性轴 z,并求截面对中性轴的惯性矩.
(1) 确定形心和中性轴的位置
将截面划分为Ⅰ 、Ⅱ两矩形,取
与截面底边相重合的z 轴为参考 轴,则两矩形的面积及其形心至z 轴的距离分别为:
A I 2 6 12 cm 2
y I
2
6 2
5 cm
A II 6 2 12 cm 2
(1)作弯矩图,
求最大弯矩
梁的弯矩图如图5-8b 所示, 由图知梁在固定端横截面上 的弯矩最大,其值为
M q2l600 12 030N 0m 0
max2
2
PPT学习交流
11
(2)求最大应力
因危险截面上的弯 矩为负,故截面上缘受 最大拉应力,其值为
Tmax MIm z axy1
3000 25.61080.0152
距离分别为: a I C I C 2 PPc T学习,交a m 流I IC I IC 2 cm
19
由平行移轴公式,两矩形对中 性轴z的惯性矩为:
IzIIz1I
aI2AI
263
12
221284cm 4
IzIIIz2IIaI2IAII61223 221252cm 4
(3)求整个截面对中性轴 的惯性矩
• 弯矩为负时,正应力上拉下压;
• 中性轴上,正应力等于零
PPT学习交流
M
M
7
2、静力学关系分析
没有轴向力 dA 0 A
E E y
E
E
AydA AydA 0
Z:中性轴
ydA 0 质心坐标 A
ydA A
yc A
Sz
静矩,面积矩
yc A 0
A0
yc 0
中性轴必然通过横 截面的形心
2
bh 3 I z 12
hb 3 I y 12
PPT学习交流
13
y
y
P
z
z
My
100
200
Iz
(a)
(b)
(a ):IZ 1 1b 2 3 h 1 1 2 1 0 20 3 0 1 8 0 2 18 m 04m
(b ):IZ 1 1b 2 3 h 1 1 2 2 0 10 3 0 1 2 0 2 18 m 04m
将两矩形对z轴的惯性矩相加,得
IzIzI IzI I8 4 5 2 1c 34 m 6
PPT学习交流
20
3、弯曲正应力的计算、抗弯截面模量
某截面上最大弯 曲正应力发生在截面 的上下边界上:
max
M WZ
WZ 称为抗弯截面模量,Z 为中性轴.
WZ
IZ y max
矩形截面
实心圆截面
b
WZ
bh 2 6
PPT学习交流
8
A ydAM
E E y
Ay(E y)dA E Ay2dA M
令
I z
y 2 dA
A
EI z M
或1 M EI z
抗弯刚度
PPT学习交流
My
Iz
9
该截面弯矩
My
Iz
横截面上 某点正应力
该点到中性轴 距离
该截面惯性矩
PPT学习交流
10
例 一受均布载 荷的悬臂 梁 ,其长l=1m ,均布载荷集度 q=6kN/m;梁由10号槽钢制成,由型钢表查得横截面的惯性矩 Iz=25.6cm4。试求此梁的最大拉应力和最大压应力。
工程力学教学课件
工程力学
PPT学习交流
1
第十七章
弯曲应力及强 度刚度计算
PPT学习交流
2
第一节 梁弯曲时的正应力
# 纯弯曲与剪切弯曲 # 中性层和中性轴 # 弯曲正应力分布规律 # 弯曲正应力的计算、抗弯截面模量
PPT学习交流
3
各横截面上同时有弯矩M和剪力Q,称为剪切弯曲。
各横截面只有弯矩M,而无剪力Q,称为纯弯曲。
PPT学习交流
4
1、变形几何关系
纯弯曲梁变形后各横截面仍保持为一平面,仍然垂 直于轴线,只是绕中性轴转过一个角度,称为弯曲问 题的平面假设。
中
中
性
性
层
轴
PPT学习交流
பைடு நூலகம்
5
# 中性层和中性轴
• 中性层
梁弯曲变形时,既 不伸长又不缩短的纵向 纤维层称为中性层。
y
x
z
对矩形截面梁来讲,就是位于上下中间这一层。
178106Pa17M 8 Pa
在截面的下端受最大压应力,其值为
Cmax M Im z axy2
3000 25.61080.0328
3P8PT学5习1交流06Pa38M 5 Pa
12
第二节 惯性矩的计算
1、简单截面的惯性矩 矩形截面
Iz
y2dA
A
h2y2bdyby3
h2
3
h 2
h
bh3
12