《等差数列求和公式》教案

合集下载

等差数列求和教案

等差数列求和教案

等差数列求和教案教案标题:等差数列求和教案教案目标:1. 学生能够理解等差数列的概念和性质。

2. 学生能够运用等差数列的求和公式解决相关问题。

3. 学生能够应用等差数列求和的方法解决实际问题。

教学重点:1. 等差数列的概念和性质。

2. 等差数列求和公式的推导和应用。

教学难点:1. 理解等差数列求和公式的推导过程。

2. 运用等差数列求和公式解决实际问题。

教学准备:1. 教师准备:黑板、白板、彩色粉笔、教学投影仪等。

2. 学生准备:教科书、笔记本、铅笔、计算器等。

教学过程:Step 1: 引入(5分钟)教师通过提问或展示一些等差数列的例子,引导学生回顾等差数列的概念和性质。

Step 2: 等差数列求和公式的推导(15分钟)教师通过推导的方式,向学生介绍等差数列求和公式的推导过程。

教师可以利用黑板或白板进行演示,并鼓励学生积极参与推导过程。

Step 3: 理解等差数列求和公式(10分钟)教师通过解释等差数列求和公式的含义和使用方法,帮助学生理解公式的意义。

教师可以给出一些简单的例子,引导学生运用公式进行求和计算。

Step 4: 运用等差数列求和公式解决问题(15分钟)教师提供一些实际问题,要求学生运用等差数列求和公式进行计算和解答。

教师可以将问题分为不同难度级别,以满足不同学生的需求。

Step 5: 总结归纳(5分钟)教师与学生一起总结等差数列求和的方法和应用,强调公式的重要性和实用性。

Step 6: 作业布置(5分钟)教师布置相关的练习作业,要求学生运用等差数列求和公式解决问题,并在下节课进行检查和讨论。

教学扩展:1. 引导学生进一步探索等差数列的性质和应用,如等差数列的通项公式推导等。

2. 提供更复杂的等差数列求和问题,培养学生的分析和解决问题的能力。

教学评估:1. 课堂参与:观察学生在课堂上的回答问题和积极参与讨论的程度。

2. 作业完成情况:检查学生在作业中运用等差数列求和公式解决问题的准确性和独立性。

等差数列求和公式教案

等差数列求和公式教案

等差数列求和公式教案一、教学目标1.理解等差数列的概念和性质;2.掌握等差数列的通项公式和求和公式;3.能够应用等差数列的公式解决实际问题。

二、教学重点1.等差数列的通项公式和求和公式;2.应用等差数列的公式解决实际问题。

三、教学难点1.等差数列求和公式的推导;2.应用等差数列的公式解决复杂问题。

四、教学内容1. 等差数列的概念和性质等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差相等的数列。

例如:1,3,5,7,9,11,13,15,17,19 就是一个等差数列,公差为2。

等差数列的性质有:1.公差相等;2.任意两项的和等于它们的中间项之和;3.等差数列的前n项和可以表示为n的某个函数。

2. 等差数列的通项公式和求和公式等差数列的通项公式是指根据数列中的位置n,求出该位置上的数的公式。

设等差数列的首项为a1,公差为d,则等差数列的通项公式为:an = a1 + (n - 1) * d等差数列的前n项和公式是指求出等差数列前n项的和的公式。

设等差数列的首项为a1,公差为d,则等差数列的前n项和公式为:Sn = n * (a1 + an) / 2其中,an为等差数列的第n项。

3. 应用等差数列的公式解决实际问题等差数列的公式可以应用于很多实际问题中,例如:1.求和问题:某人每天存钱,第一天存1元,第二天存2元,第三天存3元,以此类推,到第30天时,他一共存了多少钱?解法:这是一个等差数列,首项为1,公差为1,共有30项。

根据等差数列的前n项和公式,可得:Sn = 30 * (1 + 30) / 2 = 465所以,他一共存了465元。

2.求项数问题:一个等差数列的首项为3,公差为4,如果它的第n项为35,求n是多少?解法:根据等差数列的通项公式,可得:an = a1 + (n - 1) * d35 = 3 + (n - 1) * 4n = 9所以,该等差数列的第9项为35。

五、教学方法1.讲解法:通过讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握等差数列的基本知识;2.案例法:通过实际问题的案例,让学生应用等差数列的公式解决问题,提高学生的实际应用能力;3.练习法:通过大量的练习题,让学生巩固等差数列的公式和应用能力。

《等差数列求和公式》教案

《等差数列求和公式》教案

《等差数列求和公式》教案教案:等差数列求和公式一、教学目标:1.理解等差数列的概念,掌握等差数列的通项公式和部分和公式;2.能够根据所给的等差数列求出其前n项的和。

二、教学重点:1.等差数列的通项公式和部分和公式的掌握;2.能够根据实际问题应用等差数列的求和公式。

三、教学难点:1.等差数列部分和公式的推导;2.将实际问题转化为等差数列的求和问题。

四、教学过程:1.情境导入(5分钟)教师展示一段视频:小明每天放学回家都会经过一家自动贩卖机,他每天都会从自动贩卖机里买一瓶饮料。

他发现,每天他付的饮料价格比前一天多2元。

请大家思考一下,小明连续买了n天的饮料,他总共花费了多少钱呢?2.理解等差数列的概念(10分钟)教师引导学生思考,并给予提示,帮助学生定义等差数列:等差数列:指一个数列中,从第二项起,每一项与前一项的差都相等。

这个相等的差叫做公差。

学生根据提示得出答案并讨论。

3.推导等差数列的通项公式(15分钟)教师通过提问引导学生思考,帮助学生推导出等差数列的通项公式:设等差数列的首项为a1,公差为d,第n项为an;由等差数列的定义可知:a2=a1+da3=a2+d=a1+2da4=a3+d=a1+3d……an = a1 + (n-1)d4.理解等差数列的部分和公式(15分钟)教师通过引导学生思考推导出等差数列的部分和公式:等差数列的前n项和Sn = a1 + a2 + a3 + … + an又a1 + an = a2 + an-1 = a3 + an-2 = … = an-1 + a2 = an +a1由此可以得出:2Sn = (a1 + an) + (a2 + an-1) + … + (an + a1)Sn = (a1 + an) × n/25.运用等差数列求和公式解题(30分钟)教师给学生提供一些实际问题,引导学生运用等差数列求和公式解决问题。

例如:小明连续买了n天的饮料,第一天他支付了2元,第二天支付了4元,第三天支付了6元,以此类推,请计算小明总共支付的饮料费用。

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案

《等差数列前n项和的公式》教案一、教学目标1、知识与技能目标学生能够理解并掌握等差数列前 n 项和的公式。

能够熟练运用公式解决与等差数列前 n 项和相关的问题。

2、过程与方法目标通过推导等差数列前 n 项和公式的过程,培养学生的逻辑推理能力和数学思维能力。

让学生经历从特殊到一般,再从一般到特殊的研究过程,体会数学中的转化思想。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导和理解。

公式的熟练运用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想的渗透。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课回顾等差数列的定义和通项公式。

提出问题:如何求等差数列的前 n 项和?2、公式推导以等差数列:1,2,3,4,5,,n 为例,引导学生思考求和的方法。

方法一:依次相加。

方法二:倒序相加。

设等差数列\(a_n\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。

\(S_n = a_1 + a_2 + a_3 ++ a_{n-1} + a_n\)①\(S_n = a_n + a_{n-1} + a_{n-2} ++ a_2 + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n-1})++(a_{n-1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} = na_1 +\frac{n(n 1)d}{2}\)3、公式理解分析公式中各项的含义。

等差数列的求和公式的教案

等差数列的求和公式的教案

等差数列的求和公式的教案
目标
本教案旨在向学生介绍等差数列的概念,并教授他们求和公式的方法。

教学步骤
步骤一:引入
1. 向学生简要介绍等差数列的概念。

解释等差数列是指每个数与其前一个数的差值都相等的数列。

2. 提示学生思考常见的等差数列,并列举几个例子。

步骤二:推导求和公式
1. 解释等差数列求和的概念,并告诉学生我们可以找到一种方法来简化求和过程。

2. 以一个具体的等差数列为例,展示如何推导等差数列求和公式。

3. 解释每个步骤的原理,并确保学生理解。

步骤三:练
1. 提供一些练题,要求学生应用所学的求和公式来计算等差数列的和。

2. 指导学生如何有效地解答这些问题,并给予他们必要的示范和讲解。

步骤四:巩固
1. 给学生一些拓展题,考验他们对等差数列求和公式的理解和应用能力。

2. 让学生解答这些问题,并互相检查答案。

教学资源
- 等差数列的定义和性质的讲解材料
- 练题集
- 答案解析
教学评估
- 监测学生在练中的表现,评估他们是否掌握了等差数列的求和公式。

- 给学生一份测验,以确定他们对该概念的掌握程度。

结束语
通过本课程,学生应该能够理解等差数列的概念,并能够应用求和公式解决相关问题。

同学们应该练习并加深对该概念的理解,并积极参与课堂活动和互动。

等差数列求和公式教案

等差数列求和公式教案

等差数列求和公式教学目的1.学问目的(1)驾驭等差数列前n 项和公式,理解公式的推导方法;(2)能较娴熟应用等差数列前n 项和公式求和。

2.实力目的经验公式的推导过程,体会数形结合的数学思想,体验从特别到一般的探讨方法,学会视察、归纳、反思和逻辑推理的实力。

3.情感目的通过生动详细的现实问题,激发学生探究的爱好和欲望,树立学生求真的志气和自信念,增加学生学好数学的心理体验,产生酷爱数学的情感,体验在学习中获得胜利。

学生已学等差数列的通项公式,对等差数列已有肯定的认知。

教学重点、难点1.等差数列前n 项和公式是重点。

2.获得等差数列前n 项和公式推导的思路是难点。

教学过程复习回忆:1.等差数列的定义;2.等差数列的通项公式。

新课引入:问题一:介绍德国闻名数学家高斯,相传高斯在10岁那年他的算术教师给他出了一道算术题:1+2+3+…+100=?。

结果高斯很快就算出了答案,你知道高斯是怎么很快的算出结果的吗?请同学起来答复,如何进展首尾配对求和:123...100n S =++++=(1100)(299)...(5051)+++++=10011002+⋅()=5050. 师:特别好!这位同学和数学家高斯一样聪慧!这里高斯的配对法就是采纳的“首尾配对法”。

师:这里1,2,3,…,100这是一个什么数列?生:等差数列。

师:这里123...100++++就是在求一个等差数列的和的问题。

引出课题:7.2.2等差数列求和。

一、数列的前n 项和意义一般地,设有数列123,,,,,n a a a a …,我们把123n a a a a ++++叫做数列{}n a 的前n 项和,记作n S .即123n n S a a a a =++++. 问题二:(课件出示印度泰姬陵的图片),介绍传闻中的泰姬陵陵寝中有一个三角形图案,以一样大小的圆宝石镶饰而成,共21层。

你知道镶饰这个图案一共花了多少宝石吗?学生答复:即求2112321S =++++。

等差数列求和公式教案

等差数列求和公式教案

等差数列求和公式教案教案标题:等差数列求和公式教案教案目标:1. 理解等差数列的概念和性质。

2. 掌握等差数列求和公式的推导过程。

3. 能够应用等差数列求和公式解决实际问题。

教学准备:1. 教师准备:黑板、彩色粉笔、教学PPT、计算器。

2. 学生准备:课本、练习册、笔、纸。

教学过程:引入活动:1. 利用教学PPT或黑板,展示一组数字序列:2, 5, 8, 11, 14, ...2. 提问学生:你能发现这组数字序列中的规律吗?教学步骤:步骤一:等差数列的概念和性质1. 解释等差数列的概念:等差数列是指一个数列中,从第二项开始,每一项与前一项的差值都相等的数列。

2. 引导学生观察示例序列,并找出差值:3。

3. 引导学生总结等差数列的性质:公差相等,差值固定。

步骤二:等差数列求和公式的推导1. 提示学生回忆等差数列的通项公式:an = a1 + (n - 1)d。

2. 利用示例序列,展示求和公式的推导过程:- 将示例序列反向排列并相加,得到等差数列的和:14, 11, 8, 5, 2。

- 将示例序列与反向序列相加,得到和的总和:16, 16, 16, 16, 16。

- 总和除以2,得到等差数列的和:16 ÷ 2 = 8。

3. 引导学生总结等差数列求和公式:Sn = (a1 + an) × n ÷ 2。

步骤三:应用等差数列求和公式解决实际问题1. 提供一些实际问题,要求学生利用等差数列求和公式解决,如:小明连续10天每天跑步增加2公里,第一天跑了5公里,问他10天内累计跑了多少公里?2. 引导学生分析问题,确定公差(d)、首项(a1)、项数(n)。

3. 学生独立计算并给出答案。

总结与拓展:1. 总结等差数列的概念、性质和求和公式。

2. 提醒学生在实际问题中灵活运用等差数列求和公式。

3. 鼓励学生拓展思维,尝试推导其他数列的求和公式。

教学反思:本教案通过引入活动激发学生兴趣,通过示例和推导过程帮助学生理解等差数列求和公式的原理,最后通过应用实际问题进行巩固。

等差数列求和教案

等差数列求和教案

等差数列求和教案教案标题:等差数列求和教案一、教学目标:1. 理解等差数列的概念,并能够区分等差数列与非等差数列;2. 掌握等差数列的通项公式和求和公式;3. 能够灵活运用等差数列的求和公式解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。

二、教学重点:1. 掌握等差数列的通项公式和求和公式;2. 能够灵活运用等差数列的求和公式解决实际问题。

三、教学内容和方法:1. 教学内容:a. 等差数列的概念及性质;b. 等差数列的通项公式和求和公式;c. 等差数列求和公式的应用。

2. 教学方法:a. 演绎法:通过示例引导学生发现等差数列的规律,推导出通项公式和求和公式;b. 归纳法:引导学生总结等差数列的性质和求和公式的应用方法;c. 实例分析法:通过实际问题的分析,引导学生灵活运用求和公式解决问题;d. 合作学习法:组织学生进行小组讨论和合作,促进学生之间的互动和合作。

四、教学过程安排:1. 导入(5分钟):a. 引入等差数列的概念,通过几个简单的数列示例,引发学生对等差数列的认识和兴趣。

2. 知识讲解与概念引入(15分钟):a. 讲解等差数列的定义和性质,引导学生理解等差数列的特点和规律;b. 引入等差数列的通项公式和求和公式,通过演绎法和归纳法,推导出通项公式和求和公式,并解释其意义和应用。

3. 例题演练(20分钟):a. 给出一些简单的等差数列,让学生根据通项公式计算出数列的各项;b. 给出一些求和问题,引导学生运用求和公式解决问题。

4. 拓展与应用(15分钟):a. 给出一些实际问题,引导学生将问题转化为等差数列求和的问题,并运用求和公式解决;b. 引导学生分析等差数列求和公式的应用范围和限制。

5. 小结与归纳(5分钟):a. 总结等差数列的通项公式和求和公式;b. 强调等差数列求和公式的应用方法和注意事项。

六、教学评价:1. 课堂练习:布置一些练习题,检验学生对等差数列求和的掌握程度;2. 课堂表现:观察学生在课堂上的参与度和表现,评价学生的学习态度和能力发展;3. 作业评价:批改学生的作业,评价他们对等差数列求和的应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列求和公式
一、教材分析:
数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习数学的必备的基础知识。

二、学生分析:
数列在对于我们的学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要
三、教学目标:
1.与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。

2.过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

3.情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。

四、教学重点与难点:
等差数列前n项和公式是重点。

获得等差数列前n项和公式推导的思路是难点。

课堂系统部分:
五、教学过程
1.问题呈现
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。

陵寝以宝石镶饰,图案之细致令人叫绝。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见左图),
问题1:你知道这个图案一共花了多少宝石吗?
问题2:图案中,第1层到第21层一共有多少颗宝石?
在知道了高斯算法之后,同学们很容易把本题与高斯
算法联系起来,也就是联想到“首尾配对”摆出几何图形,引引导学生去思考,如何将图与高斯的逆序相加结合起来,让
他们借助几何图形,将两个三角形拼成平行四边形.
获得算法:
设计说明:
• 源于历史,富有人文气息.
• 图中算数,激发学习兴趣.
这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础.
2.探究发现:
问题3:
由前面的例子,不难用逆序相加法推出
3.公式应用
例题1:
2008年北京奥运会的体育馆已初步建成,其中有一块地的方砖成扇形铺开,有人数了第一排的方砖个数为10个,最后一排的方砖个数为2008个,而且一共有36排,问这一块地的方砖有多少块?
本例提供了许多数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。

通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。

例题2:
2003年医护人员积极致力于研究人体内的非典病毒,已知一个患病初期的人人体内的病毒数排列成等差数列,且已知第一排的病毒数是2个,后面每一排比前一排多3个,一共有78排,问这个人体内的病毒数有多少个?
本例已知首项,公差和项数,引导学生使用公式2。

事实上,根据提供的条件再与公式对比,
便不难知道应选公式。

例题3:
甲从A地出发骑车去B地,前1分钟他骑了了400米,后来每一分钟都比前一分钟多骑5米,当他到达B地时的那一分钟内骑了500米,问A地和B地之间的距离?
本例题欲求AB间的距离,实质求甲共骑了多少米。

已知首项400,公差为5和末项为500,可求出项数为21,然后引导学生使用公式1。

本题需要用到通项公式求项数,作为中间的桥梁。

4.练习:
练习1:
一个堆放铅笔的V型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,放了120层,这个V形架上共放着多少支铅笔?
解:由题意可知,自下而上各层的铅笔成等差数列,且首相为1,项数为120,公差为1,选用公式1可得结果。

答:V形架上共放着7260支铅笔
练习2:
工地上放了一堆钢管,已知最下一层为20个,最上面一层为2个,且放了5层,问这一堆钢管的个数?
解:钢管由上至下为等差数列,已知首相为2,末项为20,项数为5,选用公式1可得结果
答:工地上的钢管一共有55个
练习3:
舞蹈队对舞蹈员进行排队,已知第一个身高为 1.58m,后面每个舞蹈员比前面一个舞蹈员高0.2m,且最后一个舞蹈员为1.72m,问这些舞蹈员的总身高为多少?
解:舞蹈员由前至后成等差数列,已知首相为 1.58,末项为 1.72,公差为
0.2,可利用通项公式求出项数为8,选用公式1可得结果
答:这些舞蹈员的总身高为13.2m
课堂小结:
回顾从特殊到一般的研究方法;
体会等差数列的基本元表示方法,逆序相加的算法,及数形结合的数学思想;
掌握等差数列的两个求和公式及简单应用。

相关文档
最新文档