第27章达标测试题

合集下载

人教版九年级下册数学第二十七章测试卷带答案

人教版九年级下册数学第二十七章测试卷带答案

人教版九年级下册数学第二十七章测试题一、单选题1.已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1B.1:3C.1:6D.1:92.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2B.4C.6D.83.两个相似三角形的对应边的比是2∶3,周长之和是20,那么这两个三角形的周长分别为A.8和12B.9和11C.7和13D.8和154.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED 的面积为()A.9B.4C.6D.4.85.位似图形的位似中心可以在()A.原图形外B.原图形内C.原图形上D.以上三种可能都有6.已知△ABC∽△A1B1C1,且∠A=60°,∠B=95°,则∠C1的度数为()A.60°B.95°C.25°D.15°7.如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.23B.12C.34D.358.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cm B .4cm C .4.5cm D .5cm9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A .五丈B .四丈五尺C .一丈D .五尺10.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAE CAD ∆∆ ;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是()A .①②③B .①C .①②D .②③11.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为()A .3:4B .9:16C .9:1D .3:1二、填空题12.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.13.两三角形的相似比是2:3,则其面积之比是__________.14..若4a =56b c =,且a -b +c =10,则a +b -c 的值为_________.15.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO=4m ,AB=1.6m ,CO=1m ,则栏杆C 端应下降的垂直距离CD 为__________.16.已知534a b c ==,则222a b c a b c ++++=____.17.在比例尺为1:6000000的海南地图上,量得海口与三亚的距离约为3.7厘米,则海口与三亚的实际距离约为_____千米.18.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG:GF 的值是_______.19.已知△ABC ∽△DEF ,相似比为2,且△ABC 的面积为16,则△DEF 的面积为___.20.如图,四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=5,BC=10,连接AC 、BD ,以BD 为直径的圆交AC 于点E .若DE=3,则AD 的长为________.21.如图,在△ABC 中,E ,F 分别为AB ,AC 的中点,则△AEF 与△ABC 的面积之比为__________.22.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BDAD的值为_____.三、解答题23.已知矩形ABCD中,AD=3,AB=1.若EF把矩形分成两个小的矩形,如图所示,其中矩形ABEF与矩形ABCD相似.求AF∶AD的值.24.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是多大?25.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,求线段AE的长度.26.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)连接BF,如果AFBF=DFAD.求证:EF=EP.27.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.参考答案1.D【详解】分析:利用相似三角形面积之比等于相似比的平方,求出即可.详解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选D.点睛:此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解本题的关键.2.B【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.3.A【解析】【分析】根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比得到两个相似三角形的周长的比为2∶3,设这两个三角形的周长分别为2x,3x,则2x+3x=20,然后解方程求出x后计算2x和3x即可.【详解】∵两个相似三角形对应边的比2∶3,∴两个相似三角形的周长的比为2∶3,设这两个三角形的周长分别为2x,3x,则2x+3x=20,解得x=4,∴2x=8,3x=12,即两个三角形的周长分别8和12.故选A.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.4.A 【解析】【分析】根据三角形的中位线得出DE=12BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比,进而可求出梯形DBCE的面积.【详解】∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=12BC,DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12-3=9cm2,故选A.【点睛】本题考查了三角形的中位线和相似三角形的性质和判定的应用,解此题的关键是求出△ABC 和△ADE的面积比,题型较好,但是一道比较容易出错的题目.5.D【分析】由位似图形的位似中心可以在:原图形外,原图形内,原图形的边上,即可求得答案.【详解】解:位似图形的位似中心可以在:原图形外,原图形内,原图形的边上.故选D.【点睛】此题考查位似图形的性质.解题关键是注意位似图形的位似中心可以在平面内的任何位置.6.C【解析】【分析】先由三角形内角和定理求出∠C 的度数,再根据相似三角形的对应角相等得出∠C 1=∠C【详解】△ABC 中,∵∠A =60°,∠B =95°,∴∠C =180°−∠A −∠B =25°,∵△ABC ∽△A 1B 1C 1∴∠C 1=∠C =25°.故选C.【点睛】本题考查了相似三角形的性质,熟练掌握性质是解题的关键.7.A【分析】根据相似的性质,得到对应边成比例,代值求解即可.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,42.63DE AD AD BC AB AD DB ∴====+故选A.【点睛】:根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.8.C【详解】【分析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm ,由题意得5:2.5=9:x ,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.9.B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5 x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键.10.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,AE∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME 所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P 、E 、D 、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP ∽△CMA∴AC 2=CP•CM∵AB∴2CB 2=CP•CM所以③正确故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.11.B【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴△DFE ∽△BFA ,∵DE :EC=3:1,∴DE :DC=3:4,∴DE :AB=3:4,∴S △DFE :S △BFA =9:16.故选B .12.103【详解】分析:根据勾股定理求出5AC =,根据AB ∥CD ,得到12AF AE CF CD ==,即可求出CF 的长.详解:∵四边形ABCD 是矩形,∴4AB CD ==,AB ∥CD ,90ADC ∠=︒,在Rt ADC 中,90ADC ∠=︒,∴5AC =,∵E 是AB 中点,∴1122AE AB CD ==,∵AB ∥CD ,∴12AF AE CF CD ==,∴21033CF AC ==.故答案为103.点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.13.4:9【分析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9.故答案为4:9.【点睛】本题考查了相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.6【解析】【分析】设a =4k ,b =5k ,c =6k ,代入a -b +c =10求出k 的值,从而可求出a ,b ,c 的值,再把求得的a ,b ,c 的值代入a +b -c 计算即可.【详解】设a =4k ,b =5k ,c =6k ,代入a -b +c =10,得4k -5k +6k =10,解之得k =2,∴a =8,b =10,c =12,∴a +b -c =8+10-12=6.故答案为:6.本题考查了比例的性质及见比设参的数学思想,通过设参数k 求出a ,b ,c 的值是解答本题的关键.15.0.4m【分析】先证明△OAB ∽△OCD ,再根据相似三角形的对应边成比例列方程求解即可.【详解】∵AB ⊥BD ,CD ⊥BD ,∴∠ABO =∠CDO .∵∠AOB =∠COD ,∴△OAB ∽△OCD ,∴AO :CO =AB :CD ,∴4:1=1.6:CD ,∴CD =0.4.故答案为0.4.【点睛】本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.16.57【解析】【分析】根据已知比例关系,用未知量k 分别表示出a 、b 和c 的值,代入原式中,化简即可得到结果【详解】设534a b c ===k ∴a=5k ,b=3k ,c=4k ∴222a b c a b c ++++=5641038k k k k k k ++++=1521k k =57故答案为:57本题考查了比例的性质,熟练掌握性质是解题的关键.17.222【分析】知道比例尺,带入数值计算,化单位为千米即可.【详解】比例尺为1:6000000,图上距离3.7厘米则实际距离为3.76000000cm222km⨯=故答案为222【点睛】此题重点考察学生对比例尺的应用能力,理解比例尺的单位换算是解题的关键.18.6:5【分析】作FN∥AD,交AB与N,设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】作FN∥AD,交AB与N,∵四边形ABCD是正方形,∴AB∥CD,∴FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形.设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=3 2 a,∴FM=5 2 a,∵AE∥FM,∴36552AG AE aGF FM a===.故答案为6:5.【点睛】本题考查了正方形的性质、平行线分线段成比例定理、三角形中位线等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.19.4【解析】【分析】根据相似三角形面积的比等于相似比的平方求解即可.【详解】∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF面积的比是4,∵△ABC的面积为16,∴△DEF的面积为16÷4=4.故答案为:4.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.20.【解析】【分析】先证明△ADF∽△CAB,利用相似三角形的性质可得AD=.再证明△DEF∽△DBA,利用相似三角形的性质可得DE DFDB DA=,据此可求出DF的值,进而求出AD的值.【详解】如图所示,过点D 作DF ⊥AC 于点F ,则∠AFD =∠CBA =90°.∵AD ∥BC ,∴∠DAF =∠ACB ,∴△ADF ∽△CAB ,∴DF :AB =AD :CA 。

人教版九年级下册数学第二十七章测试卷有答案

人教版九年级下册数学第二十七章测试卷有答案

人教版九年级下册数学第二十七章测试题一、单选题1.已知13ba=,则a ba-的值为()A.2B.12C.32D.232.下列四条线段能成比例线段的是()A.1,1,2,3B.1,2,3,4C.2,2,3,3D.2,3,4,5 3.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对4.如图,在ABC中,点D、E分别在边AB、AC上,联结DE,如果AD:BD2=:3,那么下列条件中能判断DE//BC的是()A.AE3EC2=B.CE3AC5=C.DE2BC5=D.AB5BD3=5.观察下列各组图形,其中不相似的是()A.B.C.D.6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.已知△ABC∽△A1B2C2,如果∠A=40°,那么∠A1等于()A.40°B.80°C.140°D.20°8.如图,如果BAD CAE ∠=∠,那么添加下列一个条件后,仍不能确定ABC 和ADE 相似的是().A .B D ∠=∠B .C AED ∠=∠C .AB DEAD BC=D .AB ACAD AE=9.如图,△ABC 中,∠C =90°,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,若CDDE 的长为()A .2B .3CD .10.如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB =1.6m .BC =12.4m .则建筑物CD 的高是()A .9.3mB .10.5mC .12.4mD .14m二、填空题11.如图在Rt △ABC 中,∠A =90°,斜边上的高AD 交BC 于D ,若BD =9,CD =4,则AD 的长度等于_____.12.如图,在平面直角坐标系中,已知A (1.5,0),D (4.5,0),△ABC 与△DEF 位似,原点O 是位似中心.若DE =7.5,则AB =_____.13.若x yy=43,则xy=_____14.如图,直线l1、l2、…、l6是一组等距离的平行线,过直线l1上的点A作两条射线m、n,射线m与直线l3、l6分别相交于B、C,射线n与直线l3、l6分别相交于点D、E.若BD=1,则CE的长为_____.15.在比例尺为1:100的地图上,量得甲、乙两点的距离为25cm,甲、乙两点的实际距离为______m.16.如图,线段AE、BD交于点C,如果AC=9,CE=4,BC=CD=6,DE=3,那么AB =_____.17.如图,△ABC中,EF∥BC,S△AEF:S四边形BEFC=1:2,则EF:BC=_____.18.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则满足条件的AP长_____.三、解答题19.已知234x y z==,且2x+3y ﹣z =18,求4x+y ﹣3z 的值.20.如图所示,在线段AB 上有C 、D 两点,已知AB =7,AC =1,且线段CD 是线段AC 和BD 的比例中项,求线段CD 的长.21.如图,AD 是△ABC 的中线,E 是AD 上一点,且AE :ED =2:3,CE 延长∠AB 于F ,若AF =3cm ,求AB 的长.22.如图,在△ABC 中,D 为AC 边上一点,∠DBC =∠A .(1)求证:△BDC ∽△ABC ;(2)若BC =4,AC =8,求CD 的长.23.已知:如图,在△ABC 中,AB =AC ,点E 、F 在边BC 上,∠EAF =∠B .求证:BF•CE =AB 2.24.如图,在△ABC 中,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH ∥AB ,交BC 的延长线于点H ,求CH 的长.25.如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.(1)在图中画出△DEF;(2)点E是否在直线OA上?为什么?(3)△OAB与△DEF______位似图形(填“是”或“不是”)26.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)证明:△ABD≌△BCE;(2)证明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的长.参考答案1.D【分析】根据比例的性质得出3b=a,求出a-b=2b,即可得出答案.【详解】∵ba=13∴3b=a∴3233 a b b ba b--==故答案为D.【点睛】本题考查的知识点是比例的性质,解题关键是找出a与b的等量关系.2.C【详解】分析:根据成比例线段的定义进行分析判断即可.详解:A选项中,因为1:1≠2:3,所以A中的四条线段不是成比例线段;B选项中,因为1:2≠3:4,所以B中的四条线段不是成比例线段;C选项中,因为2:2=3:3,所以C中的四条线段是成比例线段;D选项中,因为2:3≠3:4,所以D中的四条线段不是成比例线段.故选C.点睛:熟记成比例线段的定义:“若四条线段a、b、c、d满足a:b=c:d,我们就说线段a、b、c、d是成比例线段”是解答本题的关键.3.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点睛】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.4.B【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,由相似推出∠ADE=∠B,再由平行线的判定得出即可.【详解】解:只有选项B正确,理由是:∵AD:BD=2:3,∴25 ADAB=,∵35 CEAC=,∴25 AEAC=,∴25 AD AEAB AC==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、C、D的条件都不能推出DE∥BC,故选B.【点睛】本题考查了相似三角形的判定,能熟练转移比例线段得三角形相似是解此题的关键.5.A【分析】根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.【详解】解:A、形状不相同,大小不同,不符合相似定义,故符合题意;B、形状相同,但大小不同,符合相似定义,故不符合题意;C、形状相同,但大小不同,符合相似定义,故不符合题意;D、形状相同,但大小不同,符合相似定义,故不符合题意;故选A.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.6.C【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.A【解析】【分析】根据相似三角形对应角相等解答.【详解】∵△ABC∽△A1B1C1,∠A=40°∴∠A1=∠A=40°.故答案为A.【点睛】本题考查的知识点是相似三角形对应角相等的性质,解题关键是熟记性质.8.C 【分析】由BAD CAE ∠=∠结合图形可得∠DAE=∠CAB ,所以再需一对对应角相等或或夹这个角的两边对应成比例即可.【详解】∵BAD CAE ∠=∠,∴DAE BAC ∠=∠,∴A ,B 可由两角对应相等的三角形相似,判定ABC ∽ADE ,D 可据一角对应相等夹边成比例判定ABC ∽ADE .选项C 中不是夹这两个角的边,所以不能判定相似.故选:C .【点睛】此题考查相似三角形的判定.其关键是先看已知什么条件,结合已知的条件,再据相似的判定方法找所缺条件.9.C 【解析】【分析】分析题目已知条件,可利用角平分线的性质进行解答.【详解】∵AD 平分∠CAB 交BC 于点D ,∠C =90°,DE ⊥AB∴故选C .【点睛】本题考查的知识点是角平分线上的点到两边的距离相等,解题关键是熟记定理.10.B 【分析】先证明∴△ABE ∽△ACD ,则利用相似三角形的性质得 1.6 1.21.612.4CD=+,然后利用比例性质求出CD 即可.【详解】解:∵EB ∥CD ,∴△ABE∽△ACD,∴AB BEAC CD=,即1.6 1.21.612.4CD=+,∴CD=10.5(米).故选B.【点睛】考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.11.6【解析】【分析】证明△BDA∽△ADC,然后根据相似三角形的对应边成比例即可得出结论.【详解】∵∠BAC=90°,∴∠B+∠C=90°.∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C.∵∠ADB=∠ADC=90°,∴△BDA∽△ADC,∴BD:DA=AD:DC,∴AD2=BD•CD,则AD2=9×4=36,∴AD=6.故答案为6.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.12.2.5.【分析】利用以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k得到位似比为13,然后根据相似的性质计算AB的长.【详解】解:∵A(1.5,0),D(4.5,0),∴OAOD=1.54.5=13,∵△ABC与△DEF位似,原点O是位似中心,∴ABDE=OAOD=13,∴AB=13DE=13×7.5=2.5.故答案为2.5.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.13.1 3【解析】【分析】根据比例的性质得出3(x+y)=4y,解得y=3x,即可得出答案.【详解】∵x yy+=43∴3(x+y)=4y ∴y=3x∴133 x xy x==故答案为:1 3 .【点睛】本题考查的知识点是比例的性质,解题关键是找出x与y的等量关系.14.5 2【解析】【分析】根据相似三角形对应边成比例即可解.【详解】∵BD∥CE,∴∠ABD=∠ACE,∠ADB=∠AEC,∴△ABD∽△ACE,根据相似三角形对应边成比例可得:25 BD ABCE AC==,∵BD=1,∴CE=5 2 .故本题正确答案为5 2 .【点睛】本题考查的知识点是平行线和相似三角形的判定与性质,解题关键是熟记相似三角形对应边成比例.15.25【分析】依据“实际距离=图上距离÷比例尺”,代入数据即可求解.【详解】解:25÷1 100=25×100=2500(厘米)=25米,故答案为25.【点睛】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.16.9 2【解析】【分析】根据两边对应成比例且夹角相等,证得两三角形相似,再根据相似三角形的对应边的比相等即可求解.【详解】∵32 BC ACCE CD==,又∵∠ACB=∠DCE,∴△ABC∽△DEC;∴32 ABDE=,∴3393222 AB DE==⨯=.故答案为:9 2 .【点睛】本题考查了相似三角形的判定与性质,解题关键是熟练运用熟记相似三角形对应边成比例. .17【解析】【分析】根据已知可得到△AEF∽△ABC,根据相似三角形的面积之比等于边之比的平方不难求解.【详解】∵EF∥BC∴△AEF∽△ABC∵S△AEF:S四边形BEFC=1:2∴S△AEF:S△ABC=1:3∴由相似三角形的面积之比等于边之比的平方得EF:BC故答案为:3.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.18.2.8或1或6【分析】设AP=x,则有PB=AB-AP=7-x,分两种情况考虑:三角形PDA与三角形CPB相似;三角形PDA与三角形PCB相似,分别求出x的值,即可确定出P的个数.【详解】设AP=x,则有PB=AB−AP=7−x,当△PDA∽△CPB时,DA PB=AP BC,即27-x=x3,解得:x=1或x=6,当△PDA∽△PCB时,AD AP=BC PB,即2x=37-x,解得:x=145.故答案为x=1或x=6或2.8.【点睛】本题考查的知识点是相似三角形的判定,解题的关键是熟练的掌握相似三角形的判定.19.x=4,y=6,z=8.【分析】设234x y z===k ,由2x+3y-z=18列出含k 的等式,解出k ,x ,y ,z ,再代入所求即可.【详解】解:设234xy z===k ,可得:x =2k ,y =3k ,z =4k ,把x =2k ,y =3k ,z =4k 代入2x+3y ﹣z =18中,可得:4k+9k ﹣4k =18,解得:k =2,所以x =4,y =6,z =8,把x =4,y =6,z =8代入4x+y ﹣3z =16+6﹣24=﹣2.【点睛】本题考查的知识点是比例的性质,解题的关键是熟练的掌握比例的性质.20.2.【分析】由线段CD 是线段AC 和BD 的比例中项,列出CD 2=AC•BD ,带值解得.【详解】解:∵AB =7,AC =1,∴BD =AB ﹣AC ﹣CD =6﹣CD ,∵线段CD 是线段AC 和BD 的比例中项,∴CD 2=AC•BD ,即CD 2=1×(6﹣CD ),解得:CD =2.【点睛】本题考查的知识点是比例线段,解题的关键是熟练的掌握比例线段.【分析】作DH∥CF交AB于H,根据平行线分线段成比例定理列出比例式,计算即可.【详解】作DH∥CF交AB于H,则FHHB=CDDB=1,AFFH=23AEED=,∴FH=HB,3FH=23,解得,FH=BH=4.5,∴AH=AF+FH=7.5,∴AB=AH+HB=12.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.22.(1)证明见解析;(2)CD=2.【解析】【分析】(1)根据相似三角形的判定得出即可;(2)根据相似得出比例式,代入求出即可.【详解】解:(1)∵∠DBC=∠A,∠BCD=∠ACB,∴△BDC∽△ABC;(2)∵△BDC∽△ABC,∴BC DC AC BC=,∵BC=4,AC=8,∴CD=2.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定23.证明见解析.【解析】【分析】利用两角对应成比例可得△ABF∽△ECA,对应边成比例可得相应的比例式,整理可得所求的乘积式.【详解】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点睛】本题考查的知识点是相似三角形的判定与性质,等腰三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质,等腰三角形的性质.24.CH=1.【分析】根据相似三角形的判定得出两三角形相似,得出比例式,代入求出即可.【详解】解:∵DH∥AB,∴△ABC∽△DHC,∴BC AC CH DC,∵BC=3,AC=3CD,∴CH=1.【点睛】考查了平行线的性质,相似三角形的性质和判定,解直角三角形的应用,能求出△ABC∽△DHC是解此题的关键.25.(1)见解析;(2)点E在直线OA上;(3)是.(1)根据题意将各点坐标扩大2倍得出答案;(2)求出直线OA的解析式,进而判断E点是否在直线上;(3)利用位似图形的定义得出△OAB与△DEF的关系.【详解】解:(1)如图所示:△DEF,即为所求;(2)点E在直线OA上,理由:设直线OA的解析式为:y=kx,将A(3,2)代入得:2=3k,解得:k=23,故直线OA的解析式为:y=23x,当x=6时,y=23×6=4,故点E在直线OA上;(3)△OAB与△DEF是位似图形.故答案为是.【点睛】本题考查的知识点是作图-位似变换,解题的关键是熟练的掌握作图-位似变换. 26.(1)证明见解析;(2)证明见解析;(3)BD=.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到AD BD=BC DF,即BD2=AD•DF=(AF+DF)•DF.【详解】解:(1)∵△ABC是等边三角形,∴AB =BC ,∠ABD =∠BCE ,在△ABD 与△BCE 中∵ABC=BAC=C BD=CE AB BC =⎧⎪∠∠∠⎨⎪⎩,∴△ABD ≌△BCE (SAS );(2)由(1)得:∠BAD =∠CBE ,又∵∠ABC =∠BAC ,∴∠ABE =∠EAF ,又∵∠AEF =∠BEA ,∴△AEF ∽△BEA ;(3)∵∠BAD =∠CBE ,∠BDA =∠FDB ,∴△ABD ∽△BDF ,∴=AD BD BC DF,∴BD 2=AD•DF =(AF+DF )•DF =8,∴BD =.【点睛】本题考查的知识点是相似三角形的判定与性质,全等三角形的判定,等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质,全等三角形的判定,等边三角形的性质.。

人教版九年级数学第27章达标卷(附答案)

人教版九年级数学第27章达标卷(附答案)

人教版九年级数学第27章达标卷(附答案)一、单选题(共15题;共30分)1.把ad=bc写成比例式,错误的是()A. B. C. D.2.下列各组线段,能成比例的是()A. 3,6,9,18B. 2,5,6,8C. 1,2,3,4D. 3,6,7,93.已知3x=5y(y≠0),那么下列比例式中正确的是()A. =B. =C. =D. =4.在△ABC中,点D,E分别为边AB,AC的中点,则△ADE与△ABC的面积之比为()A. B. C. D.5.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()来A. B. C. D.6.在△ABC中,DE∥BC,分别交边AB、AC于点D、E,AD:BD=1:2,那么△ADE与△ABC面积的比为()A. 1:2B. 1:4C. 1:3D. 1:97.下列各选项的两个图形(实线部分),不属于位似图形的是()A. B. C. D.8.以OA为斜边作等腰直角△OAB,再以OB为斜边在△OAB外侧作等腰直角△OBC,如此继续,得到8个等腰直角三角形(如图),则图中△OAB与△OHI的面积比值是()A. 32B. 64C. 128D. 2569.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A. 2B.C.D.10.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=6,BD=2,AE=9,则EC的长是( )A. 8B. 6C. 4D. 311.如果= (a≠0、b≠0),那么下列比例式变形错误的是()A. B. C. D. 3a=2b12.如图,下列图中小正方形的边长为1,阴影三角形的顶点均在格点上,与△ABC相似的是()A. B. C. D.13.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B. 2 C. D.14.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有()A. 1个B. 2个C. 3个D. 4个15.已知△ABC∽△,△的面积为6 ,周长为△ABC周长的一半,则△ABC的面积等于()A. 1.5B. 3C. 12D. 24二、填空题(共8题;共18分)16.若两个相似多边形的对应边之比为5:2,则它们的周长比是________.17.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则=________。

人教版九年级数学下册第27章相似单元达标训练试题(含答案)

人教版九年级数学下册第27章相似单元达标训练试题(含答案)

人教版九年级数学下册第27章相似单元达标训练一.选择题1.下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( )图K-6-3图K-6-48.如图K-10-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是( )图K-10-6A.(2,7) B.(3,7) C.(3,8) D.(4,8)9.如图K-14-4所示,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( )图K-14-4A.2∶3 B.3∶2C.4∶5 D.4∶910.观察图K-6-1中各组图形,其中相似的图形有( )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-412.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-513.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-816.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-1119.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-1120.如图K-12-8是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15 mm,DO=24 mm,DC=10 mm,我们知道铁夹的侧面是轴对称图形,请求出A,B两点间的距离.图K-12-821. 如图K-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似?(A′B′与AB是对应边)图K-7-422.如图K-12-9 所示,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K-12-9参考答案一、选择题1.下面给出了一些关于相似的命题,其中真命题有( C )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( B )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( A )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( B ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( B )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( A )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( D )图K-6-3图K -6-48.如图K -10-6,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD ∶AB =3∶1,则点C 的坐标是( A )图K -10-6A .(2,7)B .(3,7)C .(3,8)D .(4,8)9.如图K -14-4所示,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4∶9,则OB ′∶OB 为( A )图K -14-4A .2∶3B .3∶2C .4∶5D .4∶910.观察图K -6-1中各组图形,其中相似的图形有( B )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-4[答案] (1,2)12.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-5[答案] 2913.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-2[答案].5+1214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.[答案] (4,6)或(-4,-6)15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-8[答案] 616.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)[答案] 是 不是 三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形. (2)答案不唯一,只要是用相似图形做的,都符合要求.如图:18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-11[解析] (1)由平行四边形的对角相等,对边平行,证得△ABF ∽△CEB ;(2)由△DEF ∽△CEB ,△DEF ∽△ABF ,根据相似三角形的面积比等于相似比的平方可以求出△ABF 和△BCE 的面积,从而▱ABCD 的面积可求.解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD , ∴∠ABF =∠CEB , ∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB 綊CD ,∴△DEF ∽△CEB ,△DEF ∽△ABF.∵DE =12CD ,∴EC =3DE ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB )2=14. ∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △CEB -S △DEF =16,∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.19.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-11解:∵矩形ABCD 的周长为24, ∴AB +AD =12.设AB =x ,则AD =12-x ,AB′=x +4,AD′=14-x. ∵矩形ABCD 与矩形AB′C′D′是位似图形, ∴AB AB′=AD AD′, 即x x +4=12-x 14-x, 解得x =8,∴AB =8,AD =12-8=4.20.如图K -12-8是一个常见铁夹的侧面示意图,OA ,OB 表示铁夹的两个面,C 是轴,CD ⊥OA 于点D ,已知DA =15 mm ,DO =24 mm ,DC =10 mm ,我们知道铁夹的侧面是轴对称图形,请求出A ,B 两点间的距离.图K -12-8解:如图,连接AB ,同时连接OC 并延长交AB 于点E ,∵铁夹的侧面是轴对称图形,故OE 是对称轴,∴OE ⊥AB ,AE =BE. ∵∠COD =∠AOE ,∠CDO =∠AEO =90°,∴Rt △OCD ∽Rt △OAE ,∴OC OA =CDAE ,而OC =OD 2+DC 2=242+102=26,∴2624+15=10AE ,∴AE =39×1026=15,∴AB =2AE =30(mm).答:A ,B 两点间的距离为30 mm.21. 如图K -7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB =20米,AD =30米,试问当小路的宽x 与y 的比值为多少时,能使小路四周所围成的矩形A ′B ′C ′D ′与矩形ABCD 相似?(A ′B ′与AB 是对应边) 图K -7-4[解析] 若矩形A′B′C′D′与矩形ABCD 相似,由相似多边形的性质可知,这两个矩形的对应边成比例,即可求出相似比,再由相似比求出x 与y 的比值.解:由题意可知,矩形A′B′C′D′与矩形ABCD 相似(A′B′与AB 是对应边),则应有AB A′B′=BC B′C′,即2020+2y =3030+2x ,从而有20(30+2x)=30(20+2y),解得x y =32.22.如图K -12-9 所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4米,BC =10米,CD 与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K -12-9解:如图所示,过点D 作DF ⊥BC 交BC 的延长线于点F ,延长AD 交BC 的延长线于点E.∵∠DCF =30°,∴DF =12CD =2米,CF =CD 2-DF 2=2 3 米. 根据已知条件,1米高的标杆的影长为2米,可求得EF =2DF =4米,∴BE =(14+2 3)米.∵DF ⊥BE ,AB ⊥BE ,∴△DFE ∽△ABE ,∴DF AB =EF BE,∴2AB =4BE, ∴AB =12BE =7+3≈8.7(米). 即电线杆的高度约为8.7米.1、只要朝着一个方向奋斗,一切都会变得得心应手。

九年级数学(下)第二十七章达标检测卷含答案

九年级数学(下)第二十七章达标检测卷含答案

九年级数学(下)第二十七章达标检测卷一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.2.(3分)若,则等于()A.8 B.9 C.10 D.113.(3分)下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且4.(3分)如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或5.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.127.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C.D.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC:S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:19.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD=.12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD 的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.18.(8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.19.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.20.(8分)如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.如图,求证:∠BAD=∠CAD.22.(10分)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.23.(10分)如图,已知△ABC∽△ADE,AB=30cm,AD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.(1)求∠ADE和∠AED的度数;(2)求DE的长.24.(12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A 出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.【分析】本题须根据比例的基本性质对每一项进行分析即可得出正确结论.【解答】解:∵2x=5y,∴.故选B.【点评】本题主要考查了比例的性质,在解题时要能根据比例的性质对式子进行变形是本题的关键.2.(3分)若,则等于()A.8 B.9 C.10 D.11【分析】设=k,得出a=2k,b=3k,c=4k,代入求出即可.【解答】解:设=k,则a=2k,b=3k,c=4k,即===10,故选C.【点评】本题考查了比例的性质的应用,主要考查学生的分析问题和解决问题的能力.3.(3分)下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.4.(3分)如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE 是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM与AB是对应边时,②当DM与BE是对应边时这两种情况.5.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=,=,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.12【分析】由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.【解答】解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选D.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握比例线段的对应关系.7.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C.D.【分析】由四边形ABCD∽四边形A1B1C1D1,根据相似多边形对应边的比相等列出比例式=,将AB=12,CD=15,A1B1=9代入,计算即可求出边C1D1的长.【解答】解:∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.故选C.【点评】本题考查了相似多边形的性质,根据相似多边形对应边的比相等列出比例式是解题的关键.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC:S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:1【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵△ABC∽△A′B′C′,,∴=()2=,故选C.【点评】本题考查了相似三角形的性质的应用,能运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.9.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高x米,则=,∴解得:x=8.故选;C.【点评】此题考查了相似三角形在实际生活中的运用,得出比例关系式是解题关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3【分析】根据射影定理得到:AC2=AD•AB,把相关线段的长度代入即可求得线段AD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则AD=.故选:A.【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD=6.【分析】根据直角三角形中的射影定理来做:AD2=BD•CD.【解答】解:∵△ABC是直角三角形,AD是斜边BC上的高,∴AD2=BD•CD(射影定理),∵BD=4,CD=9,∴AD=6.【点评】本题主要考查了直角三角形的性质:射影定理.12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是2.【分析】根据BC=AC可得=,再根据条件AD∥BE∥CF,可得=,再把DE=4代入可得EF的值.【解答】解:∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.故答案为:2.【点评】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为2:3.【分析】根据相似三角形的面积的比等于相似比的平方,可直接得出结果.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC :S△DEF=2:9=()2,所以△ABC与△DEF的相似比为2:3,故答案为:2:3.【点评】本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为1:4.【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC 与△DEF的面积之比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).【分析】由已知得△ABP∽△CDP,根据相似三角形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故答案为:8.【点评】本题综合考查了平面镜反射和相似形的知识,关键是根据相似三角形在测量中的应用分析.16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= 4或6.【分析】分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.【解答】解:如图1,当MN∥BC时,则△AMN∽△ABC,故==,则=,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴=,即=,解得:MN=6,故答案为:4或6.【点评】此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.【分析】根据平行线分线段成比例定理得出=,再根据AD=3,AB=5,即可得出答案.【解答】解:∵DE∥BC,∴=,∵AD=3,AB=5,∴=.【点评】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.18.(8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.【分析】根据平行四边形的性质得AD∥BC,AB∥CD,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴=,=,∴=,即CF2=GF•EF.【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.19.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.【解答】解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.【点评】此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.20.(8分)如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.【分析】(1)直接利用平移的性质,可分别求得△A1B1C1各点的坐标,继而画出图形;(2)利用位似的性质,可求得△A2B2C2各点的坐标,继而画出图形.【解答】解:(1)△A1B1C1如图所示,其中A1的坐标为:(0,1);(2)符合条件△A2B2C2有两个,如图所示.【点评】此题考查了位似变换与平移的变换.注意根据平移与位似的性质求得各点的坐标是关键.21.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.如图,求证:∠BAD=∠CAD.【分析】延长FD到点G,过C作CG∥AB交FD的延长线于点M,可证明△EDF ≌△CMD,可得CM=EF=AC,进一步得到结论;【解答】证明:延长FD到点G,过C作CG∥AB交FD的延长线于点M,则EF∥MC,∴∠BAD=∠EFD=∠M,在△EDF和△CMD中,,∴△EDF≌△CMD(AAS),∴MC=EF=AC,∴∠M=∠CAD,∴∠BAD=∠CAD.【点评】本题考查了全等三角形的判定于性质、平行线的性质、等腰三角形的性质;证明三角形全等是解决问题的关键.22.(10分)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.【分析】(1)根据题意画出图形,得出矩形ABEC求出BE,即可求出CE;(2)过D作DM⊥BC于M,得出四边形ABMD是矩形,推出AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,求出∠BFE=∠DEM,∠B=∠DME,证△FBE∽△EMD,得出比例式=,求出a即可.【解答】解:(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴=,∴=,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.【点评】本题考查了直角梯形性质,矩形的性质和判定,相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.23.(10分)如图,已知△ABC∽△ADE,AB=30cm,AD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.(1)求∠ADE和∠AED的度数;(2)求DE的长.【分析】(1)根据三角形的内角和定理求出∠C,再根据相似三角形对应角相等解答;(2)根据相似三角形对应边成比例列式求解即可.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴=,即=,解得DE=12cm.【点评】本题考查了相似三角形的性质,三角形的内角和定理,主要利用了相似三角形对应角相等,对应边成比例的性质.24.(12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A 出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?【分析】(1)在Rt△CPQ中,当t=3秒,可知CP、CQ的长,运用勾股定理可将PQ的长求出;(2)由点P,点Q的运动速度和运动时间,又知AC,BC的长,可将CP、CQ用含t的表达式求出,代入直角三角形面积公式S=CP×CQ求解;△CPQ(3)应分两种情况:当Rt△CPQ∽Rt△CAB时,根据=,可将时间t求出;当Rt△CPQ∽Rt△CBA时,根据=,可求出时间t.【解答】解:由题意得AP=4t,CQ=2t,则CP=20﹣4t,(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=;(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为S=cm2;(3)分两种情况:①当Rt△CPQ∽Rt△CAB时,,即,解得t=3秒;②当Rt△CPQ∽Rt△CBA时,,即,解得t=秒.因此t=3秒或t=秒时,以点C、P、Q为顶点的三角形与△ABC相似.【点评】本题主要考查相似三角形性质的运用,在解第三问时应分两种情况进行求解,在解题过程应防止漏解或错解.。

华师版九年级下册数学第27章 圆 第27章达标测试卷 (3)

华师版九年级下册数学第27章 圆 第27章达标测试卷 (3)

第27章达标测试卷一、选择题(每题3分,共30分)1.⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.如图,在平面直角坐标系中,O 为原点,点A 的坐标为(3,0),点B的坐标为(0,4),⊙D 过A ,B ,O 三点,点C 为ABO ︵上一点(不与O ,A 两点重合),则cos C 的值为( ) A.34B.35C.43D.45(第2题) (第3题) (第5题)3.如图,一圆弧过方格的格点A ,B ,C ,若在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),点B 的坐标为(-4,2),则该圆弧所在圆的圆心坐标是( ) A .(1,1)B .(-1,1)C .(2,1)D .(1,-1)4.已知圆锥的母线长为6 cm ,底面圆的半径为3 cm ,则此圆锥侧面展开图(扇形)的圆心角是( ) A .30°B .60°C .90°D .180°5.如图,AB ,AC 与⊙O 分别相切于B ,C 两点,∠A =50°,若点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是( )A .65°B .115°C .65°或115°D .130°或50°6.如图,点O 是△ABC 的外心,连结OA ,AD ⊥BC 于点D ,若AB =48,AO=25,则sin ∠CAD 的值为( ) A.1225B.724C.725D.2425(第6题) (第7题) (第8题) (第9题)7.如图,在四边形ABCD 中,连结AC ,BD ,点O 为AB 的中点,若∠ADB=∠ACB =90°,则下面结论不一定正确的是( ) A .DC =CBB .∠DAC =∠DBCC .∠BCD +∠BAD =180°D .点A ,C ,D 到点O 的距离相等8.如图,半圆O 的直径AB =7,弦AC ,BD 相交于点E ,弦CD =72,且BD=5,则DE 等于( ) A .2 2B .4 2C.53D.529.如图,等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB =AC =5,BC =6,则DE 的长是( ) A.3 1010B.3 105C.3 55D.6 5510.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( ) A.π4B.π2C.π6D.π3(第10题) (第12题) (第13题) 二、填空题(每题3分,共18分)11. 已知⊙O 的半径是3 cm ,点O 到直线l 的距离为4 cm ,则⊙O 与直线l 的位置关系是__________.12.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB =55°,则∠ADC 的大小为__________度. 13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式:弧田面积=12(弦×矢+矢2).弧田由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理可以求解.现已知弦AB =8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为________平方米.14.如图,⊙O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角∠BOD 的大小为________度.(第14题) (第15题) (第16题)15. 如图,在扇形BOC 中,OB =2,∠BOC =60°,点D 是BC ︵的中点,点E ,F 分别为半径OC ,OB 上的动点,当△DEF 的周长最小时,图中阴影部分的面积为________.16.如图,已知AB 为⊙O 的直径,AB =2,AD 是⊙O 的切线,切点为A ,过圆上一点C 作⊙O 的切线CF ,交AD 于点M ,连结AC ,CB.若∠ABC =30°,则AM =__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分) 17.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E.(第17题)(1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,连结AC ,D 是BC ︵上的一点,CD =BD ,连结BC 、AD 、OD ,BC 与AD 、OD 分别交于点E 、F.(第18题)(1)求证:∠CAB =∠DOB ; (2)求证:DA DC =DBDE;(3)若CE =34AC ,求sin ∠CDA 的值.19. 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,作EG ⊥AB 于H ,交BC于F ,延长GE 交直线MC 于D ,且∠MCA =∠B ,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.(第19题)20.如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧A7A11长度哪个更长;(2)连结A7A11,则A7A11和PA1有什么特殊的位置关系?请简要说明理由;(3)求PA7的长.(第20题)21. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过 BD ︵上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG =FG.(第21题)(1)求证:EG 是⊙O 的切线;(2)延长AB 交GE 的延长线于点M ,若tanG =12,AH =2,求EM 的长.22.如图①,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O 与内心I 之间的距离OI =d ,则有d 2=R 2-2Rr.(第22题)下面是上述结论的证明过程(部分):连结AI ,并延长交⊙O 于点D ,过点I 作⊙O 的直径MN ,连结DM ,AN.∵∠D =∠N ,∠DMI =∠NAI ,∴△MDI ∽△ANI.∴IM IA =IDIN ,∴IA·ID=IM ·IN,①如图②,在图①(隐去MD ,AN)的基础上作⊙O 的直径DE ,连结BE ,BD ,BI ,IF.∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IFA.∵∠BAD =∠E ,∴△AIF ∽△EDB ,∴IA DE =IFBD .∴IA·BD=DE·IF.②任务:(1)观察发现:IM =R +d ,IN =________(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则△ABC的外心与内心之间的距离为________cm.答案一、1.A 2.A 3.B 4.D 5.C :连结OC ,OB ,∵AB ,AC 与⊙O 分别相切于B ,C 两点, ∴∠ACO =90°,∠ABO =90°,∴∠BOC =360°-90°-90°-50°=130°.当点P 在优弧BC 上时,∠BPC =12∠BOC =65°;当点P 在劣弧BC 上时,∠BPC =180°-65°=115°. 6.C 7.A 8.A9.D :连结OA ,OE ,OB ,OD ,OB 交DE 于H ,如图.∵等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F , ∴AO 平分∠BAC ,OE ⊥BC ,OD ⊥AB , BE =BD. ∵AB =AC , ∴AO ⊥BC ,∴点A 、O 、E 共线,即AE ⊥BC , ∴BE =CE =3.在Rt △ABE 中,AE =AB 2-BE 2=52-32=4. ∵BD =BE =3, ∴AD =2.设⊙O 的半径为r ,则OD =OE =r ,AO =4-r ,在Rt △AOD 中,r 2+22=(4-r)2,解得r =32. 在Rt △BOE 中,OB =32+⎝ ⎛⎭⎪⎫322=3 52. ∵AB ,BC 为⊙O 的切线,∴BO 平分∠DBE ,BD =BE ,∴OB 垂直平分DE ,∴DH =EH.∵12HE·OB=12OE·BE, ∴HE =OE·BE OB =32×33 52=3 55, ∴DE =2EH =6 55.故选D.(第9题)10.A二、11.相离 12.3513.10 14.144 15.2π-33 16.33:由题意易得∠MAC =30°,AM =CM , ∴∠MCA =∠MAC =30°,∴∠AMC =120°.连结OM ,则∠AMO =12∠AMC =60°. ∴在Rt △AOM 中,tan 60°=OA AM, ∴AM =OA tan 60°=12AB 3=33. 三、17.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°,∴∠AOD =180°-∠OAD -∠D =40°.∵AB 是半圆O 的直径,∴∠C =90°.∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC.∴AD ︵=CD ︵,∴∠CAD =12∠AOD =20°. (2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4. 设OA =x ,则OE =OD -DE =x -2.在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5.∴AB =2OA =10.18.(1)证明:∵CD = BD ,∴CD ︵=BD ︵,∴∠CAD =∠BAD ,∴∠CAB =2∠BAD ,∵∠DOB =2∠BAD ,∴∠CAB =∠DOB.(2)证明:由(1)知CD ︵=BD ︵,∴∠CAD =∠DCB.又∵∠CDA =∠CDE ,∴△DAC ∽△DCE ,∴DA DC =DC DE. 又∵CD =BD ,∴DA DC =DB DE. (3)解:∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∵CE =34AC , ∴设CE =3k ,AC =4k(k≠0),∴AE =AC 2+CE 2=5k ,∵△DAC ∽△DCE ,∴DA DC =DC DE =AC CE =43, ∴DA =43DC ,DE =34DC , ∵AE =DA -DE =43DC -34DC =5k , ∴DC =607k , ∴DE =457k , ∵∠CAE =∠DBE ,∠ACE =∠BDE ,∴△ACE ∽△BDE ,∴AE BE =CE DE, ∴5k BE =3k 45k 7 ,∴BE =75k 7, ∴BC =3k +75k 7=967k , ∴AB =AC 2+BC 2= 16k 2+⎝ ⎛⎭⎪⎫96k 72=1007k , ∴sin ∠CDA =sin ∠ABC =AC AB =4k 1007k =725. 19. 证明:(1)连结OC ,如图,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠2+∠3=90°.∵OB =OC ,∴∠B =∠3.∵∠1=∠B ,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM =90°.∴OC ⊥CM ,∴MC 是⊙O 的切线.(2)∵EG ⊥AB ,∴∠B +∠BFH =90°.∵∠BFH =∠4,∴∠4+∠B =90°.∵OC ⊥CM ,∴∠5+∠3=90°.∵∠3=∠B ,∴∠5+∠B =90°,∴∠4=∠5,∴DC =DF ,∴△DCF 是等腰三角形.(第19题)20.解:(1)连结A 11O ,A 7O.由题意易得∠A 7OA 11=120°,直径的长为12,∴劣弧A 7A 11的长=120π·6180=4π, ∵4π>12,∴劣弧A 7A 11的长比直径长.(2)PA 1⊥A 7A 11.理由:连结OA 1.由题易知点A 1,O ,A 7三点共线,即A 1A 7是⊙O 的直径,∴∠A7A11A1=90°,∴PA1⊥A7A11.(3)∵PA7是⊙O的切线,∴PA7⊥A1A7,∴∠PA7A1=90°,由题意易得∠PA1A7=60°,A1A7=12,∴PA7=A1A7·tan60°=12 3.21. (1)证明:连结OE,如图,∵EG=FG,∴∠GFE=∠GEF.而∠GFE=∠AFC,∴∠GEF=∠AFC.∵OA=OE,∴∠OEA=∠OAE.∵AB⊥CD,∴∠AFC+∠FAH=90°,∴∠GEF+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线.(2)解:∵GE∥AC,∴∠G =∠ACH.在Rt △ACH 中,∵tan ∠ACH =AH CH =12, ∴CH =2AH =2×2=4.连结OC ,如图,设⊙O 的半径为r ,则OH =r -2.在Rt △OCH 中,(r -2)2+42=r 2,解得r =5,∵GE ∥AC ,∴∠M =∠CAH.易得Rt △OEM ∽Rt △CHA ,∴EM AH =OE CH ,即EM 2=54, ∴EM =52.(第21题)22. 解:(1)R -d(2)BD =ID ,理由如下:∵点I 是△ABC 的内心,∴∠BAD =∠CAD ,∠CBI =∠ABI.∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID.(3)由(2)知,BD=ID,∴IA·ID=DE·IF.又∵IA·ID=IM·IN,∴DE·IF=IM·IN,∴2R·r=(R+d)(R-d),∴2Rr=R2-d2,∴d2=R2-2Rr.(4) 5。

人教版九年级数学下册第二十七章达标测试卷含答案

人教版九年级数学下册第二十七章达标测试卷一、选择题(每题2分,共20分)1.观察下列每组图形,是相似图形的是()2.下列四组线段中,不成比例的是()A.3,9,2,6 B.1,3,2, 6C.1,2,3,9 D.1,2,4,83.若两个相似多边形周长的比为15,则它们的相似比为() A.125 B.1 5 C.1 2.5 D.1 54.如图,l1∥l2∥l3,ABBC=53,DF=24,则EF的长为()A.8 B.9 C.12 D.15(第4题)(第7题)5.在平面直角坐标系中,已知点A(-4,2),B(-6,-4),以原点O为位似中心,把△ABO缩小,相似比为12,则点A的对应点A′的坐标是()A.(-2,1) B.(-8,4)C.(-8,4)或(8,-4) D.(-2,1)或(2,-1)6.在△ABC中,∠B=100°,BC=5,AB=7,将△ABC沿虚线剪开,剪下的阴影三角形与原三角形不相似的是()7.一种燕尾夹如图①所示,图②是在闭合状态时的示意图,图③是在打开状态时的示意图(数据如图,单位均为mm),从图②闭合状态到图③打开状态,则点B,D之间的距离减少了()A.25 mm B.20 mmC.15 mm D.8 mm8.如图,在平行四边形ABCD中,如果CM=2DM,AM与BD相交于点N,那么△DMN与平行四边形ABCD的面积之比为()A.1:24 B.1:15C.1:12 D.1:99.如图,在正方形ABCD中,AB=6,AE=13AB,点F在AD上运动(不与A,D重合),过点F作FG⊥EF交CD于点G,则DG的最大值为()A.4.5 B.4 C.3.5 D.310.如图,在△ABC中,∠ACB=90°,角平分线BE与中线CD交于点F,若AC=16,BC=12,则EFBF的值为()A.5-12 B.38 C.13 D.925二、填空题(每题3分,共18分)11.已知3x-5y=0,则xy=________.12.如图所示,某超市在一楼至二楼之间装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2 m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为________m.13.如图所示的网格是正方形网格,A,B,C,D,E是网格线的交点,那么△ADE 的面积与△ABC的面积的比是________.(第13题)(第15题)(第16题)14.某同学的眼睛到黑板的距离是6 m,课本上的文字大小为0.4 cm×0.35 cm.要使这名同学看黑板上的字时,与他看相距30 cm的课本上的字的感觉相同,老师在黑板上写的文字大小应约为________(答案请按同一形式书写).15.如图,已知正方形ABCD的边长为6 2,E是边CD上的中点,对角线BD 上有一动点F,当△ABF与△DEF相似时,BF的值为________.16.如图,在平面直角坐标系中,△OAC的顶点A在反比例函数y=kx的图象上,点C在x轴上,边AC交反比例函数图象于点B,若S△BOC=2,且AB=2BC,则k的值为________.三、解答题(17题6分,18~21题每题8分,22,23题每题10分,24,25题每题12分,共82分)17.(6分)计算:(1)已知2x=53,求x.(2)已知y2=2y-x3(y≠0),求xy的值.18.(8分)如图,在△ABC中,DE∥BC.(1)若AD=2 cm,DB=3 cm,AE=1 cm,求EC的长;(2)若AB=5 cm,AD=2 cm,AC=4 cm,求EC的长.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1;(2)画出△A1B1C1绕着点A1按顺时针方向旋转90°得到的△A1B2C2,C2的坐标为________;(3)以点B为位似中心,在给出的网格内画出△A3BC3,使△A3BC3与△ABC位似,且相似比为2 1.20.(8分)如图,点C是线段AB的黄金分割点,即BCAC=ACAB,若S1表示以CA为一边的正方形的面积,S2表示长为AB,宽为CB的矩形的面积,求S1与S2的大小关系.21.(8分)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.求证:△ABF∽△COE.22.(10分)小红家的阳台上放置了一个晒衣架,如图是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点在地面上,经测量得到AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段.(1)连接AC.求证:AC∥EF;(2)若EF=32 cm,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上.23.(10分)如图,在平面直角坐标系xOy中,平行四边形OABC的顶点A在x轴的正半轴上,点D(4,3)在对角线OB上,且ODOB=13.反比例函数y=kx(k>0,x>0)的图象经过C,D两点,直线CD交x轴于点E.(1)求k的值;(2)求△ODE的面积.24.(12分)有一种工具叫磨,最初叫硙,用人力或畜力可使它转动.如图是从石磨中抽象出来的模型,在Rt △ABC 中,∠ACB =90°,在AB 上取点D ,以AD 为直径作⊙O ,切直线BC 于点E ,连接DE ,AE .(1)求证:△ADE ∽△AEC ;(2)若⊙O 的半径为5,AC =8,求S △BDE .25.(12分)如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为射线BA 上的一点,连接CD ,将线段CD 绕点C 顺时针旋转90°得到线段CE ,连接DE ,DE 所在直线与射线CA 交于点F ,且EF =3DF .(1)若点D 在线段BA 上.①求证:∠ADF =∠BCD ;②求ADAC 的值. (2)连接AE ,BE ,若AE =,直接写出BE 的长.答案一、1.C 2.C 3.B 4.B 5.D 6.D7.A8.A9.A10.B点拨:作EH⊥AB于H,延长CD到M,使DM=CD,连接BM,如图.∵∠ACB=90°,AC=16,BC=12,∴AB=AC2+BC2=20,∵BE平分∠ABC,∴EH=EC,∵△ABC的面积=△ABE的面积+△BCE的面积,∴12AC·BC=12AB·EH+12BC·CE,∴16×12=20CE+12CE,∴CE=6,∵AD=BD,∠ADC=∠BDM,DM=DC,∴△BDM≌△ADC(SAS),∴BM=AC=16,∠M=∠ECF,∴CE∥MB,∴易知△CEF∽△MBF,∴EFBF=CEMB=616=38.二、11.5312.5.513.1 414.8 cm×7 cm15.6或816.3点拨:过点B作BD⊥CO于点D,过点A作AE⊥CO于点E,如图,∴BD∥AE,∴△BCD∽△ACE,∴BCAC=BDAE,∵AB=2BC,∴BCAC=BDAE=13.设B ⎝ ⎛⎭⎪⎫m ,k m ,∴BD =-k m ,∴AE =3BD =-3km ,当y =3k m 时,x =m 3,即点A ⎝ ⎛⎭⎪⎫m 3,3k m .∵S △BOC =2,AB =2BC , ∴易得S △AOB =4,∴易得S 梯形ABDE =S △AOB +S △BOD -S △AOE =S △AOB =4, ∴12⎝ ⎛⎭⎪⎫-k m -3k m ⎝ ⎛⎭⎪⎫m 3-m =4, 解得k =3.三、17.解:(1)∵2x =53,∴5x =6.∴x =65.(2)∵y 2=2y -x3,∴3y =2(2y -x ).∴3y =4y -2x .∴3y -4y =-2x .∴-y =-2x .∴x y =12. 18.解:(1)∵DE ∥BC ,∴AE EC =AD DB ,∴1EC =23,∴EC =32 cm.(2)∵DE ∥BC ,∴AD AB =AE AC ,即25=AE4.∴AE =85 cm ,∴EC =AC -AE =4-85=125(cm). 19.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 1B 2C 2即为所求. (-1,-3) (3)如图,△A 3BC 3即为所求.20.解:∵点C是线段AB的黄金分割点,即BCAC=ACAB,∴AC2=AB·BC,∵S1=AC2,S2=AB·BC,∴S1=S2.21.证明:∵OE⊥OB,∠BAC=90°,∴∠BOA+∠COE=90°,∠BOA+∠ABF=90°,∴∠ABF=∠COE.∵AD⊥BC,∴∠DAC+∠C=90°,∵∠BAC=90°,∴∠BAF+∠DAC=90°,∴∠BAF=∠C.∴△ABF∽△COE.22.(1)证明:∵立杆AB,CD相交于点O,∴∠AOC=∠EOF.又∵OAOE=OCOF=5134=32,∴△AOC∽△EOF,∴∠A=∠OEF,∴AC∥EF.(2)解:过点A作AM⊥BD于点M,过点O作ON⊥EF于点N. ∵OE=OF=34 cm,∴△OEF是等腰三角形.∴∠OEF=12(180°-∠EOF).∵ON⊥EF,EF=32 cm,∴ON是边EF上的中线,∴EN=16 cm.在Rt△OEN中,根据勾股定理可得ON=OE2-EN2=342-162=30(cm).∵ON⊥EF,AM⊥BD,∴∠ONE =∠AMB =90°.∵OA =OC ,AB =CD ,∴OB =OD ,∴∠OBD =12(180°-∠BOD ),∴∠OBD =∠OEF ,∴易知△EON ∽△BAM , ∴OE AB =ON AM ,即34136=30AM ,解得AM =120 cm.答:利用夹子垂挂在晒衣架上的连衣裙总长度小于120 cm 时,连衣裙才不会拖在地面上.23.解:(1)∵反比例函数y =k x (k >0,x >0)的图象经过点D (4,3),∴k =4×3=12.(2)分别过点D ,B 作x 轴的垂线DF ,BG ,垂足分别为F ,G ,如图.易得DF ∥BG ,∴△ODF ∽△OBG ,∴OD OB =DF BG ,∵OD OB =13,DF =3,∴BG =9,∴点C 的纵坐标为9,∵点C 在反比例函数y =12x (x >0)的图象上,∴C ⎝ ⎛⎭⎪⎫43,9. 设直线CD 的解析式为y =ax +b ,则⎩⎪⎨⎪⎧4a +b =3,43a +b =9,解得⎩⎪⎨⎪⎧a =-94,b =12,∴直线CD 的解析式为y =-94x +12,令y =0,-94x +12=0,解得x =163,∴E ⎝ ⎛⎭⎪⎫163,0,∴OE =163, ∴S △ODE =12DF ·OE =12×3×163=8.24.(1)证明:连接OE ,如图.∵BC 是⊙O 的切线,∴OE ⊥BC ,∴∠OEC =90°,∴∠AEC +∠AEO =90°,∵AD 为直径,∴∠AED =90°,∴∠AEO +OED =90°,∴∠AEC =∠OED ,∵OD =OE ,∴∠OED =∠ODE ,∴∠AEC =∠ODE ,∵∠C =∠AED =90°,∴△ADE ∽△AEC .(2)解:由(1)知,△ADE ∽△AEC ,∴AD AE =AE AC ,∵AD =2×5=10,AC =8,∴10AE =AE 8,∴AE =4 5(负值舍去).∴DE =AD 2-AE 2=102-(4 5)2=2 5,CE =AE 2-AC 2=(4 5)2-82=4,∴S △ADE =12DE ·AE =12×2 5×4 5=20, S △ACE =12AC ·CE =12×8×4=16.∵∠OEB =∠C =90°,∠EBO =∠CBA ,∴△BEO ∽△BCA ,∴OB AB =OE AC ,∴BD +5BD +10=58,∴BD =103, ∴AB =BD +AD =103+10=403,∴BC =AB 2-AC 2=⎝ ⎛⎭⎪⎫4032-82=323, ∴S △ABC =12AC ·BC =12×8×323=1283,∴S △BDE =S △ABC -S △ACE -S △AED =1283-16-20=203.25.(1)①证明:∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =180°-∠BAC 2=45°. ∵由旋转得∠DCE =90°,CD =CE ,∴∠CDE =∠CED =180°-∠DCE 2=45°, ∴∠ABC =∠CDE =45°.∵∠ADF +∠CDE +∠BDC =180°,∠BCD +∠ABC +∠BDC =180°. ∴∠ADF =∠BCD .②解:过E 作EH ⊥AC 于点H ,如图.∵EH ⊥AC ,∴∠EHA =∠BAC =90°.∵∠AFD =∠EFH ,∴△AFD ∽△HFE ,∴AD EH =DF EF .∵EF =3DF ,∴EH =3AD .∵∠DCE =∠BAC =90°,∴∠ACD +∠ADC =90°,∠ACD +∠ECH =90°.∴∠ADC =∠ECH .∵∠EHC =∠DAC =90°,DC =CE ,∴△CAD ≌△EHC ,∴AC =EH ,∴AC =3AD ,∴AD AC =13.(2)解:265或2 10.。

达标测试华东师大版九年级数学下册第27章 圆同步测评练习题(含详解)

华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),4AB =.设弦AC 的长为x ,ABC ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2、如图,Rt ABC △中,90C ∠=︒,O 是AB 边上一点,O 与AC 、BC 都相切,若3BC =,4AC =,则O 的半径为( )A .1B .2C .52 D .1273、如图,CD 是ABC 的高,按以下步骤作图:(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于G 、H 两点. (2)作直线GH 交AB 于点E .(3)在直线GH 上截取EF AE =.(4)以点F 为圆心,AF 长为半径画圆交CD 于点P .则下列说法错误的是( )A .AE BE =B .GH CD ∥C .AB =D .45APB ∠=︒4、如图,P 为正六边形ABCDEF 边上一动点,点P 从点D 出发,沿六边形的边以1cm/s 的速度按逆时针方向运动,运动到点C 停止.设点P 的运动时间为()s x ,以点P 、C 、D 为顶点的三角形的面积是()2cm y ,则下列图像能大致反映y 与x 的函数关系的是( )A .B .C .D .5、如图,PA ,PB 是⊙O 的切线,A ,B 为切点,PA =4,则PB 的长度为()A .3B .4C .5D .66、如图,AB 是O 的直径,CD 是O 的弦.50CAB ∠=,则∠D =()度A .30B .40C .50D .607、如图,点A 、B 、C 在O 上,50∠=°ACB ,则OAB ∠的度数是()A .100°B .50°C .40°D .25°8、如图,在⊙O 中,C 、D 为⊙O 上两点,AB 是⊙O 的直径,已知∠AOC=130°,则∠BDC 的度数为( )A .65°B .50°C .30°D .25°9、已知正五边形的边长为1,则该正五边形的对角线长度为( ).A B C D 10、如图,正六边形螺帽的边长是4cm ,那么这个正六边形半径R 和扳手的开口a 的值分别是( )A .2,B .4,C .4,D .4第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,AB 为O 的直径,点C ,D ,E 在O 上,且AD CD =,若64E ∠=︒,则ABC ∠的度数为__________︒.2、AC是⊙O的直径,弦BD⊥AC于点E,连接BC,过点O作OF⊥BC于点F,若BD=12cm,OE=5 2cm,则OF=________cm.3、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=AC的长为_____.4、在⊙O中,圆心角∠AOC=120°,则⊙O内接四边形ABCD的内角∠ABC=_____.5、如图,在Rt△ABC中,∠CAB=90°,AB=AC,点D为斜边BC上一点,且BD=3CD,将△ABD沿直线AD翻折,点B的对应点为B′,则sin∠CB′D=______.6、如图,过⊙O 外一点P ,作射线PA ,PB 分别切⊙O 于点A ,B ,50P ∠=︒,点C 在劣弧AB 上,过点C 作⊙O 的切线分别与PA ,PB 交于点D ,E .则DOE ∠=______度.7、圆锥的底面直径是80cm ,母线长90cm .它的侧面展开图的圆心角和圆锥的全面积依次是______.8、如图,在四边形ABCD 中,AB =BC =BD .若∠ABC =112°,则∠ADC =_____°.9、如图,把O 分成相等的六段弧,依次连接各分点得到正六边形ABCDEF ,如果O 的周长为12π,那么该正六边形的边长是______.10、已知:矩形ABCD 的长8AB =,宽6AD =,按如图放置在直线AP 上,然后不滑动地转动,当它转动一周时(A A '→,B B '→),顶点A 所经过的路线的长等于______.三、解答题(5小题,每小题8分,共计40分)1、已知四边形 ABCD 是菱形, 4AB =, 点 E 在射线 CB 上, 点 F 在射线 CD 上,且 EAF BAD ∠=∠.(1)如图, 如果 90BAD ∠=, 求证: AE AF = ;(2)如图, 当点 E 在 CB 的延长线上时, 如果 60ABC ∠=, 设 ,AF DF x y AE==, 试建立 y 与 x 的函数关系式,并写出 x 的取值范围(3)联结 ,2AC BE =, 当 AEC △ 是等腰三角形时,请直接写出 DF 的长.2、在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到⊙O 的弦A ´B ´(A ´,B ´分别为A ,B 的对应点),则称线段AB 是⊙O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是⊙O 的关于直线l 对称的“关联线段”.(1)如图2,11,2233,,,,A B A B A B 的横、纵坐标都是整数.①在线段11,2233,A B A B A B 中,⊙O 的关于直线y =x +2对称的“关联线段”是_______;②若线段11,2233,A B A B A B 中,存在⊙O 的关于直线y =-x +m 对称的“关联线段”,则 m = ;(2)已知直线+(0y x b b =>)交x 轴于点C ,在△ABC 中,AC =3,AB =1,若线段AB 是⊙O 的关于直线+(0y x b b =>)对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.3、如图1,ABC中,AC=BC=4,∠ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.直线BE交直线CD于G点.(1)小智同学通过思考推得当点E在AB上方时,∠AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,∴∠AEB=∠ACB,(填写数量关系)∴∠AEB=°.(2)如图2,连接BF,求证A、B、F、C四点共圆;(3)线段AE最大值为,若取BC的中点M,则线段MF的最小值为.4、如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆P,并写出圆心P的坐标;(3)将△ABC 绕(2)中的点P 将△ABC 绕点P 顺时针旋转90°,则点A 运动的路线长是 .5、下面是小亮设计的“过圆上一点作已知圆的切线”的尺规作图过程.已知:点A 在O 上.求作:直线PA 和O 相切.作法:如图,①连接AO ;②以A 为圆心,AO 长为半径作弧,与O 的一个交点为B ;③连接BO ;④以B 为圆心,BO 长为半径作圆;⑤作B 的直径OP ;⑥作直线PA .所以直线PA 就是所求作的O 的切线.根据小亮设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(______)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(______)(填推理的依据).-参考答案-一、单选题1、B【解析】【分析】由AB 为圆的直径,得到∠C =90°,在Rt △ABC 中,由勾股定理得到BC =而列出△ABC 面积的表达式即可求解.【详解】解:∵AB 为圆的直径,∴∠C =90°,4AB =,AC x =,由勾股定理可知:∴BC ==∴1122∆=⋅=⋅ABC S BC AC x 此函数不是二次函数,也不是一次函数,∴排除选项A 和选项C ,AB 为定值,当OC AB ⊥时,ABC ∆面积最大,此时AC =即x =y 最大,故排除D ,选B .故选:B .【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.2、D【解析】【分析】作OD ⊥AC 于D ,OE ⊥BC 于E ,如图,设⊙O 的半径为r ,根据切线的性质得OD =OE =r ,易得四边形ODCE 为正方形,则CD =OD =r ,再证明△ADO ∽△ACB ,然后利用相似比得到443r r -=,再根据比例的性质求出r 即可.【详解】解:作OD ⊥AC 于D ,OE ⊥BC 于E ,如图,设⊙O 的半径为r ,∵⊙O 与AC 、BC 都相切,∴OD =OE =r ,而∠C =90°,∴四边形ODCE 为正方形,∴CD =OD =r ,∵OD∥BC,∴△ADO∽△ACB,∴AF OF AC BC=∵AF=AC-r,BC=3,AC=4,代入可得,443r r -=∴r=127.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.3、C【解析】【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据EF AE=可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴AE BE=,故A正确;∵CD是ABC的高,∴GH CD∥,故B正确;∵EF AE=,AE BE=,∴2AB EF =,故C 错误;∵EF AE =,∴∠AFE =45°,同理可得∠BFE =45°,∴∠AFB =90°,1452APB AFB ∠=∠=︒,故D 正确; 故选:C .【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.4、A【解析】【分析】设正六边形ABCDEF 的边长为1,当P 在DE 上时,过P 作PH CD ⊥于,H 而120,,CDP PD x 求解此时的函数解析式,当P 在EF 上时,延长,CD FE 交于点,M 过P 作PQ CD ⊥于,Q 并求解此时的函数解析式,当P 在AF 上时,连接,,AC CF 并求解此时的函数解析式,由正六边形的对称性可得:P 在AB 上的图象与P 在EF 上的图象是对称的,P 在BC 上的图象与P 在DE 上的图象是对称的,从而可得答案.【详解】解:设正六边形ABCDEF 的边长为1,当P 在DE 上时,过P 作PH CD ⊥于,H 而120,,CDP PD x60,PDH 3sin 60,2PH PD x11331,2224y CD PH x x 当P 在EF 上时,延长,CD FE 交于点,M 过P 作PQ CD ⊥于,Q同理:120,CDEFED 60,EDM DEM则DEM △为等边三角形, 60,1,,EMD EM ED PMPE EM PE ED x 3sin 60,2PQ PM x 11331,2224y CD PQ x x 当P 在AF 上时,连接,,AC CF由正六边形的性质可得:120,,ABCBAF AFE BA BC 118012030,1203090,2BAC CAF 由正六边形的对称性可得:160,2AFC AFE 而1,AF =tan 603,AC AF 11313,222y CD AC 由正六边形的对称性可得:P 在AB 上的图象与P 在EF 上的图象是对称的,P 在BC 上的图象与P 在DE 上的图象是对称的,所以符合题意的是A ,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.5、B【解析】【分析】由切线的性质可推出OA AP ⊥,OB BP ⊥.再根据直角三角形全等的判定条件“HL ”,即可证明OAP OBP ≅,即得出4PB PA ==.【详解】∵PA ,PB 是⊙O 的切线,A ,B 为切点,∴OA AP ⊥,OB BP ⊥,∴在Rt OAP △和Rt OBP 中,OA OB OP OP =⎧⎨=⎩, ∴()OAP OBP HL ≅,∴4PB PA ==.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.6、B【解析】【分析】由AB 是⊙O 的直径,推出∠ACB =90°,再由∠CAB =50°,求出∠B =40°,根据圆周角定理推出∠D =40°.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠CAB =50°,∴∠B =40°,∴∠D =40°.故选:B .【点睛】本题主要考查圆周角定理,余角的性质,关键在于推出∠A 的度数,正确的运用圆周角定理.7、C【解析】【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA= 40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、D【解析】【分析】先求出∠BOC的度数,再根据同弧所对的圆周角等于圆心角的一半求出答案.【详解】解:∵∠AOC=130°,AB是⊙O的直径,∴∠BOC=180°-∠AOC=50°,∠BOC=25°,∴∠BDC=12故选:D.【点睛】此题考查了圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记定理是解题的关键.9、C【解析】【分析】如图,五边形ABCDE 为正五边形, 证明,AB BCAE CD ,AF BF BG CG 1,AB AG 再证明,ABF ACB ∽可得:,ABBF AC CB设AF =x ,则AC =1+x ,再解方程即可. 【详解】解:如图,五边形ABCDE 为正五边形,∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°,∴∠BGF =∠BFG =72°,72,ABGAGB ,,,AF BF BG GC BG BF ,AF BF BG CG 1,ABAG ,,BAC FAB ABF ACB,ABF ACB ∽,ABBF AC CB设AF =x ,则AC =1+x , 1,11x x210,x x ∴+-=解得:12x x ==经检验:x =15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键.10、B【解析】【分析】根据正六边形的内角度数可得出∠BAD =30°,OAB ∆为等边三角形,得BC =2AB ,再通过解直角三角形即可得出12a 的值,进而可求出a 的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD =180°-120°=60°,60OAB OBA ∠=∠=︒∴∠BAD =30°,OAB ∆为等边三角形,∵4AB =∴2,4BD OB OA ===∴AD =∴2a =⨯=∴这个正六边形半径R 和扳手的开口a 的值分别是4,故选:B .【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.二、填空题1、52【解析】【分析】如图,连接OD ,BD .利用圆周角定理求出∠DOB ,再求出∠OBD =26°,可得结论.【详解】解:如图,连接OD ,BD .∵AD CD =,∴∠ABD=∠CBD,∵∠DOB=2∠DEB=128°,∴∠OBD=∠ODB=26°,∴∠ABC=2∠OBD=52°,故答案为:52.【点睛】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是掌握圆周角定理.2【解析】【分析】根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.【详解】解:如图,连接BO∵AC是⊙O的直径,弦BD⊥AC于点E,BD=12cm,∴162BE ED BD cm ===,∵OE =52cm ,BD ⊥AC ,∴132BO CO AO ===cm ,∴9CE CO CE cm =+=,BC =,∵OF ⊥BC ,∴12CF BF BC ==,∴OF ,如图,∵OE =52cm ,BD ⊥AC , 132BO CO AO cm ===,∴4,EC CO OE cm BC =-==,∵OF ⊥BC ,∴12BF CF BC ==,∴OF =.【点睛】 本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.3、4π3【解析】【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r =或2r =-(舍去),∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.4、120°##120度【解析】【分析】先根据圆周角定理求出∠D ,然后根据圆内接四边形的性质求解即可.【详解】解:∵∠AOC =120°∴∠D =12∠AOC =60°∵⊙O 内接四边形ABCD∴∠ABC =180°-∠D =120°.故答案是120°.【点睛】本题主要考查了圆周角定理、圆内接四边形的性质等知识点,掌握圆内接四边形的性质是解答本题的关键.5【解析】【分析】先证明A、B′、C、D四点共圆,推出∠CB′D=∠CAD,过点D作DE⊥AC于点E,利用平行线分线段成比例定理得到AE=3CE,由勾股定理得到AD,再由正弦函数即可求解.【详解】解:∵∠CAB=90°,AB=AC,∴∠ACB=∠B=45°,由折叠的性质得∠AB′D=∠B=45°,∴∠AB′D=∠ACD=45°,∴A、B′、C、D四点共圆,∴∠CB′D=∠CAD,过点D作DE⊥AC于点E,∵∠CAB=90°,∴DE∥AB,∵BD =3CD ,∴AE =3CE ,∵∠ACB =45°,∴△DEC 是等腰直角三角形,∴DE =CE ,设DE =CE =a ,则AE =3CE =3a ,在Rt △ADE 中,AD =,∴sin ∠CB ′D = sin ∠CAD =DE AD ==. 【点睛】 本题考查了圆内接四边形的知识,正弦函数,折叠的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6、65【解析】【分析】连接OA ,OC ,OB ,根据四边形内角和可得130AOB ∠=︒,依据切线的性质及角平分线的判定定理可得DO 平分ADC ∠,EO 平分BEC ∠,再由各角之间的数量关系可得AOD COD ∠=∠,COE BOE ∠=∠,根据等量代换可得12DOE AOB ∠=∠,代入求解即可.【详解】解:如图所示:连接OA ,OC ,OB ,∵PA 、PB 、DE 与圆相切于点A 、B 、E ,∴OA PA ⊥,OB PB ⊥,OC DE ⊥,∵50P ∠=︒,∴180130AOB P ∠=︒-∠=︒,∵OA OB OC ==,∴DO 平分ADC ∠,EO 平分BEC ∠,∴ADO CDO ∠=∠,CEO BEO ∠=∠,∴AOD COD ∠=∠,COE BOE ∠=∠, ∴11165222DOE COD COE AOC BOC AOB ∠=∠+∠=∠+∠=∠=︒,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.7、160°,52002cm π【解析】【分析】由题意知,圆锥的展开图扇形的r 半径为90cm ,弧长l 为18022π80π2r π=⨯=.代入扇形弧长公式π180n r l =求解圆心角;代入扇形面积公式2π360n r S =侧求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r 半径为90cm ,弧长l 为18022π80π2r π=⨯= ∵π180n r l = ∴9080π180n π⨯=解得160n =︒ ∵2π360n r S =侧 ∴22160π903600360S cm π⨯⨯==侧 22803600ππ52002S cm π⎛⎫=+⨯= ⎪⎝⎭全 故答案为:160°,25200cm π.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.8、124【解析】【分析】根据题意,,,A D C 在以B 为圆心半径为AB 的圆上,设E 是优弧AC 上任意一点,则四边形ADCE 是B 的内接四边形,进而根据圆内接四边形对角互补,圆周角定理求得E ∠,即可求得ADC ∠.【详解】解:如图,AB=BC=BDA D C在以B为圆心半径为AB的圆上,∴,,设E是优弧AC上任意一点,则四边形ADCE是B的内接四边形180∴∠+∠=︒E ADC又∠ABC=112°,E∴∠=︒56∴∠=︒-︒=︒ADC18056124故答案为:124【点睛】本题考查了圆内接四边形对角互补,圆周角定理,转为圆内接四边形求解是解题的关键.9、6【解析】【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵O的周长为12π,∴O的半径为1262ππ=,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.10、12π【解析】【分析】点A走过的路线是三段弧线的和,即求出三个扇形的弧长之和.【详解】解:第一段是以AB为半径,弧长为:9028360π⨯⨯=4π;第二段是以AC,弧长为:90210360π⨯⨯=5π;第三段是以BC 为半径,弧长为:9026360π⨯⨯=3π; 所以顶点A 所经过的路线的长等于4π+5π+3π=12π.故答案为12π.【点睛】本题主要考查了弧长公式,根据题意确定扇形的半径是解答本题的关键.三、解答题1、 (1)证明过程详见解答; (2)4(04)4x y x -=<< (3)85DF =或167 【解析】【分析】(1)先证明四边形ABCD 是正方形,再证明ABE ADF ∆≅∆,从而命题得证;(2)在AD 上截取DG DF =,先证明DGF ∆是正三角形,再证明ABE AGF ∆∆∽,进一步求得结果;(3)当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,证明ABH FND ∆∆∽,AGF ABE ∠=∠,可推出12DG DF =,再证明ABE AGF ∆∆∽,可推出442DG GF -=,从而求得DF ,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,作BM AC ⊥于M ,先根据1122ABC S AC BM BC AH ∆=⋅=⋅求得AH ,进而求得BH ,根据ABH FGN ∆∆∽,ABE AFF ∆∆∽,14DG GF =和412DG GF +=,从而求得DF ,根据三角形三边关系否定AE CE =,从而确定DF 的结果.(1) 解:证明:四边形ABCD 是菱形,90BAD ∠=︒,∴菱形ABCD 是正方形,90BAE ABC ADF ∴∠=∠=∠=︒,AD AB =,BAE DAF ∠=∠,()ABE ADF ASA ∴∆≅∆,AE AF ∴=;(2)解:如图1,在AD 上截取DG DF =,四边形ABCD 是菱形,60ADF ABC ∴∠=∠=︒,6AD AB ==,DGF ∴∆是正三角形,60DFG ∴∠=︒,GF DF DG x ===,120AGF ABE ∴∠=∠=︒,4AG x =-,BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AF AG AE AB=, 4(04)4x y x -∴=<<; (3)如图2,当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,11(42)322CH CE ∴==⨯+=,90FND AHB ∠=∠=︒,D FGD ∠=∠,2DG DN =, 431BH BC CH ∴=-=-=,四边形ABCD 是菱形,D ABC ∴∠=∠,ABH FND ∴∆∆∽,AGF ABE ∠=∠, ∴14DN BH DF AB ==, ∴12DG GF =①, BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AG GF AB BE=, ∴442DG GF -=②, 由①②得,85GF =,5如图3,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N , 作BM AC ⊥于M ,132CM AC ∴==,BM ∴= 由1122ABC S AC BM BC AH ∆=⋅=⋅得,4AH =⋅,AH ∴12BH ∴, 由第一种情形知:ABH FGN ∆∆∽,ABE AFF ∆∆∽, ∴18GN BH FG AB ==,12AG AB GF BE ==, ∴14DG GF =①,412DG GF +=②, 由①②得,7167DF ∴=, AB BE AE +>,BC BE AE ∴+>,即CE AE >, 综上所述:85DF =或167. 【点睛】本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.2、(1)① A 1B 1;②2或3;(2)b BC b BC =【解析】【分析】(1)①根据题意作出图象即可解答;②根据“关联线段”的定义,可确定线段A 2B 2存在“关联线段”,再分情况解答即可;(2)设与AB 对应的“关联线段”是A ’B ’,由题意可知:当点A ’(1,0)时,b 最大,当点A ’(-1,0)时,b 最小;然后分别画出图形求解即可;【详解】解:(1)①作出各点关于直线y =x +2的对称点,如图所示,只有A 1B 1符合题意;故答案为:A1B1;②由于直线A1B1与直线y=-x+m垂直,故A1B1不是⊙O的关于直线y=-x+m对称的“关联线段”;由于线段A3B3O的最大弦长直径=2,故A3B3也不是⊙O的关于直线y=-x+m对称的“关联线段”;A B A2B2是⊙O的关于直线y=x+2对称的“关联线段”;直线A2B2的解析式是y=-x+5,且22当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,1)与(1,0)时,m=3,当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,-1)与(-1,0)时,m=2,故答案为:2或3.(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;当点A’(1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(4,0),代入直线+=,得by b∵A’B’=OA’=OB’=1,∴△OA’B’是等边三角形,,'B M=,∴OM=12在直角三角形CB’M中,CB'=BC=当点A’(-1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(2,0),代入直线+y b=,得b∵A’B’=OA’=OB’=1,∴△OA’B’是等边三角形,∴OM=1,'B M=,2在直角三角形CB’M中,CB'=BC=综上,b BC b BC【点睛】本题是新定义综合题,主要考查了一次函数图象上点的坐标特点、圆的有关知识、等边三角形的判定和性质、勾股定理、轴对称的性质等知识,正确理解新定义的含义、灵活应用数形结合思想是解题的关键.,45;3、 (1)12(2)见解析;(3)8,2【解析】【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD垂直平分BE,连接BF,则BF=EF,求得∠EBF=∠AEB=45°,利用外角的性质得到∠AFB=∠EBF+∠AEB=90°,即可得到结论;(3)当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF⊥BC时线段MF最小,根据BC的中点M,得到CF=BF,设BG=FG=x,则x,CG x,由勾股定理得222+=,求出28CG BG BCx=-222MF=.BM MF BF+=,即可求出2(1)解:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,∠ACB,∴∠AEB=12∴∠AEB=45°.,45;故答案为:12(2)解:由题意知,CD垂直平分BE,连接BF,则BF=EF,∴∠EBF=∠AEB=45°.∴∠AFB=∠EBF+∠AEB=90°.∵∠ACB=90°,∴A、B、F、C在以AB为直径的圆上,即A、B、F、C四点共圆;(3)解:当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF⊥BC时线段MF最小,∵BC的中点M,∴CF=BF,设BG=FG=x ,则,CG +1)x ,∵222CG BG BC +=,∴2221)4x x ⎡⎤+=⎣⎦,得28x =-∵222BM MF BF +=,∴2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键.4、 (1)见解析(2)图见解析,圆心P 的坐标是(3,4)【解析】【分析】(1)根据题意可得()()()1110,6,4,2,8,2A B C ,再顺次连接,即可求解;(2)根据题意可得分别作出BC ,AC 边的垂直平分线,交于点P ,即可求解;(3)连接AP ,可得AP =,再利用弧长公式计算,即可求解.(1)解:根据题意得:()()()1110,6,4,2,8,2A B C , 根据题意画出图形,如下图所示:111A B C △即为所求;(2)解:根据题意分别作出BC ,AB 边的垂直平分线,交于点P ,再以P 为圆心,BP 长为半径作圆,则P 即为所求,如图所示,∵点()()()0,3,2,1,4,1A B C ,∴点P 的横坐标为3,∵点P 在AB 的垂直平分线上,且AB 是边长为2的正方形的对角线,∴点P 位于边长为3的正方形的对角线上,∴点P 的纵坐标为4,∴圆心P 的坐标是(3,4);(3)解:连接AP ,则AP =,∵将△ABC 绕(2)中的点P 将△ABC 绕点P 顺时针旋转90°,∴点A =. 【点睛】 本题主要考查了画位似图形,三角形的外接圆,求弧长,熟练掌握位似图形的性质,三角形的外接圆的性质,弧长公式是解题的关键.5、 (1)见解析(2)直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)根据题意作出图形即可;(2)根据圆周角定理得到∠OAP =90°,根据切线的判定定理即可得到结论.(1)解:补全的图形如图所示;(2)证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(直径所对的圆周角是直角)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(经过半径的外端,并且垂直于这条半径的直线是圆的切线)(填推理的依据). 故答案为:直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】本题考查了作图,切线的判定,圆周角定理,正确的作出图形是解题的关键.。

部编人教版九年级数学上册第27章 相似 第27章测试卷

第27章达标检测卷一、选择题(每题3分,共30分)1. 下列各组线段中,成比例线段的是()A. 1,2,3,4B. 1,2,2,4C. 3,5,9,13D. 4,6,7,82. 如图,可以判定△ABC∽△A′B′C′的条件是()A. ∠A=∠B′=∠C′B. ABA′B′=ACA′C′且∠A=∠C′C. ABA′B′=ACA′C′且∠A=∠A′ D. 以上条件都不对3. 如图,在△ABC中,DE∥BC,ADAB=13,BC=12,则DE的长是()A. 3B. 4C. 5D. 6(第2题)(第3题)(第4题)(第6题)4. 如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A. (2,1)B. (2,0)C. (3,3)D. (3,1)5. 下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到的;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81. 其中正确的有()A. 1个B. 2个C. 3个D. 4个6. 如图,为估算河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB 等于()A. 60 mB. 40 mC. 30 mD. 20 m7. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A. (6,0)B. (6,3)C. (6,5)D. (4,2)8. 如图所示,在矩形ABCD中,AB=4,BC=5,点E在BC上,AF平分∠DAE,EF⊥AE,则CF等于()A. 23 B. 1C. 32 D. 2(第7题)(第8题)(第9题)(第10题)9. 如图,在平行四边形ABCD中,E是CD上的一点,DE EC=23,连接AE,BE,BD,且AE,BD交于点F,则S△DEF S△EBF S△ABF=()A. 2525B. 4925C. 23 5D. 4102510. 如图,在△ABC中,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(每题3分,共30分)11. 比例尺为1∶4000 000的地图上,两城市间的图上距离为3 cm,则这两城市间的实际距离为________km.12. 已知△ABC∽△A′B′C′,且其相似比是34,△ABC的周长是27 cm,则△A′B′C′的周长为________cm.13. 如果xy=25,那么y-xy+x=________.14. 如图,在▱ABCD中,E在DC上,若DE EC=12,则BF BE=________.(第14题)(第15题)(第16题)15. 如图,点D,E分别在AB,AC上,且∠ABC=∠AED. 若DE=4,AE=5,BC=8,则AB的长为________.16. 如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶3,点A的坐标为(0,1),则点E的坐标是________.17. 如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10 2. 四边形BDEF是△ABC的内接正方形(点D,E,F在三角形的边上),则此正方形的面积是________.(第17题)(第18题)(第19题)(第20题)18. 如图,身高为1. 7 m的小明AB站在河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A,E,C′在一条直线上. 已知河BD的宽度为12 m,BE=3 m,则树CD的高度为________.19. 如图,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是________cm.20. 如图,A,B,C,D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式为________.三、解答题(第21~25题每题8分,第26、27题每题10分,共60分)21. 如图,四边形ABCD∽四边形EFGH,试求出x及∠α的大小.(第21题)22. 如图,点D,E分别是△ABC的AB,AC边上的点,且DE∥BC,AD:BD=1:3.(1)求证:△ADE∽△ABC;(2)若DE=2,求BC的长.(第22题)23. 如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)(2)计算△A′B′C′的面积.(第23题)24. 如图,明珠大厦的顶部建有一直径为16 m的“明珠”,它的西面45 m处有一高16 m的小型建筑CD,人站在CD的西面附近无法看到“明珠”的外貌,如果向西走到点F处,可以开始看到“明珠”的顶端B;若想看到“明珠”的全貌,必须往西至少再走12 m. 求大厦主体建筑的高度AE(不含顶部的“明珠”部分的高度).(第24题)25. 如图,在△ABC中,AB=10 cm,BC=20 cm,点P从点A开始沿AB边以2 cm/s的速度向点B移动,点Q从点B开始沿BC边以4 cm/s的速度向点C移动,如果点P,Q分别从A,B同时出发,问经过多久,△PBQ与△ABC 相似?(第25题)26. 如图,AB,AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥DE;(2)点D在劣弧AC的什么位置时,才能使AD2=DE·DF,为什么?(第26题)27. 如图①,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.(第27题)答案一、1. B 2. C 3. B 4. A 5. B6. B 点拨:∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°. 又∵∠AEB =∠DEC , ∴△ABE ∽△DCE. ∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m.7. B8. C 点拨:∵四边形ABCD 是矩形,∴AD =BC =5,∠D =∠B =∠C =90°. ∵ AF 平分∠DAE ,EF ⊥AE ,∴∠DAF =∠FAE ,∠AEF =∠D =90°. 又∵AF =AF ,∴△ADF ≌△AEF ,∴AE =AD =5. 在Rt △ABE 中,由勾股定理,得 BE =AE 2-AB 2=3,∴EC =5-3=2. ∵∠BAE +∠AEB =90°,∠AEB +∠ FEC =90°,∴∠BAE =∠FEC ,∴△ABE ∽△ECF ,∴AB CE =BE CF ,∴42=3CF , ∴CF =32. 故选C. 9. D10. D 点拨:∵四边形ADEF 为正方形,∴∠FAD =90°,AD =AF =EF ,∴∠CAD +∠FAG =90°. ∵FG ⊥CA ,∴∠G =90°=∠ACB ,∴∠AFG +∠FAG=90°. ∴∠DAC =∠AFG. 在△FGA 和△ACD 中,⎩⎨⎧∠G =∠C ,∠AFG =∠DAC ,AF =DA ,∴△FGA ≌△ACD(AAS),∴AC =FG ,①正确;∵BC =AC ,∴FG =BC. ∵∠ ACB =90°,FG ⊥CA ,∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF =90°, S △FAB =12FB·FG =12S 四边形CBFG ,②正确;∵CA =CB ,∠C =∠CBF =90°,∴ ∠ABC =∠ABF =45°,③正确;易知∠FQE =∠DQB =∠ADC ,∠E =∠C =90°,∴△ACD ∽△FEQ ,∴AC ∶AD =FE ∶FQ ,∴AD·FE =AD 2=FQ·AC , ④正确. 二、11. 12012. 36 点拨:∵△ABC ∽△A′B′C′,且相似比是34,∴△ABC 与△A′B′C′的周长比为3 4. 又∵△ABC 的周长是27 cm ,∴△A′B′C′的周长为27×43=36(cm).13. 37 点拨:由题意可设x =2a ,y =5a(a≠0),则y -x y +x =5a -2a 5a +2a =3a 7a =37.14. 3515. 10 点拨:∵∠ABC =∠AED ,∠BAC =∠EAD ,∴△AED ∽△ABC ,∴AEAB=DE CB ,∴5AB =48,∴AB =10. 16. (3,3) 17. 25 18. 5. 1 m19. 12 点拨:由折叠的性质,得DF =EF ,设EF =x cm ,则AF =(6-x) cm. ∵点E 是AB 的中点,∴AE =BE =12×6=3(cm). 在Rt △AEF 中,由勾股定理, 得AE 2+AF 2=EF 2,即32+(6-x)2=x 2,解得x =154,∴AF =6-154=94(cm). ∵∠FEG =∠D =90°,∴∠AEF +∠BEG =90°. ∵∠AEF +∠AFE =90°,∴ ∠AFE =∠BEG. 又∵∠A =∠B =90°,∴△AEF ∽△BGE ,∴BE AF =BG AE =EG EF , 即394=BG 3=EG154,解得BG =4 cm ,EG =5 cm ,∴△EBG 的周长为3+4+5 =12(cm). 20. y =4x (x >0)三、21. 解:∵四边形ABCD ∽四边形EFGH ,∴∠H =∠D =95°.∴∠α=360°-95°-118°-67°=80°. ∵四边形ABCD ∽四边形EFGH , ∴BC FG =ABEF .即x ∶7=12∶6. 解得x =14. 22. (1)证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC.(2)解:∵△ADE ∽△ABC ,∴AD AB =DE BC . ∵AD BD =13,∴AD AB =14,∴DE BC =14.又DE =2,∴BC =4DE =8.23. 解:(1)如图.(2)S △A′B′C′=4×4-12×2×2-12×2×4-12×2×4=6.(第23题)24. 解:设AE =h ,∵CD ∥AB ,∴△FAB ∽△FCD ,∴AF CF =AB CD , 即AF AF -45=h +1616,∴AF =45(h +16)h . 同理易证△AGE ∽△CGD ,∴AG CG =AE CD ,即AG AG -45=h16,∴AG =45hh -16.又∵AG -AF =12,∴45h h -16-45(h +16)h =12.整理得h 2-16h -960=0,∴h =40或h =-24(不合题意,舍去).∴大厦主体建筑的高度AE 为40 m.25. 解:设经过t s 时,△PBQ 与△ABC 相似.则AP =2t cm ,BQ =4t cm ,BP =(10-2t)cm. 当△PBQ ∽△ABC 时,有BP AB =BQBC ,即10-2t 10=4t 20,解得t =2. 5.当△QBP ∽△ABC 时,有BP BC =BQ AB ,即10-2t 20=4t 10,解得t =1.综上所述,经过2. 5 s 或1 s ,△PBQ 与△ABC 相似.26. (1)证明:如图,连接OC.∵PC =PF ,∴∠PCF =∠PFC =∠AFH.又∵PC 是⊙O 的切线,∴∠PCF +∠ACO =90°.∵OC =OA ,∴∠ACO =∠CAO.∴∠AFH +∠CAO =90°.∴∠FHA =90°. ∴AB ⊥DE.(第26题)(2)解:点D 在AC ︵的中点时,AD 2=DE·DF.理由如下:如图,连接AE ,∵点D 是AC ︵的中点,∴DC ︵=DA ︵,∴∠CAD =∠AED.又∵∠FDA =∠ADE ,∴△ADF ∽△EDA ,∴AD ED =DF DA ,∴AD 2=DE·DF.27. 解:(1)当α=0°时,∵BC =2AB =8,∴AB =4.∵点D,E分别是边BC,AC的中点,∴BD=4,AE=EC=12AC.∵∠B=90°,∴AC=82+42=45,∴AE=CE=25,∴AEBD=254=52.当α=180°时,如图①,易得AC=45,CE=25,CD=4,∴AEBD=AC+CEBC+CD=45+258+4=52.(第27题)(2)无变化.证明:在题图①中,∵DE是△ABC的中位线,∴DE∥AB,∴CECA=CDCB,∠EDC=∠B=90°.如题图②,∵△EDC在旋转过程中形状大小不变,∴CECA=CDCB仍然成立.又∵∠ACE=∠BCD=α,∴△ACE∽△BCD,∴AEBD=ACBC.在Rt△ABC中,AC=AB2+BC2=42+82=4 5.∴ACBC=458=52,∴AEBD=52,∴AEBD的大小不变.(3)当△EDC在BC上方,且A,D,E三点共线时,四边形ABCD为矩形,如图②,∴BD=AC=45;当△EDC在BC下方,且A,E,D三点共线时,△ADC为直角三角形,如图③,由勾股定理可得AD=AC2-CD2=8. 又易知DE=2,∴AE=6. ∵AEBD=52,∴BD=1255. 综上,BD的长为45或125 5.。

达标测试华东师大版九年级数学下册第27章 圆同步测评试题(含答案解析)

华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD 中,点E 在CD 边上,连接AE ,将ADE 沿AE 翻折,使点D 落在BC 边的点F 处,连接AF ,在AF 上取点O ,以O 为圆心,线段OF 的长为半径作⊙O ,⊙O 与AB ,AE 分别相切于点G ,H ,连接FG ,GH .则下列结论错误的是( )A .2BAE DAE ∠=∠B .四边形EFGH 是菱形C .3AD CE = D .GH AO ⊥2、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相交或相切3、如图,△ABC 周长为20cm ,BC =6cm ,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M、N,则△AMN的周长为()A.14cm B.8cm C.7cm D.9cm4、有下列四个命题,其中正确的个数是()(1)经过三个点一定可以作一个圆;(2)任意一个三角形有且仅有一个外接圆;(3)三角形的外心到三角形的三个顶点的距离相等;(4)在圆中,平分弦的直径一定垂直于这条弦;A.1个B.2个C.3个D.4个5、如图,AB是O的切线,B为切点,连接O A,与O交于点C,D为O上一动点(点D不与点C、点B重合),连接CD BD、.若42∠的度数为()∠=︒,则DAA.21︒B.24︒C.42︒D.48︒6、如图,点A,B,C为O上三点,若54∠的大小为()∠=︒,则AOBCA .27︒B .36︒C .54︒D .108︒7、如图,PA ,PB 是⊙O 的切线,A ,B 为切点,PA =4,则PB 的长度为( )A .3B .4C .5D .68、在圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数之比为2:4:7,则∠B 的度数为( )A .140°B .100°C .80°D .40°9、如图,在Rt ABC 中,90C ∠=︒,10cm AB =,若以点C 为圆心,CB 的长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A .5cmB .6cmC .D .10、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12BCD .23第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.2、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.3、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.4、如图,PA 、PB 分别与O 相切于A 、B 两点,若58P ∠=︒,则ACB ∠的度数为________.5、如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,若对角线AC =AC 的长为 _____.6、已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.7、在Rt △ABC 中,∠C =90°,∠B =30°,AC =2,点D 、E 分别在边BC 、AB 上,且DE ⊥BC ,BD =2,将△BDE 绕点B 旋转至△BD 1E 1,点D 、E 分别对应点D 1、E 1,当A 、D 1、E 1三点共线时,CD 1的长为 ___.8、如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若弦BC 的长度为∠BAC =________度.9、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.10、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P= 50°,则∠ACB=_____________°三、解答题(5小题,每小题8分,共计40分)1、【数学认识】数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系.【构造模型】(1)如图①,已知△ABC,在直线BC上用直尺与圆规作点D,使得∠ADB=1∠ACB.2(不写作法,保留作图痕迹)【应用模型】已知△ABC是⊙O的内接三角形,⊙O的半径为r,△ABC的周长为c.(2)如图②,若r=5,AB=8,求c的取值范围.(3)如图③,已知线段MN,AB是⊙O一条定长的弦,用直尺与圆规作点C,使得c=MN.(不写作法,保留作图痕迹)2、(1)如图1,在△ABC 中,AC =6,AB =135BAC ∠=︒,求△ABC 的面积.(2)如图2,半圆O 的直径AB =10,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC +PD 的最小值.(3)如图3,扇形AOB 的半径为20,∠AOB =45°,在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE +EF +FP 的长度的最小值.3、如图,在ABC 中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,点O 在AB 上,以O 为圆心,OA 长为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若1CE =,3DE =,求O 的半径.4、如图, 在Rt ABC 中, 90ACB ∠=, 经过A B C ,,三点作O ACB ∠,的角平分线CE 交AB 于点D , 交O 于点E , 连结 AE BE ,.(1)求证: EAB EBA ∠=∠;(2)当68AC BC ==,时, 求线段CE 的长;(3)当14AC BC +=时, 设AC x CD y ==,, 求y 关于x 的函数表达式.5、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC 的三个顶点都在⊙O 上,且∠ACB =90°.求证:线段AB 是⊙O 的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A ,B ,C ,D 均在半径为1的⊙O 上,若∠ACB =90°,∠ACD =60°.则线段AD 的长为 .【拓展应用】如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE.若AB=DE的长为.-参考答案-一、单选题1、C【解析】【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,∆ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在Rt∆EFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD,∴AD,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30︒的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.2、B【解析】【分析】圆的半径为,r圆心O到直线l的距离为,d当d r=时,直线与圆相切,当d r时,直线与圆相离,<时,直线与圆相交,根据原理直接作答即可.当d r【详解】解:⊙O的直径为10cm,圆心O到直线l的距离为5cm,∴⊙O的半径等于圆心O到直线l的距离,∴直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.3、B【解析】【分析】根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.解:∵圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,∴BF =BE ,CF =CD ,DN =NG ,EM =GM ,AD =AE ,∵△ABC 周长为20cm ,BC =6cm ,∴AE =AD =2AB AC BC +-=202BC BC --=20122-=4(cm ), ∴△AMN 的周长为AM +MG +NG +AN =AM +ME +AN +ND =AE +AD =4+4=8(cm ),故选:B .【点睛】本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE 和AD 的长,难度不大.4、B【解析】【分析】根据确定圆的条件、三角形的外心的概念、垂径定理的推论判断即可.【详解】(1)经过不在同一直线上的三个点一定可以作一个圆,故本说法错误;(2)任意一个三角形有且仅有一个外接圆,本说法正确;(3)三角形的外心到三角形的三个顶点的距离相等,本说法正确;(4)在圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本说法错误;【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵AB是O的切线,B为切点∴∠OBA=90°∵42∠=︒A∴∠COB=90°-42°=48°∠COB=24°.∴D∠=12故选B.【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题6、D【解析】【分析】直接根据圆周角定理即可得出结论.【详解】解:C ∠与AOB ∠是同弧所对的圆周角与圆心角,2108AOB C ∴∠=∠=︒,故选:D .【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7、B【解析】【分析】由切线的性质可推出OA AP ⊥,OB BP ⊥.再根据直角三角形全等的判定条件“HL ”,即可证明OAP OBP ≅,即得出4PB PA ==.【详解】∵PA ,PB 是⊙O 的切线,A ,B 为切点,∴OA AP ⊥,OB BP ⊥,∴在Rt OAP △和Rt OBP 中,OA OB OP OP =⎧⎨=⎩, ∴()OAP OBP HL ≅,∴4PB PA ==.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、C【解析】【分析】180A C ∠+∠=︒,::2:4:7A B C ∠∠∠=,40A ∠=︒,进而求解B 的值.【详解】解:由题意知180A C ∠+∠=︒∵::2:4:7A B C ∠∠∠=∴():1802:7A A ∠-∠=∴40A ∠=︒∵:2:4A B ∠∠=∴80B ∠=︒故选C .【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.9、D【解析】【分析】连接CD ,由直角三角形斜边中线定理可得CD =BD ,然后可得△CDB 是等边三角形,则有BD =BC =5cm ,进而根据勾股定理可求解.【详解】解:连接CD ,如图所示:∵点D 是AB 的中点,90C ∠=︒,10cm AB =, ∴15cm 2CD BD AB ===, ∵CD BC =,∴5cm CD BD BC ===,在Rt△ACB 中,由勾股定理可得AC =;故选D .【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.10、B【解析】【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CDAC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD . 故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.二、填空题1、65【解析】根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA 是⊙O 的切线,∴OA ⊥AP ,∴90APO AOP ∠+∠=︒,∵∠APO =25°,∴90902565AOP APO ∠=︒-∠=︒-︒=︒,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键. 2、2或2-或0【解析】【分析】当⊙P 与x 轴相切时,圆心P 的纵坐标为1或-1,根据圆心P 在抛物线上,所以当y 为±1时,可以求出点P 的横坐标.【详解】解:当y =1时,有1=-12x 2+1,x =0.当y =-1时,有-1=-12x 2+1,x =2±.故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x 轴相切得到点P 的纵坐标,然后代入抛物线求出点P 的3、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.4、61︒【解析】【分析】根据已知条件可得出90OAP OBP ∠=∠=︒,122AOB ∠=︒,再利用圆周角定理得出1612C AOB ∠=∠=︒即可.【详解】解:PA 、PB 分别与O 相切于A 、B 两点,OA PA ∴⊥,OB PB ⊥,90OAP OBP ∴∠=∠=︒,180********AOB P ∴∠=︒-∠=︒-︒=︒,111226122C AOB ∴∠=∠=⨯︒=︒. 故答案为:61︒.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.5、4π3【解析】【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r =或2r =-(舍去),∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.6、相切【解析】【分析】过点C 作CD ⊥AB 于D ,在Rt△ABC 中,根据勾股定理AB 10=cm ,利用面积得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线AB与O的位置关系是相切.【详解】解:过点C作CD⊥AB于D,在Rt△ABC中,根据勾股定理AB10=cm,∴S△ABC=12CD·AB=12AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直线AB与O的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.7、2或4##4或2【解析】【分析】根据题意分两种情况讨论,由矩形的性质和全等三角形的性质进行分析即可求解.【详解】解:如图1,当点D1在线段AE1上,∵∠ACD=90°,∠ABC=30°,AC=2,∴AB=4,BC∵将△BDE绕点B旋转至△BD1E1,∴D1B=2=DB,∠BD1E1=90°,∴AD=,1∴AD1=BC,且AC=BD1,∴四边形ACBD1是平行四边形,且∠ACB=90°,∴四边形ACBD1是矩形,∴CD1=AB=4,如图2,当点D1在线段AE1的延长线上,∵∠ACB=∠AD1B=90°,∴点A,点B,点D1,点C四点共圆,∴∠AD1C=∠ABC=30°,∵AC=BD1,AB=AB,∴Rt△ABC≌Rt△BAD1(HL)∴∠D1AB=∠ABC=30°,且∠BAC=60°,∴∠CAD1=30°=∠AD1C,∴AC=CD1=2,综上所述:CD1=2或4,故答案为:2或4.【点睛】本题考查旋转的性质,矩形的判定和性质,全等三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用分类讨论解决问题是解答本题的关键.8、60【解析】【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.9、15##十五【解析】【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.【详解】解:如图,设正多边形的外接圆为⊙O ,连接OA ,OB ,∵∠ADB =12°,∴∠AOB =2∠ADB =24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.10、65【解析】【分析】连接,OA OB ,根据切线的性质以及四边形内角和定理求得130AOB ∠=︒,进而根据圆周角定理即可求得∠ACB【详解】解:连接,OA OB ,如图,PA ,PB 分别与⊙O 相切90OAP OBP ∴∠=∠=︒360130AOB OAP OBP P ∴∠=︒-∠-∠-∠=︒AB AB =1652ACB AOB ∴∠=∠=︒ 故答案为:65【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.三、解答题1、(1)见解析;(2)16<c ≤8+(3)见解析【解析】【分析】(1)可找到两个这样的点:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C 与A 或B 重合时,则8CA CB AB +==,可得此时16c =,根据题意可得16c >,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为ABD外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得AC=AD为直径时,c最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得ED BD=;第2步:作ABE的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF 交⊙O于点C,即为所求.【详解】(1)如图所示:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点1D,连接1AD,即为所求;证明:①∵AC CD=,∴CDA CAD∠=∠,∴12CDA BCA ∠=∠;同理可证明11 2CD A BCA ∠=∠;(2)当C 与A 或B 重合时,则8CA CB AB +==,∴16c CA CB AB =++=,∵ABC ,∴16c >,如图,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =, ∴12D ACB ∠=∠,∵同弧所对的圆周角相等,∴ACB ∠为定角,∴D ∠为定角,∴点D 的运动轨迹为一个圆,当点C 为优弧AB 的中点时,点C 即为ABD 外接圆的圆心,AC 长为半径,连接CO 并延长交AB 于点E ,连接AO ,由垂径定理可得:CE 垂直平分AB , ∴142AE AB ==, 在Rt AOE 中,OE==,3CE=+=,∴538∴AC=∴AD为直径时最长,∴AC BC AD+==∴ABC的周长最长.∴c最长为8++=+,AB AC BC∴c的取值范围为:168<≤+c(3)方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得ED BD;第2步:作ABE的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF交⊙O于点C,即为所求.【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=∴222232BD AB===,解得:BD=4,∵AC=6,∴11641222ABCS AC BD∆=⋅⋅=⨯⨯=.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C为半圆AB的中点,∴∠COB=90°,∵∠BOD+∠COD=∠COB=90°,∴11903033BOD COB︒︒∠=∠=⨯=,∵AB=10,∴1110522OD AB ==⨯=, 在Rt △ODH 中,由作图知,∠OHD =90°,且∠HOD =∠BOD =30°, ∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E为OA上的点,F为OB上的点,∴PE+EF+FP≥SN,∴当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)直线BC与O相切,见解析;(2)9 2【解析】【分析】(1)连接OD,根据AD平分CAB∠,得到∠CAD=∠BAD,由OA=OD,推出∠BAD=∠ADO.进而证得AC∥OD,得到∠ODB=90C∠=︒,得到直线BC与O相切;(2)过点D作DH⊥AB于H,连接DF,根据四边形AEDF是圆内接四边形,得到∠CED=∠DFH,利用角平分线的性质得CD=HD,由此证明△CED≌△HFD,求出FH=CE=1,DF=DE=3,再证明△DFH∽△AFD,得到2DF FH AF=⋅,求出AF即可得到半径.(1)解:直线BC 与O 相切;证明:连接OD ,∵AD 平分CAB ∠,∴∠CAD =∠BAD ,∵OA=OD ,∴∠BAD =∠ADO .∴∠CAD =∠ADO .∴AC ∥OD ,∴∠ODB =90C ∠=︒,即OD ⊥BC ,∵BC 过半径OD 的外端点D ,∴直线BC 与O 相切.(2)解:过点D 作DH ⊥AB 于H ,连接DF ,∵四边形AEDF 是圆内接四边形,∴∠CED =∠DFH ,∵AD 平分CAB ∠,DH ⊥AB ,CD ⊥AC ,∴CD=HD ,∵∠DHF =90C ∠=︒,∴△CED ≌△HFD ,∴FH=CE=1,DF=DE =3,∵AF 是O 的直径,∴∠DHF =90,ADF DFH AFD ∠=︒∠=∠,∴△DFH ∽△AFD ,∴2DF FH AF =⋅,∴2=3=9AF ,∴O 的半径是92.【点睛】此题考查了圆的切线的判定定理,平行线的性质,全等三角形的判定及性质,圆内接四边形的性质,相似三角形的判定及性质,这是一道几何的综合题,综合掌握各知识点并熟练应用是解题的关键.4、 (1)见解析;(2)CE =(3)2y = 【解析】【分析】(1)根据角平分线定义和等弧所对的圆周角相等解答即可;(2)过E作EF⊥CA交CA延长线于F,过E作EH⊥BC于H,根据角平分线性质定理得出EF=EH,证明四边形CFEH是正方形,则CF=CH,CE,根据HL定理可证明Rt△AEF≌Rt△BEH,则有AF=BH,由6+AF=8-AF求出AF即可解答;(3)过A作AP⊥CE于P,过B作BQ⊥CE于Q,根据角平分线定义得出∠ACP=∠BCQ=45°,利用锐角S S S求解即可.三角函数求得AP、BQ,利用等面积ABC ACD BCD(1)证明:∵CE平分∠ACB,∴∠CAE=∠BCE,∴AE BE=,∴EAB EBA∠=∠;(2)解:过E作EF⊥CA交CA延长线于F,过E作EH⊥BC于H,则∠EFC=∠EHC=90°,又∵∠ACB=90°,∴四边形CFEH是矩形,∵CE平分∠ACB,EF⊥CA,EH⊥BC,∴EF=EH,∴四边形CFEH是正方形,∴CF=CH,CE,∵AE BE=∴AE=BE,在Rt△AEF和Rt△BEH中,AE BE EF EH=⎧⎨=⎩, ∴Rt △AEF ≌Rt △BEH (HL ),∴AF=BH ,∵AC =6,BC =8,CF=CH ,∴6+AF =8-AF ,∴AF =1,即CF =7,∴CE CF =(3)解:过A 作AP ⊥CE 于P ,过B 作BQ ⊥CE 于Q , ∵AD 平分∠ACB ,∠ACB =90°∴∠ACP =∠BCQ =45°,在Rt△ACP 中,AC=x ,∴AP =AC , 在Rt △BCQ 中,BC=14-x ,∴BQ =BC -x ),由ABC ACD BCD SS S 得:111222AC BC CD AP CD BQ ,∴111(14))222x x y y x y -=+-=,整理得:2y =,即y 关于x 的函数表达式为2y x =.【点睛】本题考查角平分线性质、圆周角定理、正方形的判定与性质、全等三角形的判定与性质、锐角三角函数、三角形的面积公式等知识,知识面广,综合性强,解答的关键是熟练掌握相关知识的联系与运用.5、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1=+=DE EF DF【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档