山东省烟台市某重点中学招生数学真卷
2023年山东省烟台市中考数学试卷及答案解析

2023年山东省烟台市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
1.(3分)﹣的倒数是()A.B.﹣C.D.﹣2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)下列四种图案中,是中心对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.(2a2)3=6a6C.a2•a3=a5D.a8÷a2=a4 5.(3分)不等式组的解集在同一条数轴上表示正确的是()A.B.C.D.6.(3分)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.7.(3分)长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是()A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.(3分)如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为P1,停在空白部分的概率为P2,则P1与P2的大小关系为()A.P1<P2B.P1=P2C.P1>P2D.无法判断9.(3分)如图,抛物线y=ax2+bx+c的顶点A的坐标为(﹣,m),与x轴的一个交点位于0和1之间,则以下结论:①abc>0;②2b+c>0;③若图象经过点(﹣3,y1),(3,y2),则y1>y2;④若关于x的一元二次方程ax2+bx+c﹣3=0无实数根,则m<3.其中正确结论的个数是()A.1B.2C.3D.410.(3分)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)二、填空题(本大题共6个小题,每小题3分,满分18分)11.(3分)“北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为.12.(3分)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为.13.(3分)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.14.(3分)如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是.15.(3分)如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.16.(3分)如图1,在△ABC中,动点P从点A出发沿折线AB→BC→CA匀速运动至点A 后停止.设点P的运动路程为x,线段AP的长度为y,图2是y与x的函数关系的大致图象,其中点F为曲线DE的最低点,则△ABC的高CG的长为.三、解答题(本大题共8个小题,满分72分)17.(6分)先化简,再求值:÷(a+2+),其中a是使不等式≤1成立的正整数.18.(7分)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A,B,C,D,E五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D所在的扇形的圆心角的度数为;若该市有1000名中学生参加本次活动,则选择A大学的大约有人;(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.19.(8分)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)20.(8分)【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD进行如下操作:①分别以点B,C为圆心,以大于BC的长度为半径作弧,两弧相交于点E,F,作直线EF交BC于点O,连接AO;②将△ABO沿AO翻折,点B的对应点落在点P处,作射线AP交CD于点Q.【问题提出】在矩形ABCD中,AD=5,AB=3,求线段CQ的长;【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ,如图2.经过推理、计算可求出线段CQ的长;方案二:将△ABO绕点O旋转180°至△RCO处,如图3.经过推理、计算可求出线段CQ的长.请你任选其中一种方案求线段CQ的长.21.(9分)中华优秀传统文化源远流长,是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售,求两种图书分别购买多少本时费用最少?22.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点E,⊙O经过A,D两点,交对角线AC于点F,连接OF交AD于点G,且AG=GD.(1)求证:AB是⊙O的切线;(2)已知⊙O的半径与菱形的边长之比为5:8,求tan∠ADB的值.23.(11分)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB 的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.24.(13分)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx﹣1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+PA的最小值.2023年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
2023年山东省烟台市中考数学试卷及答案解析

2023年山东省烟台市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
1.(3分)﹣的倒数是()A.B.﹣C.D.﹣2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)下列四种图案中,是中心对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.a2+a2=2a4B.(2a2)3=6a6C.a2•a3=a5D.a8÷a2=a4 5.(3分)不等式组的解集在同一条数轴上表示正确的是()A.B.C.D.6.(3分)如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为()A.B.C.D.7.(3分)长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是()A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.(3分)如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为P1,停在空白部分的概率为P2,则P1与P2的大小关系为()A.P1<P2B.P1=P2C.P1>P2D.无法判断9.(3分)如图,抛物线y=ax2+bx+c的顶点A的坐标为(﹣,m),与x轴的一个交点位于0和1之间,则以下结论:①abc>0;②2b+c>0;③若图象经过点(﹣3,y1),(3,y2),则y1>y2;④若关于x的一元二次方程ax2+bx+c﹣3=0无实数根,则m<3.其中正确结论的个数是()A.1B.2C.3D.410.(3分)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)二、填空题(本大题共6个小题,每小题3分,满分18分)11.(3分)“北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为.12.(3分)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为.13.(3分)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.14.(3分)如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是.15.(3分)如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为.16.(3分)如图1,在△ABC中,动点P从点A出发沿折线AB→BC→CA匀速运动至点A 后停止.设点P的运动路程为x,线段AP的长度为y,图2是y与x的函数关系的大致图象,其中点F为曲线DE的最低点,则△ABC的高CG的长为.三、解答题(本大题共8个小题,满分72分)17.(6分)先化简,再求值:÷(a+2+),其中a是使不等式≤1成立的正整数.18.(7分)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A,B,C,D,E五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D所在的扇形的圆心角的度数为;若该市有1000名中学生参加本次活动,则选择A大学的大约有人;(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.19.(8分)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)20.(8分)【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD进行如下操作:①分别以点B,C为圆心,以大于BC的长度为半径作弧,两弧相交于点E,F,作直线EF交BC于点O,连接AO;②将△ABO沿AO翻折,点B的对应点落在点P处,作射线AP交CD于点Q.【问题提出】在矩形ABCD中,AD=5,AB=3,求线段CQ的长;【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ,如图2.经过推理、计算可求出线段CQ的长;方案二:将△ABO绕点O旋转180°至△RCO处,如图3.经过推理、计算可求出线段CQ的长.请你任选其中一种方案求线段CQ的长.21.(9分)中华优秀传统文化源远流长,是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售,求两种图书分别购买多少本时费用最少?22.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点E,⊙O经过A,D两点,交对角线AC于点F,连接OF交AD于点G,且AG=GD.(1)求证:AB是⊙O的切线;(2)已知⊙O的半径与菱形的边长之比为5:8,求tan∠ADB的值.23.(11分)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB 的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.24.(13分)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx﹣1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+PA的最小值.2023年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
2023-2024学年山东省烟台市莱州重点中学高一(上)质检数学试卷(10月份)(含解析)

2023-2024学年山东省烟台市莱州重点中学高一(上)质检数学试卷(10月份)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)L命题“有些实数的绝对值是正数”的否定是(A.'tx E R, lxl > 0B.'tx E R, lxl $ 0C.3x ER, lxl > 0D. 3x ER. l xl $ 02已知集合A= {xl2x2 + x -6 $ O}, B= {xi芒<0},则AU B =( )A.{xi -2 $ x < 1}B.{xi -2 $ x $ 1}C.{xi -3 < X $ i)D.{xi-3 < X < �)3.已知集合A= {xlx2 -3x + 2 = 0, x E R}, B = {xlO < x < 5, x EN},则满足条件A�C�B的集合C的个数为()A.1B. 2C. 3D. 44若函数Y=f(x)的定义域为{xi-3 $ x $ 8,x * 5,值域为{YI-1 $ y $ 2,y -:t= o},则Y= f(x)的图象可能是()V'yA. ByD.5.若函数Y= f(x)的定义域是[0,2],则函数9(x)=竖早的定义域是()A.(0,1)B. [0,1)6.若函数f(x)和g(x)分别由下表给出:C.[0.1) u (1.4)D. (0,1)x 1 I 2 I 3 I 41 f(x) 12 13 1 4| 1满足g(f(x))= 1的x值是()Xg(x) 三A.1B. 2C.3D. 47.下列四组函数中,f(x)与9(x)不相等的是()A.f(x) = I x |为(x)= J了B.f (x) = x 2 + 1与g(t)= t 2 + 1冈-·C. f (x) =-与g(x)= 1,x > 0 x {_1,x< 0 D .f(x)=�)与g(x )={了言J飞=T8.已知关于x的不等式组{x 2 -2x -8 > 02x 2+ (2k + 7)x + 7k < 0 仅有一个憋数解,则k的取值范围为()A. (-5,3) u (4,5)B.(-5,3) u (4,5)C. (-5,3) u (4,5)D. (-5,3) u (4,5)二、多选题(本大题共4小题,共20.0分。
2024届烟台市重点中学中考数学模拟精编试卷含解析

2024学年烟台市重点中学中考数学模拟精编试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1002.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.3.下列说法中,正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径4.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.155.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数7.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1658.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.9.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥10.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)11.分解因式:x3y﹣2x2y+xy=______.12.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,3AP的长为_____.13.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角°.14.正五边形的内角和等于______度.15.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.16.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.17.如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB 的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.19.(5分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.20.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.21.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C 按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).22.(10分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD 于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.23.(12分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.24.(14分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【题目详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【题目点拨】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.2、D【解题分析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.3、D【解题分析】根据切线的判定,圆的知识,可得答案.【题目详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;故选:D.【题目点拨】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.4、B【解题分析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.5、D【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解题分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D.【题目点拨】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.7、A【解题分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【题目详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【题目点拨】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.8、D【解题分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【题目详解】当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【题目点拨】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.9、B【解题分析】将一次函数解析式代入到反比例函数解析式中,整理得出x 2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【题目详解】由题意可得:﹣x+2=,所以x 2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数, ∴ 解不等式组,得t >.故选:B .点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.10、C【解题分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a >﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【题目详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确;②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【题目点拨】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、xy (x ﹣1)1【解题分析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=xy (x 1-1x+1)=xy (x-1)1.故答案为:xy (x-1)1【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、33或63【解题分析】分成P 在OA 上和P 在OC 上两种情况进行讨论,根据△ABD 是等边三角形,即可求得OA 的长度,在直角△OBP 中利用勾股定理求得OP 的长,则AP 即可求得.【题目详解】设AC 和BE 相交于点O .当P 在OA 上时,∵AB=AD ,∠A=60°,∴△ABD 是等边三角形,∴BD=AB=9,OB=OD=12BD=92. 则2222993=9-()2AB OB -=. 在直角△OBP 中,2222933(33)()2PB OB -=-=. 则933333-=当P在OC上时,AP=OA+OP=933363 22+=.故答案是:33或63.【题目点拨】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.13、1【解题分析】试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π,解得:l=5,∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度.故答案为1.考点:圆锥的计算.14、540【解题分析】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3⨯180=540°15、2 5 .【解题分析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【题目详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是25,故答案是:25.【题目点拨】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.16、AC⊥BD【解题分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【题目详解】∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【题目点拨】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.17、1.【解题分析】求出AD=AB ,设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,求出x ,得出AD=10,AE=6,在Rt △ADE 中,由勾股定理求出DE=8,在Rt △BDE 中得出tan ,DE DBE BE ∠=代入求出即可, 【题目详解】解:∵四边形ABCD 是菱形,∴AD=AB ,∵cosA=35,BE=4,DE ⊥AB , ∴设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,x=1,即AD=10,AE=6,在Rt △ADE 中,由勾股定理得: 8DE =,在Rt △BDE 中,8tan 2,4DE DBE BE ∠=== 故答案为:1.【题目点拨】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE 的长.三、解答题(共7小题,满分69分)18、(1)见解析;(2)tan BAE ∠=【解题分析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可.【题目详解】证明:(1)∵BD ⊥AB ,EF ⊥CD ,∴∠ABD =90°,∠EFD =90°,根据题意,在▱ABCD 中,AB ∥CD ,∴∠BDC =∠ABD =90°,∴BD ∥GF ,∴四边形BDFG 为平行四边形,∵∠BDC =90°,∴四边形BDFG 为矩形;(2)∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AD ∥BC ,∴∠BEA =∠DAE ,∴∠BAE =∠BEA ,∴BA =BE ,∵在Rt △BCD 中,点E 为BC 边的中点,∴BE =ED =EC ,∵在▱ABCD 中,AB =CD ,∴△ECD 为等边三角形,∠C =60°, ∴1302BAE BAD ∠=∠=︒,∴tan 3BAE ∠=. 【题目点拨】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.19、(1)距离是70米,速度为95米/分;(2)y=35x ﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解题分析】(1)当x=0时的y 值即为A 、B 两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A 、B 两点之间的距离;(2)由题意求解E 、F 两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC 之间的距离,再加上AB 之间的距离即为AC 之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【题目详解】解:(1)由图象可知,A 、B 两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分; (2)设线段EF 所在直线的函数解析式为:y=kx+b ,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【题目点拨】本题考查了一次函数的应用,读懂图像是解题关键..20、(1)14;(2)14【解题分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【题目详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14; (2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种, ∴他们三人在同一个半天去游玩的概率为28=14. 答:他们三人在同一个半天去游玩的概率是14. 【题目点拨】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.21、(1)()04A ,、()31C ,(2)见解析(332 【解题分析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则9032321801802n rlππ⨯===.考点:图形的旋转、扇形的弧长计算公式.22、(1) 223;(2)见解析【解题分析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x3,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴3x,3,3∴CD=2x=233,∴BD=BC﹣CD=AC﹣CD=2﹣233;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.23、(1)DF=EF+BE.理由见解析;(2)CF=1.【解题分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如图1所示,∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.24、(1)∠DOA =100°;(2)证明见解析.【解题分析】(2)连接OE,利用SSS证明△EAO≌△EDO,试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)证明:连接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直线ED与⊙O相切.考点:圆周角定理;全等三角形的判定及性质;切线的判定定理。
2023年山东省烟台市中考数学试卷含答案解析

绝密★启用前2023年山东省烟台市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −23的倒数是( )A. 23B. −23C. 32D. −322. 下列二次根式中,与√ 2是同类二次根式的是( )A. √ 4B. √ 6C. √ 8D. √ 123. 下列四种图案中,是中心对称图形的是( )A. B.C. D.4. 下列计算正确的是( )A. a2+a2=2a4B. (2a2)3=6a6C. a2⋅a3=a5D. a8÷a2=a45. 不等式组{3m−2≥12−m>3的解集在同一条数轴上表示正确的是( )A.B.C.D.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值的平均数大于乙班视力值的平均数B. 甲班视力值的中位数大于乙班视力值的中位数C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为P1,停在空白部分的概率为P2,则P1与P2的大小关系为( )A. P1<P2B. P1=P2C. P1>P2D. 无法判断9. 如图,抛物线y=ax2+bx+c的顶点A的坐标为(−1,m),2与x轴的一个交点位于0和1之间,则以下结论:①abc>0;②2b+c>0;③若图象经过点(−3,y1),(3,y2),则y1>y2;④若关于x的一元二次方程ax2+bx+c−3=0无实数根,则m<3.其中正确结论的个数是( )A. 1B. 2C. 3D. 410. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(−3,0),A1(−2,1),A2(−1,0),A3(−2,−1),则顶点A100的坐标为( )A. (31,34)B. (31,−34)C. (32,35)D. (32,0)二、填空题(本大题共6小题,共18.0分)11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为______ .12. 一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为______ .13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为______ .14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是______ .15. 如图,在直角坐标系中,⊙A与x轴相切于点B,CB为⊙A的直径,点C在函数y=kx(k>0,x>0)的图象上,D为y轴上一点,△ACD的面积为6,则k的值为______ .16. 如图1,在△ABC中,动点P从点A出发沿折线AB→BC→CA匀速运动至点A后停止.设点P的运动路程为x,线段AP的长度为y,图2是y与x的函数关系的大致图象,其中点F为曲线DE的最低点,则△ABC的高CG的长为______ .三、解答题(本大题共8小题,共72.0分。
烟台市中考试卷真题数学

烟台市中考试卷真题数学一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.3C. πD. 12. 一个正数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 23. 若a+b=5,a-b=1,则a²-b²的值是:A. 12B. 14C. 16D. 244. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π5. 一个等差数列的首项是3,公差是2,第10项是:A. 23B. 21C. 19D. 176. 下列哪个是二次根式的最简形式?A. √12B. √18C. √32D. √167. 一个直角三角形的两个直角边分别是3和4,斜边的长度是:A. 5B. 6C. 7D. 88. 一个多项式f(x)=3x³-2x²+x-5,它的导数f'(x)是:A. 9x²-4x+1B. 3x²-2x+1C. 3x²-4xD. 9x²-2x-19. 一个函数y=2x+3的反函数是:A. x=2y+3B. x=(y-3)/2C. y=(2x-3)/3D. y=(3-x)/210. 下列哪个是一元一次方程的解?A. x=2B. x=-2C. x=0D. x=1二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
12. 如果一个数的立方是-27,那么这个数是________。
13. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。
14. 一个分数的分母是8,化简后是3/4,原分数是________。
15. 一个等腰三角形的底边长是10,两腰边长是x,若周长为36,那么x是________。
16. 一个二次方程x²-4x+4=0的判别式是________。
17. 一个圆的直径是14,那么它的周长是________。
2023年山东省烟台市数学中考真题(word解析版)
2023年烟台市初中学业水平考试数学试题一、选择题1. 的倒数是( )A.B.C.D.【答案】D 【解析】【分析】根据乘积是1两个数叫做互为倒数解答.【详解】解:∵,∴的倒数是,故选:D .【点拨】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键.2.是同类二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据同类二次根式定义,逐个进行判断即可.【详解】解:A不是同类二次根式,不符合题意;B不是同类二次根式,不符合题意;C是同类二次根式,符合题意;D,与不是同类二次根式,不符合题意;故选:C .【点拨】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3. 下列四种图案中,是中心对称图形的是( )的的23-2323-3232-23132⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭23-32-2===A. B. C. D.【答案】B 【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:根据题意可得:是中心对称图形的只有B ,故选:B .【点拨】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.4. 下列计算正确的是( )A. B. C. D. 【答案】C 【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A .,故该选项不正确,不符合题意;B .,故该选项不正确,不符合题意;C .,故该选项正确,符合题意;D .,故该选项不正确,不符合题意.故选:C .【点拨】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.5. 不等式组的解集在同一条数轴上表示正确的是( )A. B. C.D.【答案】A180︒180︒2242a a a +=()32626a a =235a a a ⋅=824a a a ÷=2222a a a +=()32628a a =235a a a ⋅=826a a a ÷=321,23m m -≥⎧⎨->⎩【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【详解】解:解不等式①得: 解不等式②得:将不等式的解集表示在数轴上,如图所示,故选:A .【点拨】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.【答案】A 【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱的投影为点E ,棱的投影为线段,棱的投影为线段,棱的投影为正方形的对角线,32123m m -≥⎧⎨->⎩①②m 1≥1m <-AE AB BE AD ED AC BCDE∴该几何体的俯视图为:,故选:A【点拨】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值平均数大于乙班视力值的平均数B. 甲班视力值的中位数大于乙班视力值的中位数C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差【答案】D 【解析】【分析】根据平均数,中位数,极差,方差的定义分别求解即可.【详解】甲班视力值分别为:;从小到大排列为:;中位数为,平均数为;极差为方差为;乙班视力值分别为:;的 4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.44.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0 4.7 4.7=4.72+()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++ 5.0 4.40.6-=()()()()222221=0.30.10.10.3=0.0258S ⎡⎤+++⎣⎦甲 4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4从小到大排列为:,中位数为平均数为;极差为方差为;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确故选:D .【点拨】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为,停在空白部分的概率为,则与的大小关系为( )A. B. C. D. 无法判断【答案】C 【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解.【详解】解:如图所示,连接交于O ,由题意得,分别是正方形四条边的中点,∴点O 为正方形的中心,∴,4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0 4.7 4.7=4.72+()14.4 4.5 4.6 4.7 4.7 4.8 4.95.0=4.78+++++++ 5.0 4.40.6-=()()()()()()22222221=0.30.20.10.10.20.3=0.0358S ⎡⎤+++++⎣⎦甲1P 2P 1P 2P 12P P <12P P =12P P >AE BD ,A B C D ,,,AOBF AODC S S =四边形四边形根据题意,可得扇形的面积等于扇形的面积,∴,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半∴,故选:C .【点拨】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9. 如图,抛物线的顶点的坐标为,与轴的一个交点位于0合和1之间,则以下结论:①;②;③若图象经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出,再根据图象得出当时,,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程移项可得,根据该方程无实数根,得出抛物线与直线没有交点,即可判断④.【详解】解:①∵该抛物线开口向下,∴,∵该抛物线的对称轴在y 轴左侧,∴,∵该抛物线于y轴交于正半轴,OAB CAD AOBF OAB AODC AOC S S S S -=-四边形扇形四边形扇形12P P =2y ax bx c =++A 1,2m ⎛⎫-⎪⎝⎭x 0abc >20b c +>()()123,,3,y y -12y y >x 230ax bx c ++-=3m <a b =1x =0y a b c =++<230ax bx c ++-=23ax bx c ++=2y ax bx c =++3y =a<00b <∴,∴,故①正确,符合题意;②∵,∴该抛物线的对称轴为直线,则,当时,,把得:当时,,由图可知:当时,,∴,故②不正确,不符合题意;③∵该抛物线的对称轴为直线,∴到对称轴的距离为,到对称轴的距离为,∵该抛物线开口向下,∴在抛物线上的点离对称轴越远,函数值越小,∵,∴,故③正确,符合题意;④将方程移项可得,∵无实数根,∴抛物线与直线没有交点,∵,∴.故④正确综上:正确的有:①③④,共三个.故选:C .【点拨】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方0c >0abc >1,2A m ⎛⎫-⎪⎝⎭122b x a =-=-a b =1x =y a bc =++a b =1x =2y b c =+1x =0y <20b c +<12x =-()13,y -()15322---=()23,y 17322⎛⎫--= ⎪⎝⎭5722<12y y >230ax bx c ++-=23ax bx c ++=230ax bx c ++-=2y ax bx c =++3y =1,2A m ⎛⎫-⎪⎝⎭3m <法,熟练掌握二次函数的图象和性质.10. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形,正方形,按此规律作下去,所作正方形的顶点均在格点上,其中正方形的顶点坐标分别为,,则顶点的坐标为( )A B. C. D. 【答案】A 【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律.【详解】解:∵,,,,,∴,∵,则,∴, 故选:A .【点拨】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________.【答案】【解析】.123PA A A 456,PA A A ⋯123PA A A ()()()123,0,2,1,1,0P A A ---()32,1A --100A ()31.34()31,34-()32,35()32,0()323n A n n --,()121A -,()412A -,()703A ,()1014A ,L ()323n A n n --,1003342=⨯-34n =()1003134A ,113.610⨯【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3600亿,用科学记数法表示为.故答案为:.【点拨】本题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12. 一杆古秤在称物时的状态如图所示,已知,则的度数为_____.【答案】##度【解析】【分析】根据两直线平行,内错角相等,即可求解.【详解】解:如图所示,依题意,,∴,∵,,∴∴.故答案为:.【点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C,10n a ⨯110a ≤<360000000000=113.610⨯113.610⨯10n a ⨯110a ≤<1102∠=︒2∠78︒78AB DC ∥2BCD ∠=∠1180BCD ∠+∠=︒1102∠=︒180178BCD ∠=︒-∠=︒278∠=︒78︒D ,连接,则的度数为_______.【答案】【解析】【分析】如图:连接,由题意可得:,,然后再根据等腰三角形的性质求得、,最后根据角的和差即可解答.【详解】解:如图:连接,由题意可得:,,,∴,,∴.故答案为.【点拨】本题主要考查了角的度量、等腰三角形的性质等知识点,灵活运用等腰三角形的性质是解答本题的关键.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;AB BAD ∠52.5︒,,,,,OA OB OC OD AD AB OA OB OC OD ===502525AOB ∠=︒-︒=︒65OAB ∠=︒25OAD ∠=︒,,,,,OA OB OC OD AD AB OA OB OC OD ===502525AOB ∠=︒-︒=︒15525130AOD ∠=︒-︒=︒()118077.52OAB AOB ∠=︒-∠=︒()1180252OAD AOB ∠=︒-∠=︒52.5OAB A BAD O D ∠∠-∠==︒52.5︒③按键的结果为;④按键的结果为25.以上说法正确的序号是___________.【答案】①③【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①;故①正确,符合题意;②按键的结果为;故②不正确,不符合题意;③按键的结果为;故③正确,符合题意;④按键的结果为;故④不正确,不符合题意;综上:正确的有①③.故答案为:①③.【点拨】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义.15. 如图,在直角坐标系中,与轴相切于点为的直径,点在函数的图象上,为轴上一点,的面积为6,则的值为________.【答案】24【解析】【分析】设,则,则,根据三角形的面积公式得出0.54=()3424+-=-()sin 4515sin 300.5︒-︒=︒=2132102⎛⎫-⨯= ⎪⎝⎭A e x ,B CB A eC (0,0)ky k x x=>>D y ACD V k ,k C a a ⎛⎫ ⎪⎝⎭,k OB a AC a ==122kAC BC a==,列出方程求解即可.【详解】解:设,∵与轴相切于点, ∴轴,∴,则点D 到的距离为a ,∵为的直径,∴,∴,解得:,故答案为:.【点拨】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16. 如图1,在中,动点从点出发沿折线匀速运动至点后停止.设点的运动路程为,线段的长度为,图2是与的函数关系的大致图象,其中点为曲线的最低点,则的高的长为_______.【解析】【分析】过点作于点,当点与重合时,在图2中点表示当时,点到达点,此时当在上运动时,最小,勾股定理求得,然后等面积法即可求解.【详解】如图过点作于点,当点与重合时,在图2中点表示当时,点到达点,此时当在上运动时,最小,162ACD S AC OB =⋅=V ,k C a a ⎛⎫ ⎪⎝⎭A e xB BC x ⊥,kOB a AC a==BC CB A e 122k AC BC a ==16224ACDk k S a a =⋅⋅==V 24k =24ABC V P A AB BC CA →→A P x AP y y x F DE ABC V CG A AQ BC ⊥Q P Q F 12AB BQ +=P Q P BC AP AQ A AQ BC ⊥Q P Q F 12AB BQ +=P Q P BC AP∴,在中,∴∵,∴,.【点拨】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17. 先化简,再求值:,其中是使不等式成立的正整数.【答案】;【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:7BC =4,3BQ QC ==Rt ABQ V 8,4AB BQ ==AQ ===1122ABC S AB CG AQ BC =⨯=⨯V BC AQ CG AB ⨯===2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭a 112a -≤33a a -+12-2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭()()()23225222a a a a a a -+-⎡⎤=÷+⎢⎥---⎣⎦()2234522a a a a--+=÷--()()()232233a aa a a --=⋅-+-,解不等式得:,∵a 为正整数,∴,,,∵要使分式有意义,∴,∵当时,,∴,∴把代入得:原式.【点拨】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知,,,,五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,所在的扇形的圆心角的度数为_________;若该市有中学生参加本次活动,则选择大学的大约有_________人;(3)甲、乙两位同学计划从,,三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析 (2);.(3)33a a -=+112a -≤3a ≤1a =2320a -≠2a ≠3a =552320223a a ++=++=--3a ≠1a =131132-==-+A B C D E D 1000名A A B C 14.4︒20013【解析】【分析】(1)根据的人数除以占比得到总人数,进而求得的人数,补全统计图即可求解;(2)根据的占比乘以得到圆心角的度数,根据乘以选择的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为(人)∴选择大学的人数为,补全统计图如图所示,【小问2详解】在扇形统计图中,所在的扇形的圆心角的度数为,选择A 大学的大约有(人)故答案为:;.【小问3详解】列表如下,甲乙共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为.【点拨】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.C BD 360︒1000A 1428%50÷=B 5010142816----=D 236014.450︒⨯=︒101000=20050⨯14.4︒200ABC AAA AB AC BBABBBC C CA CBCC1319. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡长16米,在地面点处测得风力发电机塔杆顶端点的仰角为,利用无人机在点的正上方53米的点处测得点的俯角为,求该风力发电机塔杆的高度.(参考数据:,,)【答案】该风力发电机塔杆的高度为32米【解析】【分析】过点P 作于点F ,延长交延长线于点E ,先根据含角直角三角形的性质得出,设米,则米,进而得出米,证明四边形为矩形,则米,米,根据线段之间的和差关系得出米,最后根据,列出方程求解即可.【详解】解:过点P 作于点F ,延长交延长线于点E ,根据题意可得:、垂直于水平面,,,,∴,∵米, ∴(米),设米,则米,∵,,∴米,∵,,,∴四边形为矩形,∴米,米,30︒CD A P 45︒A B P 18︒PD sin180.309≈︒cos180.951≈︒tan180.325≈︒PD PF AB ⊥PD AC 30︒8DE =PD x =()8PE PD DE x =+=+()8AE x =+FAEP ()8PF AE x ==+()8AF PE x ==+()45BF AB AF s x =-=-tan18BFPF=︒PF AB ⊥PD AC AB PD 30DCE ∠=︒45PAC ∠=︒18GBP ∠=︒PE AE ⊥16CD =1116822DE CD ==⨯=PD x =()8PE PD DE x =+=+45PAC ∠=︒PE AE ⊥()8tan 45PEAE x ==+︒AB AE ⊥PE AE ⊥PF AB ⊥FAEP ()8PF AE x ==+()8AF PE x ==+∵米,∴米,∵,∴,∴,即,解得:,答:该风力发电机塔杆的高度为32米.【点拨】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形进行如下操作:①分别以点为圆心,以大于的长度为半径作弧,两弧相交于点,,作直线交于点,连接;②将沿翻折,点的对应点落在点处,作射线交于点.【问题提出】在矩形中,,求线段的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:53AB =()()53845BF AB AF x x =-=-+=-18GBP ∠=︒18BPF ∠=︒tan18BF PF =︒450.3258xx-≈+32x ≈PD ABCD ,B C12BC E F EF BC O AO ABO V AO B P AP CD Q ABCD 53AD AB ==,CQ方案一:连接,如图2.经过推理、计算可求出线段的长;方案二:将绕点旋转至处,如图3.经过推理、计算可求出线段的长.请你任选其中一种方案求线段的长.【答案】线段的长为.【解析】【分析】方案一:连接,由翻折的不变性,知,,证明,推出,设,在中,利用勾股定理列式计算求解即可;方案二:将绕点旋转至处,证明,推出,设,同方案一即可求解.【详解】解:方案一:连接,如图2.∵四边形矩形,∴,,由作图知,由翻折的不变性,知,,,∴,,又,∴,∴,设,则,,在中,,即,解得,是OQ CQ ABO V O 180︒RCO △CQ CQ CQ 2512OQ 3AP AB == 2.5OP OB ==()HL QPO QCO ≌△△PQ CQ =PQ CQ x ==Rt ADQ △ABO V O 180︒RCO △OAQ R ∠=∠QA QR =CQ x =OQ ABCD 3AB CD ==5AD BC ==12.52BO OC BC ===3AP AB == 2.5OP OB ==90APO B ∠=∠=︒2.5OP OC ==90QPO C ∠=∠=︒OQ OQ =()HL QPO QCO ≌△△PQ CQ =PQ CQ x ==3AQ x =+3DQ x =-Rt ADQ △222AD QD AQ +=()()222533x x +-=+2512x =∴线段的长为;方案二:将绕点旋转至处,如图3.∵四边形是矩形,∴,,由作图知,由旋转的不变性,知,,,则,∴共线,由翻折的不变性,知,∴,∴,设,则,,在中,,即,解得,∴线段的长为.【点拨】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求两种图书的单价分别为多少元?CQ 2512ABO V O 180︒RCO △ABCD 3AB CD ==5AD BC ==12.52BO OC BC ===3CR AB ==BAO R ∠=∠90B OCR ∠=∠=︒9090180OCR OCD ∠+∠=︒+︒=︒D C R 、、BAO OAQ ∠=∠OAQ R ∠=∠QA QR =CQ x =3QA QR x ==+3DQ x =-Rt ADQ △222AD QD AQ +=()()222533x x +-=+2512x =CQ 251234(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可.【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是元,依题意得,,解得,经检验,是原方程的解,且符合题意,,答:《周髀算经》单价为40元,则《孙子算经》单价是30元;【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为本,依题意得,,解得,设购买《周髀算经》和《孙子算经》的总费用为y (元),依题意得,,∵,∴y 随m 的增大而增大,∴当时,有最小值,此时(元),34x 34x 600600534x x=+40x =40x =340304⨯=()80m -()1802m m ≥-2263m ≥()400.8300.88081920y m m m =⨯+⨯-=+80k =>27m =82719202316y =⨯+=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【点拨】本题主要考查分式方程的实际应用,一次函数的实际应用以及一元一次不等式的实际应用,根据题意表示出y 与x 之间的函数关系式以及列出不等式是解题的关键.22. 如图,在菱形中,对角线相交于点经过两点,交对角线于点,连接交于点,且.(1)求证:是的切线;(2)已知的半径与菱形的边长之比为,求的值.【答案】(1)见解析(2).【解析】【分析】(1)利用垂径定理得,利用菱形的性质得,利用半径相等得,即可证明,据此即可证明结论成立;(2)设,由题意得,求得,由勾股定理得到,求得,利用菱形的性质求得,据此求解即可.【小问1详解】证明:连接,∵,由垂径定理知,∴,∵四边形是菱形,∴,∴,802753-=ABCD ,AC BD ,E O e ,A D AC F OF AD G AG GD =AB O e O e 5:8tan ADB ∠tan 2ADB ∠=OF AD ⊥GAF BAF ∠=∠OAF OFA ∠=∠90OAF BAF ∠+∠=︒4AG GD a ==:5:4OA AG =5OA a =3OG a =2FG a =ADB AFG ∠=∠OA AG GD =OF AD ⊥90OGA FGA ∠=∠=︒ABCD GAF BAF ∠=∠90GAF AFG BAF AFG ∠+∠=︒=∠+∠∵,∴,∴,又∵为的半径,∴是的切线;【小问2详解】解:∵四边形是菱形,,∴设,∵的半径与菱形的边长之比为,∴在中,,∴,,∴,∵四边形是菱形,∴,即,∴,∴.【点拨】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.23. 如图,点为线段上一点,分别以为等腰三角形的底边,在的同侧作等腰和等腰,且.在线段上取一点,使,连接.(1)如图1,求证:;(2)如图2,若的延长线恰好经过的中点,求的长.【答案】(1)见解析(2).【解析】OA OF =OAF OFA ∠=∠90OAF BAF OAB ∠+∠=∠=︒OA O e AB O e ABCD AG GD =4AG GD a ==O e 5:8Rt OAG △:5:4OA AG =5OA a=3OG a ==2FG OF OG a =-=ABCD BD AC ⊥90DEA FGA ∠=︒=∠ADB AFG ∠=∠4tan tan 22AG a ADB AFG FG a∠=∠===C AB ,AC BC AB ACD V BCE V A CBE ∠=∠EC F EF AD =,BF DE DE BF =2AD BF =,DE GBE 2BE =+【分析】(1)证明,推出,利用证明即可证明结论成立;(2)取的中点H ,连接,证明是的中位线,设,则,证明,得到,即,解方程即可求解.【小问1详解】证明:∵等腰和等腰,∴,,,∵,∴,∴,∴,∵,∴,在和中,,∴,∴;【小问2详解】解:取的中点H ,连接,∵点是的中点,∴是的中位线,∴,,设,则,∵,CD BE ∥DCE BEF ∠=∠SAS DCE FEB ≌△△CF GH GH FCD V BE a =122FH a =-FGH FBE ∽△△GH FH BE EF=2440a a --=ACD V BCE V AD CD =EC EB =A DCA ∠=∠A CBE ∠=∠DCA CBE ∠=∠CD BE ∥DCE BEF ∠=∠EF AD =EF CD =DCE △FEB V CD EF DCE FEB EC EB =⎧⎪∠=∠⎨⎪=⎩()SAS DCE FEB ≌△△DE BF =CF GH G DE GH FCD V 11122GH CD AD ===GH CD ∥BE a =111222CH EH CE BE a ====2EF AD ==∴,∵,∴,∴,∴,即,整理得,解得(负值已舍),经检验是所列方程的解,且符合题意,∴【点拨】本题考查了相似三角形的判定和性质,解一元二次方程,三角形中位线定理,全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24. 如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.(1)求直线及抛物线的表达式;(2)在抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.【答案】(1)直线的解析式为;抛物线解析式为 (2)存在,点M 的坐标为或 或(3122FH a =-CD BE ∥GH BE ∥FGH FBE ∽△△GH FH BE EF =12122a a -=2440a a --=2a =+2a =+2BE =+25y ax bx =++x ,A B y ,4C AB =3x =A 1y kx =-D x E AD M ADM △AD M B P B e 12+PC PA AD 1y x =-265y x x =-+()4,3-()0,5()5,0【分析】(1)根据对称轴,,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当时,求出直线的解析式为,解方程组,即可得到点M 的坐标;②当时,求出直线的解析式为,解方程组,即可得到点M 的坐标;(3)在上取点,使,连接,证得,又,得到,推出,进而得到当点C 、P 、F 三点共线时,的值最小,即为线段的长,利用勾股定理求出即可.【小问1详解】解:∵抛物线的对称轴,,∴,将代入直线,得,解得,∴直线的解析式为;将代入,得,解得,∴抛物线的解析式为;【小问2详解】存在点,∵直线的解析式为,抛物线对称轴与轴交于点.∴当时,,∴,①当时,设直线的解析式为,将点A 坐标代入,得,3x =4AB =90DAM ∠=︒AM 1y x =-+2165y x y x x =-+⎧⎨=-+⎩90ADM ∠=︒DM 5y x =-+2565y x y x x =-+⎧⎨=-+⎩AB F 1BF =CF BF PB PB AB=PBF ABP ∠=∠PBF ABP V V ∽12PF PA =12+PC PA CF CF 3x =4AB =()()1,0,5,0A B ()1,0A 1y kx =-10k -=1k =AD 1y x =-()()1,0,5,0A B 25y ax bx =++5025550a b a b ++=⎧⎨++=⎩16a b =⎧⎨=-⎩265y x x =-+M AD 1y x =-3x =x E 3x =12y x =-=()3,2D 90DAM ∠=︒AM y x c =-+10c -+=∴直线的解析式为,解方程组,得或,∴点M 的坐标为;②当时,设直线的解析式为,将代入,得,解得,∴直线的解析式为,解方程组,解得或,∴点M 的坐标为 或综上,点M 的坐标为或 或;【小问3详解】如图,在上取点,使,连接,∵,∴,∵,、∴,又∵,∴,∴,即,AM 1y x =-+2165y x y x x =-+⎧⎨=-+⎩10x y =⎧⎨=⎩43x y =⎧⎨=-⎩()4,3-90ADM ∠=︒DM y x d =-+()3,2D 32d -+=5d =DM 5y x =-+2565y x y x x =-+⎧⎨=-+⎩05x y =⎧⎨=⎩50x y =⎧⎨=⎩()0,5()5,0()4,3-()0,5()5,0AB F 1BF =CF 2PB =12BF PB =2142PB AB ==BF PB PB AB=PBF ABP ∠=∠PBF ABP V V ∽12PF BF PA PB ==12PF PA =∴,∴当点C 、P 、F 三点共线时,的值最小,即为线段的长,∵,∴∴的最小值为.【点拨】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.12PC PA PC PF CF +=+≥12+PCPA CF 5,1514OC OF OB ==-=-=CF ===12+PC PA。
2023年山东省烟台市中考数学真题卷(含答案与解析)
2023年烟台市初中学业水平考试数学试题本试卷共8页,满分120分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(在下列各题的四个选项中,只有一项是最符合题目要求的, 请把正确的答案选出来。
每小题3分,共30分)1. 23-的倒数是( )A.23B.23-C.32D.32-2.是同类二次根式的是( )A.B.C.D.3. 下列四种图案中,是中心对称图形的是( )A. B. C. D.4. 下列计算正确的是( ) A. 2242a a a += B. ()32626aa = C. 235a a a ⋅= D. 824a a a ÷=5. 不等式组321,23m m -≥⎧⎨->⎩的解集在同一条数轴上表示正确的是( )A. B. C.D.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值的平均数大于乙班视力值的平均数B. 甲班视力值的中位数大于乙班视力值的中位数C. 甲班视力值极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )A. 12P P <B. 12P P =C. 12P P >D. 无法判断的9. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫-⎪⎝⎭,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y -,则12y y >;④若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A 1B. 2C. 3D. 410. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为( )A. ()31.34B. ()31,34-C. ()32,35D. ()32,0二、填空题(本大题共6个小题,每题3分,共18分)11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 12. 一杆古秤在称物时的状态如图所示,已知1102∠=︒,则2∠的度数为_____..13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8; ③按键的结果为0.5;④按键的结果为25.以上说法正确序号是___________.15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.的16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.三、解答题(本大题共8小题,满分72分)17. 先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数. 18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A 大学的大约有_________人;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30︒的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45︒,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18︒,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈︒,cos180.951≈︒,tan180.325≈︒)20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长. 【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 长;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.经过推理、计算可求出线段CQ 的长.的请你任选其中一种方案求线段CQ 的长.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本. (1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.23. 如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.24. 如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2圆,点P 为B 上一个动点,请求出12+PC PA 的最小值. 参考答案一、选择题1. 23-的倒数是( )A.23B.23-C.32D.32-【答案】D 【解析】【分析】根据乘积是1的两个数叫做互为倒数解答. 【详解】解:∵23132⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, ∴23-的倒数是32-,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键. 2.是同类二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据同类二次根式的定义,逐个进行判断即可.的【详解】解:A 2=不是同类二次根式,不符合题意;B 不是同类二次根式,不符合题意;C =是同类二次根式,符合题意;D =,与不是同类二次根式,不符合题意; 故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 3. 下列四种图案中,是中心对称图形的是( )A. B. C. D.【答案】B 【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 【详解】解:根据题意可得:是中心对称图形的只有B , 故选:B .【点睛】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 4. 下列计算正确的是( ) A. 2242a a a += B. ()32626aa = C. 235a a a ⋅= D. 824a a a ÷=【答案】C 【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答. 【详解】解:A .2222a a a +=,故该选项不正确,不符合题意; B .()32628a a =,故该选项不正确,不符合题意;C .235a a a ⋅=,故该选项正确,符合题意;D .826a a a ÷=,故该选项不正确,不符合题意. 故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键. 5. 不等式组321,23m m -≥⎧⎨->⎩的解集在同一条数轴上表示正确的是( )A. B. C.D.【答案】A 【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 【详解】解:32123m m -≥⎧⎨->⎩①②解不等式①得:m 1≥ 解不等式②得:1m <-将不等式的解集表示在数轴上,如图所示,故选:A .【点睛】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.【答案】A【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱AE的投影为点E,棱AB的投影为线段BE,棱AD的投影为线段ED,棱AC的投影为正方形BCDE的对角线,∴该几何体的俯视图为:,故选:A【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是()A. 甲班视力值的平均数大于乙班视力值的平均数B. 甲班视力值的中位数大于乙班视力值的中位数C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差 【答案】D 【解析】【分析】根据平均数,中位数,极差,方差定义分别求解即可. 【详解】甲班视力值分别:4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.4; 从小到大排列为:4.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0;中位数为4.7 4.7=4.72+, 平均数为()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++;极差为5.0 4.40.6-= 方差为()()()()222221=0.30.10.10.3=0.0258S ⎡⎤+++⎣⎦甲;乙班视力值分别为:4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4; 从小到大排列为:4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0,中位数为4.7 4.7=4.72+ 平均数为()14.4 4.5 4.6 4.7 4.7 4.8 4.95.0=4.78+++++++;极差为5.0 4.40.6-= 方差为()()()()()()22222221=0.30.20.10.10.20.3=0.0358S ⎡⎤+++++⎣⎦甲;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确 故选:D .【点睛】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )的为A. 12P P <B. 12P P =C. 12P P >D. 无法判断【答案】B 【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解. 【详解】解:如图所示,连接AE BD ,交于O , 由题意得,A B C D ,,,分别是正方形四条边的中点, ∴点O 为正方形的中心, ∴AOBF AODC S S =四边形四边形,根据题意,可得扇形OAB 的面积等于扇形CAD 的面积, ∴AOBF OAB AODC AOC S S S S -=-四边形扇形四边形扇形,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半 ∴12P P =, 故选:B .【点睛】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫-⎪⎝⎭,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y -,则12y y >;④若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出a b =,再根据图象得出当1x =时,0y a b c =++<,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程230ax bx c ++-=移项可得23ax bx c ++=,根据该方程无实数根,得出抛物线2y ax bx c =++与直线3y =没有交点,即可判断④.详解】解:①∵该抛物线开口向下, ∴a<0,∵该抛物线的对称轴在y 轴左侧, ∴0b <,∵该抛物线于y 轴交于正半轴, ∴0c >, ∴0abc >,故①正确,符合题意;②∵1,2A m ⎛⎫- ⎪⎝⎭, ∴该抛物线的对称轴为直线122b x a =-=-,则a b =, 当1x =时,y a bc =++,把a b =得:当1x =时,2y b c =+,【由图可知:当1x =时,0y <, ∴20b c +<,故②不正确,不符合题意; ③∵该抛物线的对称轴为直线12x =-, ∴()13,y -到对称轴的距离为()15322---=,()23,y 到对称轴的距离为17322⎛⎫--= ⎪⎝⎭, ∵该抛物线开口向下,∴在抛物线上的点离对称轴越远,函数值越小, ∵5722<, ∴12y y >,故③正确,符合题意;④将方程230ax bx c ++-=移项可得23ax bx c ++=, ∵230ax bx c ++-=无实数根,∴抛物线2y ax bx c =++与直线3y =没有交点, ∵1,2A m ⎛⎫-⎪⎝⎭, ∴3m <.故④正确综上:正确的有:①③④,共三个. 故选:C .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.10. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为( )A. ()31.34B. ()31,34-C. ()32,35D. ()32,0【答案】A 【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L , ∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,, 故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 【答案】113.610⨯ 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:3600亿360000000000=,用科学记数法表示为113.610⨯.故答案为:113.610⨯.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12. 一杆古秤在称物时的状态如图所示,已知1102∠=︒,则2∠的度数为_____.【答案】78︒##78度 【解析】【分析】根据两直线平行,内错角相等,即可求解. 【详解】解:如图所示,依题意,AB DC ∥, ∴2BCD ∠=∠,∵1180BCD ∠+∠=︒,1102∠=︒, ∴180178BCD ∠=︒-∠=︒∴278∠=︒.故答案为:78︒.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5︒【解析】【分析】如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒-︒=︒,然后再根据等腰三角形的性质求得65OAB ∠=︒、25OAD ∠=︒,最后根据角的和差即可解答.【详解】解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=︒-︒=︒,15525130AOD ∠=︒-︒=︒, ∴()118077.52OAB AOB ∠=︒-∠=︒,()1180252OAD AOB ∠=︒-∠=︒, ∴52.5OAB A BAD O D ∠∠-∠==︒. 故答案为52.5︒.【点睛】本题主要考查了角的度量、等腰三角形的性质等知识点,灵活运用等腰三角形的性质是解答本题的关键.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8; ③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是___________. 【答案】①③ 【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①4=;故①正确,符合题意; ②按键的结果为()3424+-=-;故②不正确,不符合题意; ③按键的结果为()sin 4515sin 300.5︒-︒=︒=;故③正确,符合题意; ④按键的结果为2132102⎛⎫-⨯= ⎪⎝⎭;故④不正确,不符合题意;综上:正确的有①③. 故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义. 15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.【答案】24 【解析】【分析】设,k C a a ⎛⎫ ⎪⎝⎭,则,k OB a AC a ==,则122kAC BC a==,根据三角形的面积公式得出162ACD S AC OB =⋅= ,列出方程求解即可. 【详解】解:设,k C a a ⎛⎫ ⎪⎝⎭, ∵A 与x 轴相切于点B , ∴BC x ⊥轴,∴,kOB a AC a==,则点D 到BC 的距离为a , ∵CB 为A 的直径, ∴122k AC BC a ==, ∴16224ACDk k S a a =⋅⋅== , 解得:24k =, 故答案为:24.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【解析】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ === ∵1122ABC S AB CG AQ BC =⨯=⨯ ,∴BC AQ CG AB ⨯===,. 【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17. 先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数. 【答案】33a a -+;12- 【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可. 【详解】解:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭()()()23225222a a a a a a -+-⎡⎤=÷+⎢⎥---⎣⎦()2234522a a a a--+=÷-- ()()()232233a a a a a --=⋅-+- 33a a -=+, 解不等式112a -≤得:3a ≤, ∵a 为正整数,∴1a =,2,3,∵要使分式有意义20a -≠,∴2a ≠,∵当3a =时,552320223a a ++=++=--, ∴3a ≠,∴把1a =代入得:原式131132-==-+. 【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A大学的大约有_________人;(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析(2)14.4︒;200.(3)1 3【解析】【分析】(1)根据C的人数除以占比得到总人数,进而求得B的人数,补全统计图即可求解;(2)根据D的占比乘以360︒得到圆心角的度数,根据1000乘以选择A的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为1428%50÷=(人)∴选择B大学的人数为5010142816----=,补全统计图如图所示,【小问2详解】在扇形统计图中,D所在的扇形的圆心角的度数为236014.4 50︒⨯=︒,选择A大学的大约有101000=20050⨯(人)故答案为:14.4︒;200.【小问3详解】列表如下,甲乙A B CA AA AB ACB BA BB BCC CA CB CC共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为13. 【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30︒的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45︒,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18︒,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈︒,cos180.951≈︒,tan180.325≈︒)【答案】该风力发电机塔杆PD 的高度为32米【解析】【分析】过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,先根据含30︒角直角三角形的性质得出8DE =,设PD x =米,则()8PE PD DE x =+=+米,进而得出()8AE x =+米,证明四边形FAEP 为矩形,则()8PF AE x ==+米,()8AF PE x ==+米,根据线段之间的和差关系得出()45BF AB AF s x =-=-米,最后根据tan18BF PF=︒,列出方程求解即可. 【详解】解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,根据题意可得:AB 、PD 垂直于水平面,30DCE ∠=︒,45PAC ∠=︒,18GBP ∠=︒,∴PE AE ⊥,∵16CD =米,∴1116822DE CD ==⨯=(米), 设PD x =米,则()8PE PD DE x =+=+米,∵45PAC ∠=︒,PE AE ⊥, ∴()8tan 45PE AE x ==+︒米, ∵AB AE ⊥,PE AE ⊥,PF AB ⊥,∴四边形FAEP 为矩形,∴()8PF AE x ==+米,()8AF PE x ==+米,∵53AB =米,∴()()53845BF AB AF x x =-=-+=-米,∵18GBP ∠=︒,∴18BPF ∠=︒, ∴tan18BF PF =︒,即450.3258x x-≈+, 解得:32x ≈,答:该风力发电机塔杆PD 的高度为32米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.经过推理、计算可求出线段CQ 的长. 请你任选其中一种方案求线段CQ 的长.【答案】线段CQ 的长为2512. 【解析】【分析】方案一:连接OQ ,由翻折的不变性,知3AP AB ==, 2.5OP OB ==,证明()HL QPO QCO ≌△△,推出PQ CQ =,设PQ CQ x ==,在Rt ADQ △中,利用勾股定理列式计算求解即可;方案二:将ABO 绕点O 旋转180︒至RCO △处,证明OAQ R ∠=∠,推出QA QR =,设CQ x =,同方案一即可求解.【详解】解:方案一:连接OQ ,如图2.∵四边形ABCD 是矩形,∴3AB CD ==,5AD BC ==, 由作图知1 2.52BO OC BC ===, 由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=︒,∴ 2.5OP OC ==,90QPO C ∠=∠=︒,又OQ OQ =,∴()HL QPO QCO ≌△△,∴PQ CQ =,设PQ CQ x ==,则3AQ x =+,3DQ x =-,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+, 解得2512x =, ∴线段CQ 的长为2512; 方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.∵四边形ABCD 是矩形,∴3AB CD ==,5AD BC ==, 由作图知1 2.52BO OC BC ===, 由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=︒,则9090180OCR OCD ∠+∠=︒+︒=︒,∴D C R 、、共线,由翻折的不变性,知BAO OAQ ∠=∠,∴OAQ R ∠=∠,∴QA QR =,设CQ x =,则3QA QR x ==+,3DQ x =-,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+, 解得2512x =, ∴线段CQ 的长为2512. 【点睛】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元; (2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可.【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元, 依题意得,600600534x x =+, 解得40x =,经检验,40x =是原方程的解,且符合题意,。
山东省烟台市重点名校2024届中考数学模试卷含解析
山东省烟台市重点名校2024学年中考数学模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.函数2(0)y x x =->的图像位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知关于x 的不等式组﹣1<2x+b <1的解满足0<x <2,则b 满足的条件是( )A .0<b <2B .﹣3<b <﹣1C .﹣3≤b≤﹣1D .b=﹣1或﹣33.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°4.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )A .∠ACB=90°B .OE=BEC .BD=BCD .AD AC =5.下列图形中,不是轴对称图形的是( )A .B .C .D .6.如图,ABC 内接于O ,若A 40∠=,则BCO (∠= )A.40B.50C.60D.807.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A.91,88 B.85,88 C.85,85 D.85,84.58.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.49.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.410.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.12.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.13.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA 的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .14.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.15.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.16.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.18.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?19.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y 与时间之间的函数关系式.(2)求乙组加工零件总量a 的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?20.(8分)如图所示,点C 为线段OB 的中点,D 为线段OA 上一点.连结AC 、BD 交于点P .(问题引入)(1)如图1,若点P 为AC 的中点,求AD DO 的值. 温馨提示:过点C 作CE ∥AO 交BD 于点E .(探索研究)(2)如图2,点D 为OA 上的任意一点(不与点A 、O 重合),求证:PD AD PB AO =. (问题解决)(3)如图2,若AO=BO ,AO ⊥BO ,14AD AO =,求tan ∠BPC 的值.21.(8分)先化简,后求值:a 2•a 4﹣a 8÷a 2+(a 3)2,其中a=﹣1. 22.(10分)已知PA 与⊙O 相切于点A ,B 、C 是⊙O 上的两点(1)如图①,PB 与⊙O 相切于点B ,AC 是⊙O 的直径若∠BAC =25°;求∠P 的大小(2)如图②,PB 与⊙O 相交于点D ,且PD =DB ,若∠ACB =90°,求∠P 的大小23.(12分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.24.计算:﹣(﹣2)0+|1﹣|+2cos30°.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据反比例函数中kyx=,当0k<,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【题目详解】解:函数2(0)y xx=->的图象位于第四象限.故选:D.【题目点拨】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.2、C【解题分析】根据不等式的性质得出x的解集,进而解答即可.【题目详解】∵-1<2x+b<1∴1122b bx---<<,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴102122b b --⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得:-3≤b≤-1,故选C .【题目点拨】此题考查解一元一次不等式组,关键是根据不等式的性质得出x 的解集.3、C【解题分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【题目详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【题目点拨】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.4、B【解题分析】根据垂径定理及圆周角定理进行解答即可.【题目详解】∵AB 是⊙O 的直径,∴∠ACB=90°,故A 正确;∵点E 不一定是OB 的中点,∴OE 与BE 的关系不能确定,故B 错误;∵AB ⊥CD ,AB 是⊙O 的直径,∴BD BC =,∴BD=BC ,故C 正确;∴AD AC =,故D 正确.故选B .【题目点拨】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5、A【解题分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【题目详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形.故选A .【题目点拨】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.6、B【解题分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【题目详解】解:由圆周角定理得,BOC 2A 80∠∠==,OB OC =,BCO CBO 50∠∠∴==,故选:B .【题目点拨】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键. 7、D【解题分析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D .考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题8、C【解题分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【题目点拨】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.9、C【解题分析】【分析】首先确定原点位置,进而可得C点对应的数.【题目详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【题目点拨】本题主要考查了数轴,关键是正确确定原点位置.10、A【解题分析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.二、填空题(本大题共6个小题,每小题3分,共18分)11、C【解题分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【题目详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【题目点拨】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态12、0.7【解题分析】用通话时间不足10分钟的通话次数除以通话的总次数即可得.【题目详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.13、①②④.【解题分析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB 的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD 的中点.故一定正确的是①②④14、1【解题分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【题目详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=1(米).故答案为1.【题目点拨】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.15、1或1【解题分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【题目详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【题目点拨】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.16、(﹣3,2)【解题分析】作出图形,然后写出点A′的坐标即可.【题目详解】解答:如图,点A′的坐标为(-3,2).故答案为(-3,2).【题目点拨】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.三、解答题(共8题,共72分)17、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3)、M2(﹣2,﹣3、M3(﹣2,3、M4(2,3).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3;劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3;优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3、M2(﹣2,﹣3、M3(﹣2,3、M4(2,3.【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.18、(1)结果见解析;(2)不公平,理由见解析.【解题分析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.19、(1)见解析(2)300(3)2小时【解题分析】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x ≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x ≤6时.603003002x +=⨯.解得5x =.因为5-3=2,所以,再经过2小时恰好装满第2箱.20、(1)12;(2) 见解析;(3) 12【解题分析】(1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO 的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC=,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【题目详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【题目点拨】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.21、1【解题分析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可. 【题目详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【题目点拨】本题主要考查同底数幂的乘除以及幂的乘方运算法则.22、(1)∠P=50°;(2)∠P=45°.【解题分析】(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【题目详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠ACB=90°,∴AB是的直径,∠ADB=90·∵PD=DB,∴PA=AB.∵PA与⊙O相切于A点∴AB⊥PA,∴∠P=∠ABP=45°.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.∠=∠.23、AED ACB【解题分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【题目详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【题目点拨】本题重点考查平行线的性质和判定,难度适中.24、.【解题分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【题目详解】原式,,.【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.。
2024年山东省烟台市中考真题数学试卷含答案解析
2024年山东省烟台市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中的无理数是( )A .23B .3.14C D2.下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B . 12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .3.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④【答案】A 【分析】本题考查几何体的三视图,熟练掌握三视图的画法是解题的关键.分别画出各选项得出的左视图,再判断即可.【详解】解:A 、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A 符合题意;B 、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B 不符合题意;C 、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C 不符合题意;D 、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D 不符合题意;故选:A .4.实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c -<C .a c >D .22a b-<-【答案】B5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是4A 纸厚度的六分之一,已知1毫米1=百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A .30.1510⨯纳米B ..41510⨯纳米C .51510-⨯纳米D .61.510-⨯纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为2S 甲和2S 乙,则2S 甲和2S 乙的大小关系是( )A .22S S >甲乙B .22S S <甲乙C .22S S =甲乙D .无法确定【答案】A 【分析】本题考查比较方差的大小,根据折线图,得到乙选手的成绩波动较小,即可得出结果.【详解】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,∴22S S >甲乙;故选A .7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.【详解】解:第一个图为尺规作角平分线的方法,OP 为AOB ∠的平分线;第二个图,由作图可知:,OC OD OA OB ==,∴AC BD =,∵AOD BOC ∠=∠,∴AOD BOC ≌△△,∴OAD OBC ∠=∠,∵AC BD =,BPD APC ∠=∠,∴BPD APC ≌,∴AP BP =,∵,OA OB OP OP ==,∴AOP BOP ≌△△,∴AOP BOP ∠=∠,∴OP 为AOB ∠的平分线;第三个图,由作图可知,ACP AOB OC CP ∠=∠=,∴CP BO ∥,COP CPO ∠=∠,∴CPO BOPÐ=Ð∴COP BOP ∠=∠,∴OP 为AOB ∠的平分线;第四个图,由作图可知:OP CD ⊥,OC OD =,∴OP 为AOB ∠的平分线;故选D .8.如图,在正方形ABCD 中,点E ,F 分别为对角线BD AC ,的三等分点,连接AE 并延长交CD 于点G ,连接EF FG ,,若AGF α∠=,则FAG ∠用含α的代数式表示为( )A .452α︒-B .902α︒-C .452α︒+D .2α∴OD OC =,ODC ∠=∴OE OF =,∵EOF DOC ∠=∠,OE OD ∴EOF DOC ∽△△,9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A.45尺B.88尺C.90尺D.98尺故选:C .10.如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∵菱形EFGH ,60E ∠=︒,依题意,MNG 为等边三角形,运动时间为t ,则cos30NG =∴1sin 60S NG NG =⨯⨯⨯︒依题意,6EM EG t t =-=-,则EK ∴()211236223EKJ S EJ EM t =⋅=⨯- ∴EKJS S S =- 菱形当1114x <≤时,同理可得,3综上所述,当03x ≤≤时,函数图象为开口向上的一段抛物线,当开口向下的一段抛物线,当68x <≤时,函数图象为一条线段,当开口向下的一段抛物线,当1114x <≤时,函数图象为开口向上的一段抛物线;故选:D .二、填空题11x 的取值范围为 .【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.12.关于x 的不等式12x m x -≤-有正数解,m 的值可以是 (写出一个即可).13.若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.14.如图,在边长为6的正六边形ABCDEF 中,以点F 为圆心,以FB 的长为半径作 BD,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .设圆锥的底面圆的半径为∴3r =;故答案为:3.15.如图,在ABCD Y 中,120C ∠=︒,8AB =,10BC =.E 为边CD 的中点,F 为边AD 上的一动点,将DEF 沿EF 翻折得D EF ' ,连接AD ',BD ',则ABD '△面积的最小值为.过C 作CN AB ⊥于N ,∵AB CD ∥,∴EM CN =,在Rt BCN 中,10BC =,CBN ∠16.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x4-3-1-15y59527-下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x -<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y --均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x -或3x >.其中正确结论的序号为 .【答案】①②④【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出a b c 、、的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤;掌握二次函数的图象和性质是解题的关键.【详解】解:把()4,0-,()1,9-,()1,5代入2y ax bx c =++得,164095a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得128a b c =-⎧⎪=-⎨⎪=⎩,∴0abc >,故①正确;∵1a =-,2b =-,8c =,由2228y x y x x =-+⎧⎨=--+⎩,解得1120x y =⎧⎨=⎩,2235x y =-⎧⎨=⎩,∴()2,0A ,()3,5B -,由图形可得,当3x <-或2x >时,2282x x x --+<-+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题17.利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷⎪--+,再求值.18.“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t 表示,单位:h )进行调查.经过整理,将数据分成四组(A 组:02t ≤<;B 组:24t ≤<;C 组:46t ≤<;D 组:68t ≤<),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,1429α︒≤≤︒;夏至日时,4376α︒≤≤︒.sin140.24︒≈,cos140.97︒≈,tan140.25︒≈sin290.48︒≈,cos290.87≈︒,tan290.55≈︒sin430.68︒≈,cos430.73︒≈,tan430.93︒≈sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米,AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填14︒,29︒,43︒,76︒中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【答案】任务一:冬至,14︒;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器【分析】本题考查解直角三角形的应用,理解题意是解答的关键.任务一:根据题意直接求解即可;任务二:过E 作EF AB ⊥于F ,利用正切定义求得【详解】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即14α=︒,故答案为:冬至,14︒;任务二:过E 作EF AB ⊥于F ,则90AFE ∠=︒,54EF =米,BF DF =,在Rt AFE 中,tan AFEFα=,∴tan14540.2513.5AF EF =⋅︒≈⨯=(米)∵11 3.336.3AB =⨯=(米),∴36.313.5DE BF AB AF ==-=-=22.8 3.37÷≈(层),20.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.如图,正比例函数y x =与反比例函数k y x =的图象交于点)A a ,将正比例函数图象向下平移()0n n >个单位后,与反比例函数图象在第一、三象限交于点B ,C ,与x 轴,y 轴交于点D ,E ,且满足:3:2BE CE =.过点B 作BF x ⊥轴,垂足为点F ,G 为x 轴上一点,直线BC 与BG 关于直线BF 成轴对称,连接CG .(1)求反比例函数的表达式;(2)求n 的值及BCG 的面积.22.在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为直线BC 上任意一点,连接AD .将线段AD 绕点D 按顺时针方向旋转90︒得线段ED ,连接BE .【尝试发现】(1)如图1,当点D 在线段BC 上时,线段BE 与CD 的数量关系为________;【类比探究】(2)当点D 在线段BC 的延长线上时,先在图2中补全图形,再探究线段BE 与CD 的数量关系并证明;【联系拓广】(3)若1AC BC ==,2CD =,请直接写出sin ECD ∠的值.由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,BE 过点E 作EM BC ⊥交BC 于点由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,∵90ACB ∠=︒,∴ACD DME ∠=∠,ADC ∠+∴CAD EDM ∠=∠由(2)得1DM AC ==,2EM CD ==,∴3CM CD DM =+=,∴2213CE CM EM =+=,∴2213sin 1313EM ECD CE ∠===.同理可得:ACD DME △≌△,∴1DM AC ==,2ME CD ==,∴211CM =-=,∴22215CE =+=,∴225sin 55EM ECD CE ∠===;23.如图,AB 是O 的直径,ABC 内接于O ,点I 为ABC 的内心,连接CI 并延长交O于点D ,E 是 BC上任意一点,连接AD ,BD ,BE ,CE .(1)若25ABC ∠=︒,求CEB ∠的度数;(2)找出图中所有与DI 相等的线段,并证明;(3)若CI =DI =ABC 的周长.【答案】(1)115︒(2)DI AD BD ==,证明见解析(3)30【分析】(1)利用圆周角定理得到90ACB ∠=︒,再根据三角形的内角和定理求65CAB ∠=︒,然后利用圆内接四边形的对角互补求解即可;(2)连接A I ,由三角形的内心性质得到内心,CAI BAI ∠=∠,ACI BCI ∠=∠,然后利用圆周角定理得到DAB DCB ACI ∠=∠=∠,AD BD =,利用三角形的外角性质证得DAI DIA ∠=∠,然后利用等角对等边可得结论;(3)过I 分别作IQ AB ⊥,IF AC ⊥,IP BC ⊥,垂足分别为Q 、F 、P ,根据内切圆的性质和和切线长定理得到AQ AF =,CF CP =,BQ BP =,利用解直角三角形求得2CF CP ==, 13AB =,进而可求解.【详解】(1)解:∵AB 是O 的直径,∴90ADB ACB ∠=∠=︒,又25ABC ∠=︒,∴902565CAB ∠=︒-︒=︒,∵四边形ABEC 是O 内接四边形,∴180CEB CAB ∠+∠=︒,∴180115CEB CAB ∠=︒-∠=︒;∵点I 为ABC 的内心,∴CAI BAI ∠=∠,ACI ∠∴ AD BD=,∴DAB DCB ACI ∠=∠=∠∵点I 为ABC 的内心,即为∴Q 、F 、P 分别为该内切圆与∴AQ AF =,CF CP =,∵22CI =,90IFC ∠=2AB AQ BQ CF=+++22AB CF=+21322=⨯+⨯30=.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.由题意得2AG BG ==,∵对称轴为直线=1x -,∴()()1,0, 3.0B A -,∴3OC OA ==,∴()0,3C ,将A 、B 、C 分别代入21y ax bx c =++,得:09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴2123y x x =--+,∴()2212314y x x x =--+=-++,顶点为()1,4-∵抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,∴抛物线2y 的1a =,顶点为()1,4-,∴2y 的表达式为:()2214y x =--,即2223y x x =--(2)解:将点F 向右平移2个单位至F ',则2F F '=,()4,0F '-,过点D 作直线2l 的对称点为D ¢,连接,,F N F D ND '''',∴ND ND '=,∵()2214y x =--,∴直线2l 为直线1x =,∵抛物线()2214y x =--,∴()1,4E -∵2l y ∥轴,∴1DHE ∠=∠,∵2PEH DHE ∠=∠,∴2112PEH ∠=∠=∠+∠,∴12∠=∠,作H 关于直线2l 的对称点H ',则点H '在直线PE 上,∵点H 的坐标为()0,2-,直线2l :1x =,∴()2,2H '-,设直线PE 的表达式为:()0y kx b k =+≠,代入()2,2H '-,()1,4E -,得:224k b k b +=-⎧⎨+=-⎩,解得:26k b =⎧⎨=-⎩,∴直线PE 的表达式为26y x =-,联立222623y x y x x =-⎧⎨=--⎩,得:22326x x x --=-,解得:3x =或1x =(舍),∴()3,0P ;②当点P 在直线2l 左侧抛物线上时,延长EP 交y 轴于点N ,作HN 的垂直平分线交HE 于点Q ,交y 轴于点M ,过点E 作EK y ⊥轴于点K ,则QM EK ∥,如图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一万天大约相当于( )年。 精确到百分位是( )。
一种药水的浓度是 ,现在有药液 千克,需要加水( )千克。 某工厂有职工 人,某天出勤率是 %,其中出勤女工占出勤职工的 %,这 天出勤的女工有( )人。 学校买来 米塑料绳子,剪下 米,做 根跳绳,照这样计算,剩下的塑料绳 还可以剪( )根跳绳。 把 分米长的铁丝折成一个最大的正方形,它的面积是( )平方分米,如果 把这根铁丝折成一个最大的正方体,它的体积是( )立方分米。 在 · 汶川地震发生后,我校六( )班捐了 元,六( )班再捐 元就
+=
∶= ∶
五、图形与操作。( 分) 将图形 绕 点逆时针方向旋转 得到图形 ,再将图形 向右平移 格得到图
形 ,最后将图形 按 ∶ 放大得到图形 。
有 , 两个容器,如下图先把 装满水,然后倒入 中, 中水的深度是多少厘米?
六、解决问题。( 分) 甲、乙两人相距 千米,甲先出发 小时,乙再出发,甲在后乙在前,两人同向而
比六( )班的 多 元,则六( )班捐了( )元。
右面是小明家附近的地图。
( )把图上的比例尺改为数值比例
尺是(
)。
( )小明从学校到少年宫的路长
( )米。
( )在学校的正东方向 米的地
方有一个体育馆,请在图上标出体育馆
的位置。
游泳馆
小明家
学校
少年宫
商店
北
米
二、判断题。( 分)
真分数的倒数比 大,假分数的倒数比 小。
-
-
的自然数,下列各式中结果最大的是(
米应记作( +
)。
)米。
有一列数: , , , , ,…则 在这列数中是第( )个数。
除以 的商是 ,余数是( )。
一个车间进行改革后,人员减少了
提高
提高
,产量比原来增加了 提高
,则工作效率( )。 与原来一样
四、方法计算: + + + + + +
()
一个自然数( 除外),不是奇数就是偶数,不是质数就是合数。
()
圆锥的侧面展开后是一个等腰三角形。
()
加工一批零件,每小时加工数与所需时间成反比例。
()
要绘制杭州市去年全年日平均气温变化情况统计图,采用折线统计图较合适。( )
三、选择题。( 分)
从 点向东走 -
如果 是大于
米到 点记作+ 米,那么从 点向西走
汇源果汁
某小学要买 个篮球,现有甲、乙、丙三个商店可以选择,这三个商店篮球的单 价都是 元,但各个商店的优惠办法不同。( 分)
甲店:买 个赠送两个,不足 个不赠送。 乙店:打 折销售。 丙店:购物满 元,返还现金 元。 为了节省费用,学校应该到哪家商店购买篮球?为什么?
六年的小学生活即将结束,婷婷计划星期天请 名同学到家商量去养老院参加义务 劳动的事,家中只有一盒长方体饮料(如下图),假如用来招待同学,给每位同学倒上满满 一杯(如下图) 后,她自己还有饮料吗?(请写出计算过程,盒子、杯子的厚度均忽略不 计)(单位:厘米)( 分)
行,甲的速度为 千米 时,乙的速度为 千米 时。甲出发几小时后追上乙?( 分)
王老师买了 盒糖和 盒蛋糕共用去 元,李老师买了同样的 盒糖和 盒蛋糕 共用去 元。每盒糖和每盒蛋糕各多少元?( 分)
某校六年级有两个班,上学期男生人数是女生人数的 ,这学期转入 名女生,这 样男生和女生人数的比为 ∶ 。现在有女生多少人?( 分)
山东省烟台市某重点中学招生数学真卷
(时间: 分钟 总分: 分)
题号
一
二
三
四
五
六
总分
得分
一、填空题。(第 , 小题每小题 分,其余每小题 分,共 分)
∶( )=( )=( ) = 若 ∶ = ∶ , ∶ = ∶ ,且 + + = ,则 =( )。 下面的数,最小的是( )。
,, ,
甲数的 等于乙数的 ,甲、乙两数的最简整数比是( )。