astm b733 电镀标准

合集下载

ASTM-美国涂层标准

ASTM-美国涂层标准

20
ANSI/AWWA C116/A 21.162003
供水设备用球墨铸铁和灰铁配件的内外表面的 防护熔融胶合环氧涂层 给水钢管煤焦油保护涂层和内衬.热用搪瓷和 胶带 钢制供水管道的煤焦油保护涂层和内衬标准. 搪瓷和胶带.热水 商用4英寸和4英寸以上钢水管的水泥灰浆保护 衬和涂层 钢水管用特殊部件、连接件和配件的外部用低 温磁带涂层 钢制水管的内外层用液体环氧树脂涂层系统 给水钢管的内、外层熔化粘结环氧涂层 钢制水管内外的熔融胶合环氧树脂涂层 钢制水管的外层用挤压聚烯烃涂层 给水钢管用专用部件、连接件和配件外部可热 收缩交联的聚烯烃涂层 钢水管和配件聚氨基甲酸乙酯内或外涂层 钢水管、连接件、配件和特殊部件的内部和外 部用尼龙11基聚酰胺涂层系统 阀门和给水栓用防护性内部涂层 涂层的钢制储水箱 光纤涂层几何尺寸的测量方法 测量电器连接器件的金属涂层厚度的试验程序
10 ANSI/ASTM D2534-1988 11 ANSI/ASTM D3214-1997 12 ANSI/ASTM D3236-1988 13 ANSI/ASTM D3521-1986 14 ANSI/ASTM D3708-1988 15 ANSI/ASTM D4917-1997 16 ANSI/ASTM D4918-1997 17 ANSI/ASTM F1916-1998 18 ANSI/ASTM F2016-2000 19 ANSI/AWS A4.4M-2001
用光截面显微镜测量铝阳极镀层厚度及不透明 表面的其它透明涂层厚度的试验方法 金属表面自催化(无电)镍磷涂层标准规范 用硝酸蒸汽测试金属基体上金涂层孔隙率的标 准试验方法 用扫描电子显微镜测量横截面测定金属涂层厚 度的方法 热浸涂层用锭铁模型中GALFAN(锌-5%铝-含铈 稀土)合金的标准规范 金属涂层和无机物涂层的不同抽样 镉电沉积涂层标准规范 用重量分析法和其它化学分析法测定电沉积涂 层及相关涂层单位面积的质量 用凝胶体电谱法测定金属基物上金或钯涂层孔 隙度的标准试验方法 用湿硫黄蒸气("硫黄华")作金属涂层中孔隙率 测试的标准试验方法 用聚硫化物浸入法测试金属涂层中总疵点和机 械损坏的标准试验方法 镁和镁合金上非电解质转换涂层的标准规范 工程应用硬涂层阳极氧化规范 在锌和镉表面非铬酸涂层试验的标准实施规程 热处理平板玻璃的标准规范.HS和FT类涂层和 无涂层玻璃 建筑物内部辐射控制涂层系统(IRCCS)的安装 和使用的标准实施规程 建筑物外部防太阳辐射涂层的标准规范 用定量单点划痕试验测定陶瓷涂层粘结强度和 机械损坏类型的标准试验方法 涂层砖(由粘土或页岩制造的实心砌块)的标准 规范

ASTM B-733-97 金属表面化学镀镍磷层规范标准

ASTM B-733-97 金属表面化学镀镍磷层规范标准

Designation:B733–97Standard Specification forAutocatalytic(Electroless)Nickel-Phosphorus Coatings on Metal1This standard is issued under thefixed designation B733;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This specification covers requirements for autocatalytic (electroless)nickel-phosphorus coatings applied from aqueous solutions to metallic products for engineering(functional)uses.1.2The coatings are alloys of nickel and phosphorus pro-duced by autocatalytic chemical reduction with hypophosphite. Because the deposited nickel alloy is a catalyst for the reaction, the process is self-sustaining.The chemical and physical properties of the deposit vary primarily with its phosphorus content and subsequent heat treatment.The chemical makeup of the plating solution and the use of the solution can affect the porosity and corrosion resistance of the deposit.For more details,see ASTM STP265(1)2and Refs(2)(3)(4)and(5) also refer to Figs.X1.1,Figs.X1.2,and Figs.X1.3in the Appendix of Guide B656.1.3The coatings are generally deposited from acidic solu-tions operating at elevated temperatures.1.4The process produces coatings of uniform thickness on irregularly shaped parts,provided the plating solution circu-lates freely over their surfaces.1.5The coatings have multifunctional properties,such as hardness,heat hardenability,abrasion,wear and corrosion resistance,magnetics,electrical conductivity provide diffusion barrier,and solderability.They are also used for the salvage of worn or mismachined parts.1.6The low phosphorus(2to4%P)coatings are microc-rystalline and possess high as-plated hardness(620to750HK 100).These coatings are used in applications requiring abra-sion and wear resistance.1.7Lower phosphorus deposits in the range between1and 3%phosphorus are also microcrystalline.These coatings are used in electronic applications providing solderability,bond-ability,increased electrical conductivity,and resistance to strong alkali solutions.1.8The medium phosphorous coatings(5to9%P)are most widely used to meet the general purpose requirements of wear and corrosion resistance.1.9The high phosphorous(more than10%P)coatings have superior salt-spray and acid resistance in a wide range of applications.They are used on beryllium and titanium parts for low stress properties.Coatings with phosphorus contents greater than11.2%P are not considered to be ferromagnetic.1.10The values stated in SI units are to be regarded as standard.1.11The following precautionary statement pertains only to the test method portion,Section9,of this specification.This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:B368Test Method for Copper-Accelerated Acetic Acid-Salt Spray(Fog)Testing(CASS Testing)3B374Terminology Relating to Electroplating3B380Test Method of Corrosion by the Corrodkote Proce-dure3B487Test Method for Measurement of Metal and Oxide Coating Thicknesses by Microscopical Examination of a Cross Section3B499Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Nonmagnetic Coatings on Magnetic Basis Metals3B504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric Method3B537Practice for Rating of Electroplated Panels Subjected to Atmospheric Exposure3B567Method for Measurement of Coating Thickness by the Beta Backscatter Method3B568Method for Measurement of Coating Thickness by X-Ray Spectrometry31This specification is under the jurisdiction of ASTM Committee B-08on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-mittee B08.08.01on Engineering Coatings.Current edition approved July10,1997.Published October1997.Originallypublished as B733–st previous edition B733–90(1994).2The boldface numbers given in parentheses refer to a list of references at theend of the text.3Annual Book of ASTM Standards,V ol02.05.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.B571Test Methods for Adhesion of Metallic Coatings3B578Test Method for Microhardness of Electroplated Coatings3B602Test Method for Attribute Sampling of Metallic and Inorganic Coating3B656Guide for Autocatalytic Nickel-Phosphorus Deposi-tion on Metals for Engineering Use3B667Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance4B678Test Method for Solderability of Metallic-Coated Products3B697Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings3B762Method for Variable Sampling of Metallic and Inor-ganic Coatings3B849Specification for Pre-Treatment of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement3B850Specification for Post-Coating Treatments of Iron orSteel for Reducing the Risk of Hydrogen Embrittlement3 B851Specification for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel,Autocatalytic Nickel, Chromium,or As A Final Finish3D1193Specification for Reagent Water5D2670Method for Measuring Wear Properties of Fluid Lubricants(Falex Method)6D2714Method for Calibration and Operation of an Alpha LFW-1Friction and Wear Testing Machine6D3951Practice for Commercial Packaging7D4060Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser8E60Practice for Photometric Methods for Chemical Analy-sis of Metals9E156Test Method for Determination of Phosphorus in High-Phosphorus Brazing Alloys(Photometric Method)10 E352Test Methods for Chemical Analysis of Tool Steels and Other Similar Medium-and High-Alloy Steel9F519Test Method for Mechanical Hydrogen Embrittle-ment11G5Practice for Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements12G31Practice for Laboratory Immersion Corrosion Testing of Metals12G59Practice for Conducting Potentiodynamic Polarization Resistance Measurements12G85Practice for Modified Salt Spray(Fog)Testing122.2Military Standards:MIL-R-81841Rotary Flap Peening of Metal Parts13MIL-S-13165Shot Peening of Metal Parts13MIL-STD-105Sampling Procedures and Tables for Inspec-tion by Attribute132.3ISO Standards:ISO4527Autocatalytic Nickel-Phosphorus Coatings—Specification and Test Methods143.Terminology3.1Definition:3.1.1significant surfaces—those substrate surfaces which the coating must protect from corrosion or wear,or both,and that are essential to the performance.3.2Other Definitions—Terminology B374defines most of the technical terms used in this specification.4.Coating Classification4.1The coating classification system provides for a scheme to select an electroless nickel coating to meet specific perfor-mance requirements based on alloy composition,thickness and hardness.4.1.1TYPE describes the general composition of the de-posit with respect to the phosphorus content and is divided into five categories which establish deposit properties(see Table1). N OTE1—Due to the precision of some phosphorus analysis methods a deviation of0.5%has been designed into this classification scheme. Rounding of the test results due to the precision of the limits provides for an effective limit of4.5and9.5%respectively.For example,coating with a test result for phosphorus of9.7%would have a classification of TYPE V,see Appendix X4,Alloy TYPEs.4.2Service Condition Based on Thickness:4.2.1Service condition numbers are based on the severity of the exposure in which the coating is intended to perform and minimum coating thickness to provide satisfactory perfor-mance(see Table2).4.2.2SC0Minimum Service,0.1µm—This is defined by a minimum coating thickness to provide specific material prop-erties and extend the life of a part or its function.Applications4Annual Book of ASTM Standards,V ol03.04.5Annual Book of ASTM Standards,V ol11.01.6Annual Book of ASTM Standards,V ol05.02.7Annual Book of ASTM Standards,V ol09.02.8Annual Book of ASTM Standards,V ol06.01.9Annual Book of ASTM Standards,V ol03.05.10Discontinued;see1992Annual Book of ASTM Standards,V ol03.05. 11Annual Book of ASTM Standards,V ol15.03.12Annual Book of ASTM Standards,V ol03.02.13Available from Standardization Documents Order Desk,Bldg.4Section D, 700Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.14Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY10036.TABLE1Deposit Alloy TypesType Phosphorus%wtI No Requirement for PhosphorusII1to3III2to4IV5to9V10and aboveTABLE2Service ConditionsCoating Thickness RequirementsService ConditionMinimum CoatingThicknessSpecificationµm in.(mm)SC0Minimun Thickness0.10.000004()SC1Light Service50.0002()SC2Mild Service130.0005()SC3Moderate Service250.001()SC4Severe Service750.003()include requirements for diffusion barrier,undercoat,electrical conductivity and wear and corrosion protection in specialized environments.4.2.3SC1Light Service ,5µm—This is defined by a minimum coating thickness of 5µm for extending the life of the part.Typical environments include light-load lubricated wear,indoor corrosion protection to prevent rusting,and for soldering and mild abrasive wear.4.2.4SC2Mild Service ,13µm—This is defined by mild corrosion and wear environments.It is characterized by indus-trial atmosphere exposure on steel substrates in dry or oiled environments.4.2.5SC3Moderate Service ,25µm—This is defined by moderate environments such as non marine outdoor exposure,alkali salts at elevated temperature,and moderate wear.4.2.6SC4Severe Service ,75µm—This is defined by a very aggressive environment.Typical environments would include acid solutions,elevated temperature and pressure,hydrogen sulfide and carbon dioxide oil service,high-temperature chlo-ride systems,very severe wear,and marine immersion.N OTE 2—The performance of the autocatalytic nickel coating depends to a large extent on the surface finish of the article to be plated and how it was pretreated.Rough,non uniform surfaces require thicker coatings than smooth surfaces to achieve maximum corrosion resistance and minimum porosity.4.3Post Heat Treatment Class —The nickel-phosphorus coatings shall be classified by heat treatment after plating to increase coating adhesion and or hardness (see Table 3).4.3.1Class 1—As-deposited,no heat treatment.4.3.2Class 2—Heat treatment at 260to 400°C to produce a minimum hardness of 850HK100.4.3.3Class 3—Heat treatment at 180to 200°C for 2to 4h to improve coating adhesion on steel and to provide for hydrogen embrittlement relief (see section 6.6).4.3.4Class 4—Heat treatment at 120to 130°C for at least 1h to increase adhesion of heat-treatable (age-hardened)alumi-num alloys and carburized steel (see Note 3).4.3.5Class 5—Heat treatment at 140to 150°C for at least 1h to improve coating adhesion for aluminum,non age-hardened aluminum alloys,copper,copper alloys and beryl-lium.4.3.6Class 6—Heat treatment at 300to 320°C for at least 1h to improve coating adhesion for titanium alloys.N OTE 3—Heat-treatable aluminum alloys such as Type 7075can undergo microstructural changes and lose strength when heated to over 130°C.5.Ordering Information5.1The following information shall be supplied by the purchaser in either the purchase order or on the engineering drawing of the part to be plated:5.1.1Title,ASTM designation number,and year of issue of this specification.5.1.2Classification of the deposit by type,service condi-tion,class,(see 4.1,4.2and 4.3).5.1.3Specify maximum dimension and tolerance require-ments,if any.5.1.4Peening,if required (see6.5).5.1.5Stress relief heat treatment before plating,(see6.3).5.1.6Hydrogen Embrittlement Relief after plating,(see 6.6).5.1.7Significant surfaces and surfaces not to be plated must be indicated on drawings or sample.5.1.8Supplemental or Special Government Requirements such as,specific phosphorus content,abrasion wear or corro-sion resistance of the coating,solderability,contact resistance and packaging selected from Supplemental Requirements.5.1.9Requirement for a vacuum,inert or reducing atmo-sphere for heat treatment above 260°C to prevent surface oxidation of the coating (see S3).5.1.10Test methods for coating adhesion,composition,thickness,porosity,wear and corrosion resistance,if required,selected from those found in Section 9and Supplemental Requirements.5.1.11Requirements for sampling (see Section 8).N OTE 4—The purchaser should furnish separate test specimens or coupons of the basis metal for test purposes to be plated concurrently with the articles to be plated (see 8.4).6.Materials and Manufacture6.1Substrate —Defects in the surface of the basis metal such as scratches,porosity,pits,inclusions,roll and die marks,laps,cracks,burrs,cold shuts,and roughness may adversely affect the appearance and performance of the deposit,despite the observance of the best plating practice.Any such defects on significant surfaces shall be brought to the attention of the purchaser before plating.The producer shall not be responsible for coatings defects resulting from surface conditions of the metal,if these conditions have been brought to the attention of the purchaser.6.2Pretreatment —Parts to be autocatalytic nickel plated may be pretreated in accordance with Guide B 656.A suitable method shall activate the surface and remove oxide and foreign materials,which may cause poor adhesion and coating poros-ity.N OTE 5—Heat treatment of the base material may effect its metallur-gical properties.An example is leaded steel which may exhibit liquid or solid embrittlement after heat treatment.Careful selection of the pre and post heat treatments are recommended.TABLE 3Classification of Post Heat TreatmentCLASS DescriptionTemperature(°C)Time (h)1No Heat Treatment,As Plated2Heat Treatment for Maximum Hardness TYPE I260202851632084001TYPE II 350to 3801TYPE III 360to 3901TYPE IV 365to 4001TYPE V375to 40013Hydrogen Embrittlement and Adhesion on Steel180to 2002to 44Adhesion,Carburized Steel and Age Hardened Aluminum 120to 1301to 65Adhesion on Beryllium and Aluminum140to 1501to 26Adhesion on Titanium300–3201–46.3Stress Relief:6.3.1Pretreatment of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strength of greater than1000Mpa(hardness of 31HRC or greater),that have been machined,ground,cold formed,or cold straightened subsequent to heat treatment,shall require stress relief heat treatment when specified by the purchaser,the tensile strength to be supplied by the purchaser, Specification B849may be consulted for a list of pre-treatments that are widely used.6.3.2Peening—Peening prior to plating may be required on high-strength steel parts to induce residual compressive stresses in the surface,which can reduce loss of fatigue strength and improve stress corrosion resistance after plating. (See Supplementary Requirements).6.3.3Steel parts which are designed for unlimited life under dynamic loads shall be shot peened or rotaryflap peened.N OTE6—Controlled shot peening is the preferred method because there are geometry’s where rotaryflap peening is not effective.See S11.2. 6.3.3.1Unless otherwise specified,the shot peening shall be accomplished on all surfaces for which the coating is required and all immediate adjacent surfaces when they contain notches,fillets,or other abrupt changes of section size where stresses will be concentrated.6.4Racking—Parts should be positioned so as to minimize trapping of hydrogen gas in cavities and holes,allowing free circulation of solution over all surfaces to obtain uniform coating thickness.The location of rack or wire marks in the coating shall be agreed upon between the producer and purchaser.6.5Plating Process:6.5.1To obtain consistent coating properties,the bath must be monitored periodically for pH,temperature,nickel and hypophosphite.Replenishments to the plating solution should be as frequent as required to maintain the concentration of the nickel and hypophosphite between90and100%of set point. The use of a statistical regimen to establish the control limits and frequency of analysis may be employed to ensure quality deposits are produced.6.5.2Mechanical movement of parts and agitation of the bath is recommended to increase coating smoothness and uniformity and prevent pitting or streaking due to hydrogen bubbles.6.6Post Coating Treatment for Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strengths of1000Mpa(hardness of 31HRC or greater),as well as surface hardened parts,shall require post coating hydrogen embrittlement relief baking when specified by the purchaser,the tensile strength to be supplied by the purchaser.Specification B850may be con-sulted for a list of post treatments that are widely used.6.6.1Heat treatment shall be performed preferably within1h but not more than3h of plating on plated after plating of steel parts to reduce the risk of hydrogen embrittlement.In all cases,the duration of the heat treatment shall commence from the time at which the whole of each part attains the specified temperature.6.6.2High-strength steel parts with actual tensile strengths greater than1000MPa(corresponding hardness values300 HV10,303HB or31HRC)and surface hardened parts shall be processed after coating in accordance with Specification B850.6.7Heat Treatment After Plating to Improve Adhesion—To improve the adhesion of the coating to various substrates,the heat treatments in Table3should be performed as soon as practical after plating(see4.3).6.8Heat Treatment After Plating to Increase Hardness: 6.8.1To increase the hardness of the coating a heat treat-ment of over260°C is required.Table3describes the heat treatment for maximum hardness.6.8.2See Appendixes3and4and Guide B656;Figs.X1.2 and Figs.X1.3.6.8.3A heat treatment at260°C for greater than20h should be used to reduce the loss of surface hardness and strength of some ferrous basis metals.Avoid rapid heating and cooling of plated parts.Sufficient time must be allowed for large parts to reach oven temperature.N OTE7—The length of time to reach maximum hardness varies with the phosphorus content of the deposit.High phosphorus deposits may require longer time or a higher temperature,or both.Individual alloys should be tested for maximum hardness attainable,especially for condi-tions of lower temperatures and longer times.N OTE8—Inert or reducing atmosphere or vacuum sufficient to prevent oxidation is recommended for heat treatment above260°C.Do not use gas containing hydrogen with high-strength steel parts.7.Requirements7.1Process—The coating shall be produced from an aque-ous solution through chemical reduction reaction.7.2Acceptance Requirements—These requirements are placed on each lot or batch and can be evaluated by testing the plated part.7.2.1Appearance:7.2.1.1The coating surface shall have a uniform,metallic appearance without visible defects such as blisters,pits, pimples,and cracks(see9.2).7.2.1.2Imperfections that arise from surface conditions of the substrate which the producer is unable to remove using conventional pretreatment techniques and that persist in the coating shall not be cause for rejection(see 6.1).Also, discoloration due to heat treatment shall not be cause for rejection unless special heat treatment atmosphere is specified (see section5.1.9).7.2.2Thickness—The thickness of the coating shall exceed the minimum requirements in Table2as specified by the service condition agreed to prior to plating(see9.3).After coating and if specified,the part shall not exceed maximum dimension on significant surface(see section5.1.3).N OTE9—The thickness of the coating cannot be controlled in blind or small diameter deep holes or where solution circulation is restricted. 7.2.3Adhesion—The coating shall have sufficient adhesion to the basis metal to pass the specified adhesion test(see9.4 and Test Methods B571).7.2.4Porosity—The coatings shall be essentially pore free when tested according to one of the methods of9.6.The test method,the duration of the test,and number of allowable spots per unit area shall be specified(see section5.1.10and9.6).7.3Qualification Requirements—These requirements are placed on the deposit and process and are performed on specimens to qualify the deposit and plating process.The tests for these qualification requirements shall be performed monthly or more frequently.7.3.1Composition—Type II,III,IV,V deposits shall be analyzed for alloy composition by testing for phosphorus(see 9.1).The weight percent of phosphorus shall be in the range designated by type classification(see4.1).7.3.2Microhardness—The microhardness of Class2depos-its shall be determined by Test Method B578(Knoop).For Class2coatings,the microhardness shall equal or exceed a minimum of850(HK100(or equivalent Vickers)(see4.3and 9.5).The conversion of Vickers to Knoop using Tables E140 is not recommended.7.3.3Hydrogen Embrittlement—The process used to de-posit a coating onto high strength steels shall be evaluated for hydrogen embrittlement by Test Method F519.8.Sampling8.1The purchaser and producer are urged to employ statis-tical process control in the coating process.Properly performed this will ensure coated products of satisfactory quality and will reduce the amount of acceptance inspection.8.1.1Sampling plans can only screen out unsatisfactory products without assurance that none of them will be accepted.(7)8.2The sampling plan used for the inspection of a quantity of coated parts(lot)shall be Test Method B602unless otherwise specified by purchaser in the purchase order or contract(see section5.1.11and S.11.1).N OTE10—Usually,when a collection of coated parts(the inspection lot8.2)is examined for compliance with the requirements placed on the partsa relatively small number of parts,the sample,is selected at random and inspected.The inspection lot is then classified as complying or not complying with the requirements based on the results of the inspection sample.The size of the sample and the criteria of compliance are determined by the application of statistics.The procedure is known as sampling inspection.Three standards Test Method B602,Guide B697, and Test Method B762contain sampling plans that are designed for the sampling inspection of coatings.Test Method B602contains four sampling plans,three for use with tests that are nondestructive and one for use with tests that are destructive.The purchaser and producer may agree on the plan(s)to be used.If they do not, Test Method B602identifies the plan to be used.Guide B697provides a large number of plans and also gives guidance on the selection of a plan.When Guide B697is specified,the purchaser and producer need to agree on the plan to be used.Test Method B762can be used only for coating requirements that have a numerical limit,such as coating thickness.The last must yield a numerical value and certain statistical requirements must be met.Test Method B762contains several plans and also gives instructions for calculating plans to meet special needs.The purchaser and producer may agree on the plan(s)to be used.If they do not,Test Method B762 identifies the plan to be used.An inspection lot shall be defined as a collection of coated parts which are of the same kind,that have been produced to the same specification, that have been coated by a single producer at one time or approximately the same time under essentially identical conditions,and that are submit-ted for acceptance or rejection as a group.8.3All specimens used in the sampling plan for acceptance tests shall be made of the same basis material and in the same metallurgical condition as articles being plated to this specifi-cation.8.4All specimens shall be provided by the purchaser unless otherwise agreed to by the producer.N OTE11—The autocatalytic nickel process is dynamic and a daily sampling is recommended.For Coatings requiring alloy analysis and corrosion testing weekly sampling should be considered as an option. 9.Test Methods9.1Deposit Analysis for Phosphorus:9.1.1Phosphorus Determination—Determine mass% phosphorus content according to Practice E60,Test Methods E352,or Test Method E156on known weight of deposit dissolved in warm concentrated nitric acid.9.1.2Composition can be determined by atomic absorption, emission or X-rayfluorescence spectrometry.N OTE12—Inductively coupled plasma techniques can determine the alloy to within0.5%.The following analysis wavelength lines have been used with minimum interference to determine the alloy.Ni216.10nm Cd214.44nm Fe238.20nmP215.40nm Co238.34nm Pb283.30nmP213.62nm Cr284.32nm Sn198.94nmAl202.55nm Cu324.75nm Zn206.20nm9.2Appearance—Examine the coating visually for compli-ance with the requirements of7.2.1.9.3Thickness:N OTE13—Eddy-current type instruments give erratic measurements due to variations in conductivity of the coatings with changes in phosphorus content.9.3.1Microscopical Method—Measure the coating thick-ness of a cross section according to Test Method B487.N OTE14—To protect the edges,electroplate the specimens with a minimum of5µm of nickel or copper prior to cross sectioning.9.3.2Magnetic Induction Instrument Method—Test Method B499is applicable to magnetic substrates plated with auto-catalytic nickel deposits,that contain more than11mass% phosphorus(not ferromagnetic)and that have not been heat-treated.The instrument shall be calibrated with deposits plated in the same solution under the same conditions on magnetic steel.9.3.3Beta Backscatter Method—Test Method B567is only applicable to coatings on aluminum,beryllium,magnesium, and titanium.The instrument must be calibrated with standards having the same composition as the coating.N OTE15—The density of the coating varies with its mass%phospho-rus content(See Appendix X2).9.3.4Micrometer Method—Measure the part,test coupon, or pin in a specific spot before and after plating using a suitable micrometer.Make sure that the surfaces measured are smooth, clean,and dry.9.3.5Weigh,Plate,Weigh Method—Using a similar sub-strate material of known surface area,weigh to the nearest milligram before and after plating making sure that the part or coupon is dry and at room temperature for eachmeasurement.Calculate the thickness from the increase in weight,specific gravity,and area as follows:coating thickness,µm510W/~A3D!(1) where:W=weight gain in milligrams,A=total surface area in square centimetres,andD=grams per cubic centimetres(see Appendix X2).9.3.6Coulometric Method—Measure the coating thickness in accordance with Test Method B504.The solution to be used shall be in accordance with manufacturer’s recommendations. The surface of the coating shall be cleaned prior to testing(see Note14).9.3.6.1Calibrate standard thickness specimens with depos-its plated in the same solution under the same conditions. 9.3.7X-Ray Spectrometry—Measure the coating thickness in accordance with Test Method B568.The instrument must be calibrated with standards having the same composition as the coating.N OTE16—This method is only recommended for deposits in the as-plated condition.The phosphorus content of the coating must be known to calculate the thickness of the deposit.Matrix effect due to the distribution of phosphorus in layers of the coating also effect the measurement accuracy and require that calibration standards be made under the same conditions as the production process.9.4Adhesion:9.4.1Bend Test(Test Methods B571)—A sample specimen is bent180°over a mandrel diameter43the thickness(10mm minimum)of the specimen and examined at43power magnification forflaking or separation at the interface.Fine cracks in the coating on the tension side of the bend are not an indication of poor adhesion.Insertion of a sharp probe at the interface of the coating and basis metal to determine the adhesion is suggested.N OTE17—Appropriate test specimens are strips approximately25to50 mm wide,200to300mm long and3to6mm thick.9.4.2Impact Test—A spring-loaded center punch with a point having2to3mm radius is used to test adhesion of the coating on nonsignificant surfaces of the plated part.Make three closely spaced indentations and examine under103 magnification forflaking or blistering of the coating,which is cause for rejection.9.4.3Thermal Shock—The coated part is heated to200°C in an oven and then quenched in room temperature water.The coating is examined for blistering or other evidence of poor adhesion at43magnification.9.5Microhardness—The microhardness of the coating can be measured by Test Method B578using Knoop indenter and is reported in Knoop Hardness Number(HK).It will vary depending on loads,type of indenter,and operator.A100g load is recommended.The rhombic Knoop indenter gives higher hardness readings than the square-base pyramidal Vickers diamond indenter for100to300g loads,see Ref(6).For maximum accuracy,a minimum coating thickness of75µm is recommended.Conversions of Vickers or Knoop hardness number to Rockwell C is not recommended.N OTE18—On thick(75µm+)coatings on steel a surface microhardness determination is permissible.9.6Porosity—There is no universally accepted test for porosity.When required,one of the following tests can be used on the plated part or specimen.9.6.1Ferroxyl Test for Iron Base Substrates—Prepare the test solution by dissolving25g of potassium ferricyanide and 15g of sodium chloride in1L of distilled water.After cleaning,immerse the part for30s in the test solution at25°C. After rinsing and air drying,examine the part for blue spots, which form at pore sites.9.6.2Boiling Water Test for Iron-Base Substrates—Completely immerse the part to be treated in a vesselfilled with aerated water at room temperature.Apply heat to the beaker at such a rate that the water begins to boil in not less than15min,nor more than20min after the initial application of heat.Continue to boil the water for30min.Then remove the part,air dry,and examine for rust spots,which indicate pores. N OTE19—Aerated water is prepared by bubbling clean compressed air through distilled water by means of a glass diffusion disk at room temperature for12h.The pH of the aerated water should be6.7+0.5.9.6.3Aerated Water Test for Iron-Base Substrates—Immerse the part for4h in vigorously aerated Type IV or better water(see Specification D1193)at2562°C temperature and then examine the part for rust spots.9.6.4Alizarin Test for Aluminum Alloys—Wipe the plated part or specimen with10mass%sodium hydroxide solution. After3min contact,rinse,and apply a solution of alizarin sulfonate prepared by dissolving1.5g of methyl cellulose in90 mL of boiling water to which,after cooling,0.1g sodium alizarin sulfonate,dissolved in5mL of ethanol is added.After 4min contact,apply glacial acetic acid until the violet color disappears.Any red spots remaining indicate pores.9.6.5Porosity Test for Copper Substrates—Wipe the plated part or specimen with glacial acetic acid.After3min,apply a solution of potassium ferrocyanide prepared by dissolving1g of potassium ferrocyanide and1.5g methyl cellulose in90mL of boiling distilled water.The appearance of brown spots after 2min indicate pores.9.7Other Test Methods—Test methods which have been developed that are equal to or better than these may be substituted.The precision and bias requirements will vary for each type of test.If an alternate test is specified it shall be agreed upon between the producer and the purchaser.10.Rejection and Rehearing10.1Part(s)that fail to conform to the requirements of this standard may be rejected.Rejection shall be reported to the producer promptly in writing.In the case of dissatisfaction occurs with the results of a test,the producer may make a claim for a hearing.Coatings that show imperfections may be rejected.11.Certification11.1When specified in the purchase order or contract,the purchaser shall be furnished certification that the samples representing each lot have been processed,tested and inspected as directed in this specification and the requirements havebeen。

电镀检验标准

电镀检验标准

B面及边角碰伤,0.5mm2≤S≤1.5mm2

C面及边角碰变形,但组装后不影响整体外观

C面及边角碰变形,组装后影响整体外观

水印
产品表面不能有明显的水渍、水印
电镀件表面有明显的、不可擦除的水渍、水印

A面水渍水印面积≤3.0mm2,40cm处观察不明显

B面水渍水印面积≤5.0mm2,40cm处观察不明显
不构成致命缺陷,但可能导致功能失误或降低原有使用功能的缺陷(产品的重要质量特性不符合规定,或质量特性严重不符合规定)。
轻微缺陷(minor defect)
对产品的使用性能没有影响或只有轻微影响的缺陷(产品的一般质量特性不符合规定,或质量特性轻微不符合规定)。
致命不合格品(critical defective)
颜色错误,不可接受

与色板/卡颜色有明显差异,或存在明显阴阳面

与色板/色卡颜色略有差异,但整体颜色均匀一致,无明显差异

扫纹
扫纹方向、颜色深浅等符合样板
需要扫纹的产品未扫纹,不可接受

扫纹方向错误,色差明显,大面积漏扫、扫穿

纹路凌乱不清,轻微漏扫、扫穿、色差

脱皮
电镀层、油漆层不能有脱落现象
电镀层或油漆层成片状脱落

C面水渍水印面积≤10mm2,40cm处观察不明显

黑印
白印
产品表面不能有明显的异色斑迹
电镀件表面有明显的白印或黑印,面积≥2.0mm2

白印或黑印面积<2.0mm2,40cm处观察不明显

漏镀
产品表面不允许有镀层未镀上的情况
电镀件A面或B面有漏底材现象,不可接受

美国材料实验室喷丸标准

美国材料实验室喷丸标准

标记:B851—04金属材料弹丸进行自动控制的标准说明,在镀镍,镀铬之前的工序,或作为最终处理方式1。

这些标准适用于标记B 851的问题;这些数值直接地反映指定的名称,说明初始适用阶段或者在修理的情况下,最后整理的阶段,数据的数值表明最后整理的阶段,上标(ε)说明在最后一次修正后进行的编辑的改变。

1。

范围1。

1.具体说明包括自动控制金属材料弹丸的要求,在镀镍,镀铬之前的工序,或作为最终处理方式,弹丸制作的材料为:铸钢包括切丝丸或陶瓷材质。

整个过程适用在那些经过测试工序(在一定的假定的强度下)中有益的材料,不适合于易碎材料,Hand peening and rotary flap peening (手锤敲击硬化和旋转投掷喷丸)不在此说明内。

1。

2 喷丸有助于表面形成残余压应力,使金属物体的表面层在疲劳应力作用下,减少变形。

从而避免零件失效。

1.3.这个标准并非安全能保证安全.只是在使用前建立适当的安全和健康.2。

参考文件2。

1 ASTM 标准B 183 低碳钢电镀准备工作.B242 高碳钢电镀准备向导B 320 铁铸件电镀准备工作B322 电镀前清理零件的工作B607 工程用自催化镀镍硼作业B650 铁基物品镀铬的具体说明B656 工程用金属镍电镀向导B689 镀镍的具体介绍B 733 金属电镀镍磷的说明E 11 Specification for Wire Cloth and Sieves for Testing purposesE 165 液体渗入检查的实验方式E 709 磁性物体检查向导2.2 联邦标准QQ-N-290 镍电镀QQ—C—320 铬电镀2.3军事标准MIL-S—851 钢研磨(?)、喷丸,切丝丸喷丸和铁研磨(?)、弹丸喷射清理和强抛。

MIL—S-13165金属零件的抛丸处理MIL-C-26074 电镀镍MIL—STD—45662 标准系统要求(貌似无关??)2.4SAE标准SAE J441 切丝丸抛丸SAE J442 试条以及试条的固定,和抛丸的测量SAE J827 铸纲丸SAE J1830 抛丸的陶瓷弹丸的规格,等级和特性。

完整版)中国电镀标准一览表

完整版)中国电镀标准一览表

完整版)中国电镀标准一览表中国电镀标准一览表1、标准编号:GB/T 2056-2005标准名称:电镀用铜、锌、镉、镍、锡阳极板简介:该标准规定了电镀用铜、锌、镉、镍和锡轧制阳极板材的要求、试验方法、检验规则及标志、包装、运输、储存。

适用于电镀用的铜、锌、镉、镍和锡阳极板。

2、标准编号:GB/T-2005标准名称:金属和其他无机覆盖层单位面积质量的测定重量法和化学分析法评述简介:该标准等同于3、标准编号:GB/T -1998标准名称:金属覆盖层锡-铅合金电镀层简介:该标准规定了含锡量范围为50%~70%(质量比)的锡-铅合金电镀层的技术要求和试验方法。

适用于电子、电气制品及其他金属制品上防止腐蚀和改善焊接性能的锡-铅合金电镀层。

4、标准编号:GB/T -1998标准名称:金属覆盖层锡-镍合金电镀层简介:该标准规定了由约为65%(质量比)锡和30%(质量比)的镍所组成的金属间化合物锡-镍合金电镀层的技术要求和试验方法。

适用于钢铁及其他金属制品上的锡-镍合金电镀层,该电镀层在不同的使用条件下能防止基体金属腐蚀。

5、标准编号:GB/T 2056-2005标准名称:电镀用铜、锌、镉、镍、锡阳极板简介:该标准规定了电镀用铜、锌、镉、镍和锡轧制阳极板材的要求、试验方法、检验规则及标志、包装、运输、储存。

适用于电镀用的铜、锌、镉、镍和锡阳极板。

6、标准编号:GB -2008标准名称:电镀污染物排放标准7、标准编号:GB/T -2008标准名称:电镀锡钢板耐腐蚀性试验方法(2009年4月1日实施)简介:该标准适用于镀锡量单面规格不低于2.8g/m2的电镀锡钢板耐腐蚀性能的测定。

其中包括电镀锡钢板酸洗时滞试验方法、铁溶出值测定方法、锡晶粒度测定方法和合金锡电偶试验方法。

8、标准编号:GB/T 5267.1-2002标准名称:紧固件电镀层简介:该部分规定了钢或钢合金电镀紧固件的尺寸要求、镀层厚度,并给出了高抗拉强度固件或硬化或表面淬硬紧固件消除氢脆的建议。

astm a733 标准

astm a733 标准

astm a733 标准一、概述本标准是关于碳钢和低合金钢焊接用碳钢和低合金钢焊丝的美国材料与试验协会(astm)标准。

本标准规定了焊丝的规格、尺寸、化学成分、力学性能、表面处理等方面的要求。

二、适用范围本标准适用于碳钢和低合金钢焊接用碳钢和低合金钢焊丝的生产、检验和选用。

三、引用标准本标准引用了以下标准:1.《astma222碳钢和低合金钢》2.《astme502/e502m-11焊接用碳钢焊条》四、术语和定义本标准中使用的术语和定义如下:1.焊丝:用于焊接的金属丝。

2.焊丝直径:焊丝的直径尺寸,用毫米或微米表示。

3.碳钢焊丝:用于焊接碳钢材料的焊丝。

4.低合金钢焊丝:用于焊接含有低合金元素的低合金钢材料的焊丝。

五、规格与尺寸本标准规定了焊丝的直径范围、长度范围、弯曲半径等规格要求。

具体要求如下:1.直径范围:焊丝的直径范围应在规定的范围内,通常为φ1.2mm-φ6.0mm。

2.长度范围:焊丝的长度范围应符合规定,通常为50mm-200mm。

3.弯曲半径:焊丝应易于弯曲,其弯曲半径应不小于规定值,通常为5mm-10mm。

六、化学成分本标准规定了焊丝的化学成分要求,包括碳、锰、硅、硫、磷等元素含量。

具体要求如下:1.碳含量:碳含量应符合规定,以保持焊接材料的力学性能和耐腐蚀性能。

2.锰含量:锰含量有助于提高焊接材料的韧性,但不宜过高。

3.硅含量:硅含量有助于改善焊接材料的塑性和韧性,但不宜过高。

4.硫磷含量:硫磷含量应严格控制,以避免影响焊接质量和使用寿命。

七、力学性能本标准规定了焊丝的力学性能要求,包括抗拉强度、伸长率、硬度等指标。

具体要求如下:1.抗拉强度:焊丝的抗拉强度应符合规定,以确保焊接质量和使用寿命。

2.伸长率:伸长率应较高,以反映焊接材料的塑性性能。

3.硬度:硬度应适中,以确保焊接操作容易进行且不影响焊接质量。

八、表面处理本标准规定了焊丝的表面处理要求,包括表面清洁度、镀层厚度等指标。

ASTM B733 标准

ASTM B733 标准

Designation:B733–97Standard Specification forAutocatalytic(Electroless)Nickel-Phosphorus Coatings on Metal1This standard is issued under thefixed designation B733;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This specification covers requirements for autocatalytic (electroless)nickel-phosphorus coatings applied from aqueous solutions to metallic products for engineering(functional)uses.1.2The coatings are alloys of nickel and phosphorus pro-duced by autocatalytic chemical reduction with hypophosphite. Because the deposited nickel alloy is a catalyst for the reaction, the process is self-sustaining.The chemical and physical properties of the deposit vary primarily with its phosphorus content and subsequent heat treatment.The chemical makeup of the plating solution and the use of the solution can affect the porosity and corrosion resistance of the deposit.For more details,see ASTM STP265(1)2and Refs(2)(3)(4)and(5) also refer to Figs.X1.1,Figs.X1.2,and Figs.X1.3in the Appendix of Guide B656.1.3The coatings are generally deposited from acidic solu-tions operating at elevated temperatures.1.4The process produces coatings of uniform thickness on irregularly shaped parts,provided the plating solution circu-lates freely over their surfaces.1.5The coatings have multifunctional properties,such as hardness,heat hardenability,abrasion,wear and corrosion resistance,magnetics,electrical conductivity provide diffusion barrier,and solderability.They are also used for the salvage of worn or mismachined parts.1.6The low phosphorus(2to4%P)coatings are microc-rystalline and possess high as-plated hardness(620to750HK 100).These coatings are used in applications requiring abra-sion and wear resistance.1.7Lower phosphorus deposits in the range between1and 3%phosphorus are also microcrystalline.These coatings are used in electronic applications providing solderability,bond-ability,increased electrical conductivity,and resistance to strong alkali solutions.1.8The medium phosphorous coatings(5to9%P)are most widely used to meet the general purpose requirements of wear and corrosion resistance.1.9The high phosphorous(more than10%P)coatings have superior salt-spray and acid resistance in a wide range of applications.They are used on beryllium and titanium parts for low stress properties.Coatings with phosphorus contents greater than11.2%P are not considered to be ferromagnetic.1.10The values stated in SI units are to be regarded as standard.1.11The following precautionary statement pertains only to the test method portion,Section9,of this specification.This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:B368Test Method for Copper-Accelerated Acetic Acid-Salt Spray(Fog)Testing(CASS Testing)3B374Terminology Relating to Electroplating3B380Test Method of Corrosion by the Corrodkote Proce-dure3B487Test Method for Measurement of Metal and Oxide Coating Thicknesses by Microscopical Examination of a Cross Section3B499Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Nonmagnetic Coatings on Magnetic Basis Metals3B504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric Method3B537Practice for Rating of Electroplated Panels Subjected to Atmospheric Exposure3B567Method for Measurement of Coating Thickness by the Beta Backscatter Method3B568Method for Measurement of Coating Thickness by X-Ray Spectrometry31This specification is under the jurisdiction of ASTM Committee B-08on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-mittee B08.08.01on Engineering Coatings.Current edition approved July10,1997.Published October1997.Originallypublished as B733–st previous edition B733–90(1994).2The boldface numbers given in parentheses refer to a list of references at theend of the text.3Annual Book of ASTM Standards,V ol02.05.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.B571Test Methods for Adhesion of Metallic Coatings3B578Test Method for Microhardness of Electroplated Coatings3B602Test Method for Attribute Sampling of Metallic and Inorganic Coating3B656Guide for Autocatalytic Nickel-Phosphorus Deposi-tion on Metals for Engineering Use3B667Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance4B678Test Method for Solderability of Metallic-Coated Products3B697Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings3B762Method for Variable Sampling of Metallic and Inor-ganic Coatings3B849Specification for Pre-Treatment of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement3B850Specification for Post-Coating Treatments of Iron orSteel for Reducing the Risk of Hydrogen Embrittlement3 B851Specification for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel,Autocatalytic Nickel, Chromium,or As A Final Finish3D1193Specification for Reagent Water5D2670Method for Measuring Wear Properties of Fluid Lubricants(Falex Method)6D2714Method for Calibration and Operation of an Alpha LFW-1Friction and Wear Testing Machine6D3951Practice for Commercial Packaging7D4060Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser8E60Practice for Photometric Methods for Chemical Analy-sis of Metals9E156Test Method for Determination of Phosphorus in High-Phosphorus Brazing Alloys(Photometric Method)10 E352Test Methods for Chemical Analysis of Tool Steels and Other Similar Medium-and High-Alloy Steel9F519Test Method for Mechanical Hydrogen Embrittle-ment11G5Practice for Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements12G31Practice for Laboratory Immersion Corrosion Testing of Metals12G59Practice for Conducting Potentiodynamic Polarization Resistance Measurements12G85Practice for Modified Salt Spray(Fog)Testing122.2Military Standards:MIL-R-81841Rotary Flap Peening of Metal Parts13MIL-S-13165Shot Peening of Metal Parts13MIL-STD-105Sampling Procedures and Tables for Inspec-tion by Attribute132.3ISO Standards:ISO4527Autocatalytic Nickel-Phosphorus Coatings—Specification and Test Methods143.Terminology3.1Definition:3.1.1significant surfaces—those substrate surfaces which the coating must protect from corrosion or wear,or both,and that are essential to the performance.3.2Other Definitions—Terminology B374defines most of the technical terms used in this specification.4.Coating Classification4.1The coating classification system provides for a scheme to select an electroless nickel coating to meet specific perfor-mance requirements based on alloy composition,thickness and hardness.4.1.1TYPE describes the general composition of the de-posit with respect to the phosphorus content and is divided into five categories which establish deposit properties(see Table1). N OTE1—Due to the precision of some phosphorus analysis methods a deviation of0.5%has been designed into this classification scheme. Rounding of the test results due to the precision of the limits provides for an effective limit of4.5and9.5%respectively.For example,coating with a test result for phosphorus of9.7%would have a classification of TYPE V,see Appendix X4,Alloy TYPEs.4.2Service Condition Based on Thickness:4.2.1Service condition numbers are based on the severity of the exposure in which the coating is intended to perform and minimum coating thickness to provide satisfactory perfor-mance(see Table2).4.2.2SC0Minimum Service,0.1µm—This is defined by a minimum coating thickness to provide specific material prop-erties and extend the life of a part or its function.Applications4Annual Book of ASTM Standards,V ol03.04.5Annual Book of ASTM Standards,V ol11.01.6Annual Book of ASTM Standards,V ol05.02.7Annual Book of ASTM Standards,V ol09.02.8Annual Book of ASTM Standards,V ol06.01.9Annual Book of ASTM Standards,V ol03.05.10Discontinued;see1992Annual Book of ASTM Standards,V ol03.05. 11Annual Book of ASTM Standards,V ol15.03.12Annual Book of ASTM Standards,V ol03.02.13Available from Standardization Documents Order Desk,Bldg.4Section D, 700Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.14Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY10036.TABLE1Deposit Alloy TypesType Phosphorus%wtI No Requirement for PhosphorusII1to3III2to4IV5to9V10and aboveTABLE2Service ConditionsCoating Thickness RequirementsService ConditionMinimum CoatingThicknessSpecificationµm in.(mm)SC0Minimun Thickness0.10.000004()SC1Light Service50.0002()SC2Mild Service130.0005()SC3Moderate Service250.001()SC4Severe Service750.003()include requirements for diffusion barrier,undercoat,electrical conductivity and wear and corrosion protection in specialized environments.4.2.3SC1Light Service ,5µm—This is defined by a minimum coating thickness of 5µm for extending the life of the part.Typical environments include light-load lubricated wear,indoor corrosion protection to prevent rusting,and for soldering and mild abrasive wear.4.2.4SC2Mild Service ,13µm—This is defined by mild corrosion and wear environments.It is characterized by indus-trial atmosphere exposure on steel substrates in dry or oiled environments.4.2.5SC3Moderate Service ,25µm—This is defined by moderate environments such as non marine outdoor exposure,alkali salts at elevated temperature,and moderate wear.4.2.6SC4Severe Service ,75µm—This is defined by a very aggressive environment.Typical environments would include acid solutions,elevated temperature and pressure,hydrogen sulfide and carbon dioxide oil service,high-temperature chlo-ride systems,very severe wear,and marine immersion.N OTE 2—The performance of the autocatalytic nickel coating depends to a large extent on the surface finish of the article to be plated and how it was pretreated.Rough,non uniform surfaces require thicker coatings than smooth surfaces to achieve maximum corrosion resistance and minimum porosity.4.3Post Heat Treatment Class —The nickel-phosphorus coatings shall be classified by heat treatment after plating to increase coating adhesion and or hardness (see Table 3).4.3.1Class 1—As-deposited,no heat treatment.4.3.2Class 2—Heat treatment at 260to 400°C to produce a minimum hardness of 850HK100.4.3.3Class 3—Heat treatment at 180to 200°C for 2to 4h to improve coating adhesion on steel and to provide for hydrogen embrittlement relief (see section 6.6).4.3.4Class 4—Heat treatment at 120to 130°C for at least 1h to increase adhesion of heat-treatable (age-hardened)alumi-num alloys and carburized steel (see Note 3).4.3.5Class 5—Heat treatment at 140to 150°C for at least 1h to improve coating adhesion for aluminum,non age-hardened aluminum alloys,copper,copper alloys and beryl-lium.4.3.6Class 6—Heat treatment at 300to 320°C for at least 1h to improve coating adhesion for titanium alloys.N OTE 3—Heat-treatable aluminum alloys such as Type 7075can undergo microstructural changes and lose strength when heated to over 130°C.5.Ordering Information5.1The following information shall be supplied by the purchaser in either the purchase order or on the engineering drawing of the part to be plated:5.1.1Title,ASTM designation number,and year of issue of this specification.5.1.2Classification of the deposit by type,service condi-tion,class,(see 4.1,4.2and 4.3).5.1.3Specify maximum dimension and tolerance require-ments,if any.5.1.4Peening,if required (see6.5).5.1.5Stress relief heat treatment before plating,(see6.3).5.1.6Hydrogen Embrittlement Relief after plating,(see 6.6).5.1.7Significant surfaces and surfaces not to be plated must be indicated on drawings or sample.5.1.8Supplemental or Special Government Requirements such as,specific phosphorus content,abrasion wear or corro-sion resistance of the coating,solderability,contact resistance and packaging selected from Supplemental Requirements.5.1.9Requirement for a vacuum,inert or reducing atmo-sphere for heat treatment above 260°C to prevent surface oxidation of the coating (see S3).5.1.10Test methods for coating adhesion,composition,thickness,porosity,wear and corrosion resistance,if required,selected from those found in Section 9and Supplemental Requirements.5.1.11Requirements for sampling (see Section 8).N OTE 4—The purchaser should furnish separate test specimens or coupons of the basis metal for test purposes to be plated concurrently with the articles to be plated (see 8.4).6.Materials and Manufacture6.1Substrate —Defects in the surface of the basis metal such as scratches,porosity,pits,inclusions,roll and die marks,laps,cracks,burrs,cold shuts,and roughness may adversely affect the appearance and performance of the deposit,despite the observance of the best plating practice.Any such defects on significant surfaces shall be brought to the attention of the purchaser before plating.The producer shall not be responsible for coatings defects resulting from surface conditions of the metal,if these conditions have been brought to the attention of the purchaser.6.2Pretreatment —Parts to be autocatalytic nickel plated may be pretreated in accordance with Guide B 656.A suitable method shall activate the surface and remove oxide and foreign materials,which may cause poor adhesion and coating poros-ity.N OTE 5—Heat treatment of the base material may effect its metallur-gical properties.An example is leaded steel which may exhibit liquid or solid embrittlement after heat treatment.Careful selection of the pre and post heat treatments are recommended.TABLE 3Classification of Post Heat TreatmentCLASS DescriptionTemperature(°C)Time (h)1No Heat Treatment,As Plated2Heat Treatment for Maximum Hardness TYPE I260202851632084001TYPE II 350to 3801TYPE III 360to 3901TYPE IV 365to 4001TYPE V375to 40013Hydrogen Embrittlement and Adhesion on Steel180to 2002to 44Adhesion,Carburized Steel and Age Hardened Aluminum 120to 1301to 65Adhesion on Beryllium and Aluminum140to 1501to 26Adhesion on Titanium300–3201–46.3Stress Relief:6.3.1Pretreatment of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strength of greater than1000Mpa(hardness of 31HRC or greater),that have been machined,ground,cold formed,or cold straightened subsequent to heat treatment,shall require stress relief heat treatment when specified by the purchaser,the tensile strength to be supplied by the purchaser, Specification B849may be consulted for a list of pre-treatments that are widely used.6.3.2Peening—Peening prior to plating may be required on high-strength steel parts to induce residual compressive stresses in the surface,which can reduce loss of fatigue strength and improve stress corrosion resistance after plating. (See Supplementary Requirements).6.3.3Steel parts which are designed for unlimited life under dynamic loads shall be shot peened or rotaryflap peened.N OTE6—Controlled shot peening is the preferred method because there are geometry’s where rotaryflap peening is not effective.See S11.2. 6.3.3.1Unless otherwise specified,the shot peening shall be accomplished on all surfaces for which the coating is required and all immediate adjacent surfaces when they contain notches,fillets,or other abrupt changes of section size where stresses will be concentrated.6.4Racking—Parts should be positioned so as to minimize trapping of hydrogen gas in cavities and holes,allowing free circulation of solution over all surfaces to obtain uniform coating thickness.The location of rack or wire marks in the coating shall be agreed upon between the producer and purchaser.6.5Plating Process:6.5.1To obtain consistent coating properties,the bath must be monitored periodically for pH,temperature,nickel and hypophosphite.Replenishments to the plating solution should be as frequent as required to maintain the concentration of the nickel and hypophosphite between90and100%of set point. The use of a statistical regimen to establish the control limits and frequency of analysis may be employed to ensure quality deposits are produced.6.5.2Mechanical movement of parts and agitation of the bath is recommended to increase coating smoothness and uniformity and prevent pitting or streaking due to hydrogen bubbles.6.6Post Coating Treatment for Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strengths of1000Mpa(hardness of 31HRC or greater),as well as surface hardened parts,shall require post coating hydrogen embrittlement relief baking when specified by the purchaser,the tensile strength to be supplied by the purchaser.Specification B850may be con-sulted for a list of post treatments that are widely used.6.6.1Heat treatment shall be performed preferably within1h but not more than3h of plating on plated after plating of steel parts to reduce the risk of hydrogen embrittlement.In all cases,the duration of the heat treatment shall commence from the time at which the whole of each part attains the specified temperature.6.6.2High-strength steel parts with actual tensile strengths greater than1000MPa(corresponding hardness values300 HV10,303HB or31HRC)and surface hardened parts shall be processed after coating in accordance with Specification B850.6.7Heat Treatment After Plating to Improve Adhesion—To improve the adhesion of the coating to various substrates,the heat treatments in Table3should be performed as soon as practical after plating(see4.3).6.8Heat Treatment After Plating to Increase Hardness: 6.8.1To increase the hardness of the coating a heat treat-ment of over260°C is required.Table3describes the heat treatment for maximum hardness.6.8.2See Appendixes3and4and Guide B656;Figs.X1.2 and Figs.X1.3.6.8.3A heat treatment at260°C for greater than20h should be used to reduce the loss of surface hardness and strength of some ferrous basis metals.Avoid rapid heating and cooling of plated parts.Sufficient time must be allowed for large parts to reach oven temperature.N OTE7—The length of time to reach maximum hardness varies with the phosphorus content of the deposit.High phosphorus deposits may require longer time or a higher temperature,or both.Individual alloys should be tested for maximum hardness attainable,especially for condi-tions of lower temperatures and longer times.N OTE8—Inert or reducing atmosphere or vacuum sufficient to prevent oxidation is recommended for heat treatment above260°C.Do not use gas containing hydrogen with high-strength steel parts.7.Requirements7.1Process—The coating shall be produced from an aque-ous solution through chemical reduction reaction.7.2Acceptance Requirements—These requirements are placed on each lot or batch and can be evaluated by testing the plated part.7.2.1Appearance:7.2.1.1The coating surface shall have a uniform,metallic appearance without visible defects such as blisters,pits, pimples,and cracks(see9.2).7.2.1.2Imperfections that arise from surface conditions of the substrate which the producer is unable to remove using conventional pretreatment techniques and that persist in the coating shall not be cause for rejection(see 6.1).Also, discoloration due to heat treatment shall not be cause for rejection unless special heat treatment atmosphere is specified (see section5.1.9).7.2.2Thickness—The thickness of the coating shall exceed the minimum requirements in Table2as specified by the service condition agreed to prior to plating(see9.3).After coating and if specified,the part shall not exceed maximum dimension on significant surface(see section5.1.3).N OTE9—The thickness of the coating cannot be controlled in blind or small diameter deep holes or where solution circulation is restricted. 7.2.3Adhesion—The coating shall have sufficient adhesion to the basis metal to pass the specified adhesion test(see9.4 and Test Methods B571).7.2.4Porosity—The coatings shall be essentially pore free when tested according to one of the methods of9.6.The test method,the duration of the test,and number of allowable spots per unit area shall be specified(see section5.1.10and9.6).7.3Qualification Requirements—These requirements are placed on the deposit and process and are performed on specimens to qualify the deposit and plating process.The tests for these qualification requirements shall be performed monthly or more frequently.7.3.1Composition—Type II,III,IV,V deposits shall be analyzed for alloy composition by testing for phosphorus(see 9.1).The weight percent of phosphorus shall be in the range designated by type classification(see4.1).7.3.2Microhardness—The microhardness of Class2depos-its shall be determined by Test Method B578(Knoop).For Class2coatings,the microhardness shall equal or exceed a minimum of850(HK100(or equivalent Vickers)(see4.3and 9.5).The conversion of Vickers to Knoop using Tables E140 is not recommended.7.3.3Hydrogen Embrittlement—The process used to de-posit a coating onto high strength steels shall be evaluated for hydrogen embrittlement by Test Method F519.8.Sampling8.1The purchaser and producer are urged to employ statis-tical process control in the coating process.Properly performed this will ensure coated products of satisfactory quality and will reduce the amount of acceptance inspection.8.1.1Sampling plans can only screen out unsatisfactory products without assurance that none of them will be accepted.(7)8.2The sampling plan used for the inspection of a quantity of coated parts(lot)shall be Test Method B602unless otherwise specified by purchaser in the purchase order or contract(see section5.1.11and S.11.1).N OTE10—Usually,when a collection of coated parts(the inspection lot8.2)is examined for compliance with the requirements placed on the partsa relatively small number of parts,the sample,is selected at random and inspected.The inspection lot is then classified as complying or not complying with the requirements based on the results of the inspection sample.The size of the sample and the criteria of compliance are determined by the application of statistics.The procedure is known as sampling inspection.Three standards Test Method B602,Guide B697, and Test Method B762contain sampling plans that are designed for the sampling inspection of coatings.Test Method B602contains four sampling plans,three for use with tests that are nondestructive and one for use with tests that are destructive.The purchaser and producer may agree on the plan(s)to be used.If they do not, Test Method B602identifies the plan to be used.Guide B697provides a large number of plans and also gives guidance on the selection of a plan.When Guide B697is specified,the purchaser and producer need to agree on the plan to be used.Test Method B762can be used only for coating requirements that have a numerical limit,such as coating thickness.The last must yield a numerical value and certain statistical requirements must be met.Test Method B762contains several plans and also gives instructions for calculating plans to meet special needs.The purchaser and producer may agree on the plan(s)to be used.If they do not,Test Method B762 identifies the plan to be used.An inspection lot shall be defined as a collection of coated parts which are of the same kind,that have been produced to the same specification, that have been coated by a single producer at one time or approximately the same time under essentially identical conditions,and that are submit-ted for acceptance or rejection as a group.8.3All specimens used in the sampling plan for acceptance tests shall be made of the same basis material and in the same metallurgical condition as articles being plated to this specifi-cation.8.4All specimens shall be provided by the purchaser unless otherwise agreed to by the producer.N OTE11—The autocatalytic nickel process is dynamic and a daily sampling is recommended.For Coatings requiring alloy analysis and corrosion testing weekly sampling should be considered as an option. 9.Test Methods9.1Deposit Analysis for Phosphorus:9.1.1Phosphorus Determination—Determine mass% phosphorus content according to Practice E60,Test Methods E352,or Test Method E156on known weight of deposit dissolved in warm concentrated nitric acid.9.1.2Composition can be determined by atomic absorption, emission or X-rayfluorescence spectrometry.N OTE12—Inductively coupled plasma techniques can determine the alloy to within0.5%.The following analysis wavelength lines have been used with minimum interference to determine the alloy.Ni216.10nm Cd214.44nm Fe238.20nmP215.40nm Co238.34nm Pb283.30nmP213.62nm Cr284.32nm Sn198.94nmAl202.55nm Cu324.75nm Zn206.20nm9.2Appearance—Examine the coating visually for compli-ance with the requirements of7.2.1.9.3Thickness:N OTE13—Eddy-current type instruments give erratic measurements due to variations in conductivity of the coatings with changes in phosphorus content.9.3.1Microscopical Method—Measure the coating thick-ness of a cross section according to Test Method B487.N OTE14—To protect the edges,electroplate the specimens with a minimum of5µm of nickel or copper prior to cross sectioning.9.3.2Magnetic Induction Instrument Method—Test Method B499is applicable to magnetic substrates plated with auto-catalytic nickel deposits,that contain more than11mass% phosphorus(not ferromagnetic)and that have not been heat-treated.The instrument shall be calibrated with deposits plated in the same solution under the same conditions on magnetic steel.9.3.3Beta Backscatter Method—Test Method B567is only applicable to coatings on aluminum,beryllium,magnesium, and titanium.The instrument must be calibrated with standards having the same composition as the coating.N OTE15—The density of the coating varies with its mass%phospho-rus content(See Appendix X2).9.3.4Micrometer Method—Measure the part,test coupon, or pin in a specific spot before and after plating using a suitable micrometer.Make sure that the surfaces measured are smooth, clean,and dry.9.3.5Weigh,Plate,Weigh Method—Using a similar sub-strate material of known surface area,weigh to the nearest milligram before and after plating making sure that the part or coupon is dry and at room temperature for eachmeasurement.Calculate the thickness from the increase in weight,specific gravity,and area as follows:coating thickness,µm510W/~A3D!(1) where:W=weight gain in milligrams,A=total surface area in square centimetres,andD=grams per cubic centimetres(see Appendix X2).9.3.6Coulometric Method—Measure the coating thickness in accordance with Test Method B504.The solution to be used shall be in accordance with manufacturer’s recommendations. The surface of the coating shall be cleaned prior to testing(see Note14).9.3.6.1Calibrate standard thickness specimens with depos-its plated in the same solution under the same conditions. 9.3.7X-Ray Spectrometry—Measure the coating thickness in accordance with Test Method B568.The instrument must be calibrated with standards having the same composition as the coating.N OTE16—This method is only recommended for deposits in the as-plated condition.The phosphorus content of the coating must be known to calculate the thickness of the deposit.Matrix effect due to the distribution of phosphorus in layers of the coating also effect the measurement accuracy and require that calibration standards be made under the same conditions as the production process.9.4Adhesion:9.4.1Bend Test(Test Methods B571)—A sample specimen is bent180°over a mandrel diameter43the thickness(10mm minimum)of the specimen and examined at43power magnification forflaking or separation at the interface.Fine cracks in the coating on the tension side of the bend are not an indication of poor adhesion.Insertion of a sharp probe at the interface of the coating and basis metal to determine the adhesion is suggested.N OTE17—Appropriate test specimens are strips approximately25to50 mm wide,200to300mm long and3to6mm thick.9.4.2Impact Test—A spring-loaded center punch with a point having2to3mm radius is used to test adhesion of the coating on nonsignificant surfaces of the plated part.Make three closely spaced indentations and examine under103 magnification forflaking or blistering of the coating,which is cause for rejection.9.4.3Thermal Shock—The coated part is heated to200°C in an oven and then quenched in room temperature water.The coating is examined for blistering or other evidence of poor adhesion at43magnification.9.5Microhardness—The microhardness of the coating can be measured by Test Method B578using Knoop indenter and is reported in Knoop Hardness Number(HK).It will vary depending on loads,type of indenter,and operator.A100g load is recommended.The rhombic Knoop indenter gives higher hardness readings than the square-base pyramidal Vickers diamond indenter for100to300g loads,see Ref(6).For maximum accuracy,a minimum coating thickness of75µm is recommended.Conversions of Vickers or Knoop hardness number to Rockwell C is not recommended.N OTE18—On thick(75µm+)coatings on steel a surface microhardness determination is permissible.9.6Porosity—There is no universally accepted test for porosity.When required,one of the following tests can be used on the plated part or specimen.9.6.1Ferroxyl Test for Iron Base Substrates—Prepare the test solution by dissolving25g of potassium ferricyanide and 15g of sodium chloride in1L of distilled water.After cleaning,immerse the part for30s in the test solution at25°C. After rinsing and air drying,examine the part for blue spots, which form at pore sites.9.6.2Boiling Water Test for Iron-Base Substrates—Completely immerse the part to be treated in a vesselfilled with aerated water at room temperature.Apply heat to the beaker at such a rate that the water begins to boil in not less than15min,nor more than20min after the initial application of heat.Continue to boil the water for30min.Then remove the part,air dry,and examine for rust spots,which indicate pores. N OTE19—Aerated water is prepared by bubbling clean compressed air through distilled water by means of a glass diffusion disk at room temperature for12h.The pH of the aerated water should be6.7+0.5.9.6.3Aerated Water Test for Iron-Base Substrates—Immerse the part for4h in vigorously aerated Type IV or better water(see Specification D1193)at2562°C temperature and then examine the part for rust spots.9.6.4Alizarin Test for Aluminum Alloys—Wipe the plated part or specimen with10mass%sodium hydroxide solution. After3min contact,rinse,and apply a solution of alizarin sulfonate prepared by dissolving1.5g of methyl cellulose in90 mL of boiling water to which,after cooling,0.1g sodium alizarin sulfonate,dissolved in5mL of ethanol is added.After 4min contact,apply glacial acetic acid until the violet color disappears.Any red spots remaining indicate pores.9.6.5Porosity Test for Copper Substrates—Wipe the plated part or specimen with glacial acetic acid.After3min,apply a solution of potassium ferrocyanide prepared by dissolving1g of potassium ferrocyanide and1.5g methyl cellulose in90mL of boiling distilled water.The appearance of brown spots after 2min indicate pores.9.7Other Test Methods—Test methods which have been developed that are equal to or better than these may be substituted.The precision and bias requirements will vary for each type of test.If an alternate test is specified it shall be agreed upon between the producer and the purchaser.10.Rejection and Rehearing10.1Part(s)that fail to conform to the requirements of this standard may be rejected.Rejection shall be reported to the producer promptly in writing.In the case of dissatisfaction occurs with the results of a test,the producer may make a claim for a hearing.Coatings that show imperfections may be rejected.11.Certification11.1When specified in the purchase order or contract,the purchaser shall be furnished certification that the samples representing each lot have been processed,tested and inspected as directed in this specification and the requirements havebeen。

ASTM B 633-98 铁和钢的镀锌标准规范(中文)

ASTM B 633-98 铁和钢的镀锌标准规范(中文)

铁和钢镀锌标准规范 B 633-981.范围:1.1 此规范规定了为了防止铁和钢腐蚀而对铁和钢进行镀锌处理的要求。

此规范并未涉及钢线或钢板的镀锌处理(对钢板的规范请见A 591/A 591M)。

1.2 关于镀层提供了四个标准厚度等级(4.1),采用电镀状态或三种附加表面处理的一种(4.2)。

1.3 此标准并未对操作过程中的安全方面的问题做任何说明。

使用此标准者有责任采取适当的保护安全和健康的手段并能在操作时明白这些限制手段。

2.参考文件(省掉翻译)3.术语定义-此规范所使用的术语的定义是符合术语B 374的。

4.分类厚度-镀层厚度的四个厚度等级见表1。

表1:镀层的厚度等级分类A号和转换层下标工作环境B.C厚度,最小μmFe/Zn25SC4(非常恶劣) 25Fe/Zn12SC3(恶劣) 12Fe/Zn8SC2(中等) 8Fe/Zn5SC1(温和) 5A锌镀层的铁或钢。

数字表明的是以毫米为单位的厚度。

B见附录X2。

C工作环境仅对有铬转换层的镀层而言。

TypeⅡ对SC4和SC3;TypeⅢ对SC2和SC1。

表面光洁度—镀层应当属于下列光洁度类型之一:Type 描述Ⅰ 镀层不需要附加处理Ⅱ 有彩色铬化层Ⅲ 有无色铬化层Ⅳ 有磷化层5.订单信息5.1 如果要订购电镀产品,买方应当说明名称编号、发行日期、类别或使用条件编号及类型。

(见4.1,4.2和7.1)5.2 必要的话,买方应当在零件图纸或订单上附上以下内容:5.2.1 在特别说明的情况下,可以对高强度钢进行电镀(见6.4),5.2.2 镀层厚度,如果没有说明,见4.1,7.15.2.3 重要表面的位置(见7.1.1,7.1.2),5.2.4 光泽度(见7.3)5.2.5 如有说明进行抗腐性能测试(见9.3,10.3)5.2.6 如果要求的话,进行氢脆化测试(见9.4,10.4)5.2.7 要检测的样本的大小,及5.2.8 如果有其他附加的要求(见附加要求)6.材料和生产6.1 镀层必须使用电解生成的纯锌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

astm b733 电镀标准
ASTM B733是一种针对电镀的标准。

这个标准已被多个电镀技术
协会和其他专业组织采用,是美国国家标准协会(ANSI)的测试方法。

下面就为大家分步骤阐述ASTM B733电镀标准。

首先,ASTM B733标准明确了电镀的目的和适用范围,其目的在
于表面处理,增加特定的物理、化学或电学性质,例如耐磨、耐腐蚀、导电等,可应用于金属制品、塑料制品等表面的处理。

其次,ASTM B733制定了适用条件和限制。

例如,电镀材料会影
响电缆和其他电气设备的机械和电学性能,因此根据镀层的厚度和铜
和钢之间的接触面积的大小,限制了电镀铜的类型和华氏硬度。

第三,ASTM B733标准定义了标准工作程序。

这些程序包括与准
备物表面相关的一些步骤,如清洗、脱脂、去污和磷化处理。

此外,ASTM B733还指明了如何制备电镀材料的混合物、如何选择电镀的类型和如何控制电流密度等。

第四,在ASTM B733标准文件的支持下,制定了可使记录持一致
的标准测试方法。

例如,通过X射线荧光光谱仪(XRF)检测铜和其他
合金元素的含量。

通过检测合金混合物中的重金属离子和离子浓度时,采用XRF进行导电性和生成属性测量。

接着,值得一提的是,质量控
制联合会(MIL-QC)是电镀制造商和供应商部门的视察机构,以确保
官方印记的镀层通过了最少一组ASTM B733测试,并符合MIL-QC的标
准(MIL-QC-9858A)。

最后,ASTM B733标准将其标准工作程序强制执行。

例如,镀层
涂覆铁、钢、铜-铝及铜-钢表面时,涂层应属于电解沉积铜层的两种
类型之一。

在标准中还明确规定镀层的厚度范围,并针对需要相关测
试进行了明确说明。

总之,ASTM B733是一个有着非常重要的电镀标准,它保证了电
镀工艺和研究在执行和评价过程中的客观性和一致性,并为制造商,
供应商及质量控制单位提供了重要的参考依据。

相关文档
最新文档