仿真实验报告(推荐5篇)

合集下载

流体仿真运用实验报告(3篇)

流体仿真运用实验报告(3篇)

第1篇一、实验背景随着科学技术的不断发展,流体仿真在工程领域得到了广泛应用。

流体仿真模拟可以预测流体在管道、设备等不同环境下的流动特性,为工程设计、优化和故障诊断提供有力支持。

本实验旨在通过流体仿真软件对实际工程中的流体流动问题进行模拟,验证仿真结果与实际数据的吻合程度,提高学生对流体仿真技术的认识和应用能力。

二、实验目的1. 掌握流体仿真软件的基本操作和功能;2. 理解流体仿真在工程中的应用价值;3. 培养学生运用仿真技术解决实际问题的能力;4. 分析仿真结果与实际数据的差异,为工程实践提供参考。

三、实验内容1. 选择合适的流体仿真软件,如FLUENT、ANSYS CFX等;2. 根据实验要求,建立流体流动模型,包括几何模型、网格划分、边界条件设置等;3. 设置物理模型,如流体性质、湍流模型、求解器等;4. 运行仿真,分析结果,与实际数据对比;5. 对仿真结果进行分析,总结实验结论。

四、实验步骤1. 实验准备(1)选择流体仿真软件,如FLUENT;(2)准备实验所需的流体性质、湍流模型、边界条件等参数;(3)了解实验设备的结构、工作原理和实验数据。

2. 建立流体流动模型(1)导入实验设备的几何模型;(2)进行网格划分,选择合适的网格类型和密度;(3)设置边界条件,如入口、出口、壁面等。

3. 设置物理模型(1)设置流体性质,如密度、粘度等;(2)选择湍流模型,如k-ε模型、k-ω模型等;(3)设置求解器,如SIMPLE算法、PISO算法等。

4. 运行仿真(1)启动仿真软件,运行仿真;(2)监控仿真过程,确保仿真顺利进行。

5. 分析结果(1)提取仿真结果,如速度、压力、温度等;(2)与实际数据进行对比,分析差异;(3)总结实验结论。

五、实验结果与分析1. 仿真结果与实际数据对比通过对比仿真结果与实际数据,发现仿真结果与实际数据吻合度较高,验证了流体仿真在工程中的可靠性。

2. 仿真结果分析(1)分析速度分布,观察流体在管道中的流动情况;(2)分析压力分布,了解流体在管道中的压力损失;(3)分析温度分布,掌握流体在管道中的热交换情况。

生物仿真分析实验报告(3篇)

生物仿真分析实验报告(3篇)

第1篇一、实验名称生物仿真分析实验二、实验目的1. 了解生物仿真的基本概念和原理。

2. 掌握使用仿真软件进行生物系统建模和模拟的方法。

3. 分析仿真结果,验证生物系统的行为和机制。

三、实验原理生物仿真是指利用计算机技术对生物系统进行建模和模拟的过程。

通过构建数学模型,模拟生物体的生理、生化过程,分析其行为和机制。

本实验采用仿真软件对某一生物系统进行建模和模拟,通过调整模型参数,观察系统行为的变化。

四、实验设备1. 仿真软件:如MATLAB、Simulink等。

2. 生物数据:实验所需的相关生物数据。

3. 计算机:运行仿真软件的计算机。

五、实验步骤1. 数据准备:收集实验所需的生物数据,包括生理参数、生化参数等。

2. 模型构建:利用仿真软件,根据实验数据构建生物系统的数学模型。

3. 模型验证:通过调整模型参数,验证模型在特定条件下的准确性和可靠性。

4. 模拟实验:在验证模型的基础上,进行模拟实验,观察系统行为的变化。

5. 结果分析:分析仿真结果,验证生物系统的行为和机制。

六、实验结果1. 模型构建:根据实验数据,成功构建了某一生物系统的数学模型。

2. 模型验证:通过调整模型参数,验证了模型在特定条件下的准确性和可靠性。

3. 模拟实验:在模型验证的基础上,进行了模拟实验,观察到了系统行为的变化。

4. 结果分析:通过分析仿真结果,验证了生物系统的行为和机制。

七、讨论和分析1. 模型构建:在构建生物系统模型时,充分考虑了实验数据的准确性和可靠性。

通过调整模型参数,验证了模型的准确性和可靠性。

2. 模拟实验:通过模拟实验,观察到了系统行为的变化,进一步验证了生物系统的行为和机制。

3. 结果分析:仿真结果与实验数据基本一致,验证了生物系统的行为和机制。

八、注意事项1. 数据收集:在收集实验数据时,应注意数据的准确性和可靠性。

2. 模型构建:在构建生物系统模型时,应充分考虑生物系统的复杂性和动态性。

3. 模拟实验:在模拟实验过程中,应注意调整模型参数,以观察系统行为的变化。

仿真模拟管网实验报告(3篇)

仿真模拟管网实验报告(3篇)

第1篇一、实验背景随着城市化进程的加快,城市燃气管道网络规模不断扩大,如何确保燃气管道的安全稳定运行,提高燃气供应的可靠性,成为燃气行业面临的重要问题。

为了提高燃气管道网络的管理水平,减少事故发生的概率,本实验采用仿真模拟管网技术,对燃气管道网络进行模拟实验,分析管道网络在正常和异常情况下的运行状态,为燃气管道网络的优化管理提供科学依据。

二、实验目的1. 了解仿真模拟管网技术的原理和应用。

2. 分析燃气管道网络在正常和异常情况下的运行状态。

3. 掌握仿真模拟管网实验的操作方法。

4. 为燃气管道网络的优化管理提供科学依据。

三、实验原理仿真模拟管网实验采用计算机仿真技术,模拟燃气管道网络在正常和异常情况下的运行状态。

实验过程中,通过建立燃气管道网络模型,对管道网络进行参数设置,模拟管道网络在特定工况下的运行状态,分析管道压力、流量、温度等参数的变化情况。

四、实验内容1. 燃气管道网络建模:根据实验需求,建立燃气管道网络模型,包括管道、阀门、泵站、储气罐等设备。

2. 参数设置:对管道网络模型进行参数设置,包括管道长度、直径、材料、壁厚、摩擦系数等。

3. 情景模拟:设置正常工况和异常工况,模拟管道网络在特定工况下的运行状态。

4. 数据采集与分析:采集管道网络在正常和异常情况下的压力、流量、温度等参数,进行分析。

5. 结果输出:根据实验结果,输出燃气管道网络运行状态图、参数曲线等。

五、实验步骤1. 确定实验目的和内容。

2. 建立燃气管道网络模型。

3. 对管道网络模型进行参数设置。

4. 设置正常工况和异常工况。

5. 运行仿真模拟实验。

6. 采集实验数据。

7. 分析实验数据。

8. 输出实验结果。

六、实验结果与分析1. 正常工况下,管道网络运行稳定,压力、流量、温度等参数均在合理范围内。

2. 异常工况下,如管道破裂、阀门故障等,管道网络运行状态发生明显变化,压力、流量、温度等参数出现异常。

3. 通过仿真模拟实验,可以直观地了解燃气管道网络在异常情况下的运行状态,为事故处理提供依据。

眼球仿真实验报告(3篇)

眼球仿真实验报告(3篇)

第1篇一、实验背景眼球作为人体重要的视觉器官,其结构和功能的研究对于理解视觉生理和病理具有重要意义。

随着计算机技术的发展,眼球仿真实验已成为研究眼球结构和功能的重要手段。

本实验旨在通过仿真软件模拟眼球的结构和功能,加深对眼球生理和病理的认识。

二、实验目的1. 理解眼球的基本结构,包括角膜、晶状体、视网膜等;2. 掌握眼球成像原理,了解光线在眼球内的传播过程;3. 通过仿真实验,观察不同屈光不正情况下的成像效果;4. 学习使用仿真软件进行眼球结构和功能的模拟研究。

三、实验原理眼球仿真实验基于光学原理,模拟光线在眼球内的传播过程。

实验中,光线从外界进入眼球,经过角膜、晶状体等折射,最终在视网膜上成像。

通过改变眼球结构参数,可以观察到不同屈光不正情况下的成像效果。

四、实验材料1. 仿真软件:如MATLAB、Python等;2. 眼球结构参数:角膜曲率、晶状体焦距、视网膜位置等;3. 屈光不正情况:近视、远视、散光等。

五、实验步骤1. 启动仿真软件,设置初始参数,包括角膜曲率、晶状体焦距、视网膜位置等;2. 模拟正常视力情况下的成像过程,观察光线在眼球内的传播路径和成像效果;3. 逐渐改变眼球结构参数,模拟不同屈光不正情况下的成像过程,观察成像效果的变化;4. 分析不同屈光不正情况下的成像特点,了解屈光不正的成因和矫正方法;5. 将实验结果与实际临床病例进行对比,验证仿真实验的准确性。

六、实验结果与分析1. 正常视力情况下,光线在眼球内传播路径顺畅,成像清晰;2. 近视情况下,光线在视网膜前方成像,导致成像模糊;3. 远视情况下,光线在视网膜后方成像,导致成像模糊;4. 散光情况下,光线在不同方向上成像,导致成像模糊;5. 通过改变角膜曲率、晶状体焦距等参数,可以观察到不同屈光不正情况下的成像效果变化。

七、实验结论1. 眼球仿真实验可以有效地模拟眼球结构和功能,为研究眼球生理和病理提供有力工具;2. 通过仿真实验,可以直观地观察到不同屈光不正情况下的成像效果,加深对屈光不正的认识;3. 仿真实验结果与实际临床病例基本一致,验证了仿真实验的准确性。

产品仿真实验报告(3篇)

产品仿真实验报告(3篇)

第1篇一、实验目的本次实验旨在通过仿真软件对某新型产品进行仿真分析,验证产品设计的合理性和可行性,优化产品性能,为产品研发提供理论依据。

二、实验背景随着科技的不断发展,市场竞争日益激烈,企业对产品研发的要求越来越高。

为了提高产品竞争力,缩短研发周期,降低成本,我们采用仿真软件对新型产品进行仿真实验。

三、实验内容1. 仿真软件选择本次实验选用仿真软件为XXX,该软件具有强大的仿真功能,能够模拟产品在实际运行过程中的各种工况,为产品研发提供有力支持。

2. 产品模型建立根据产品设计图纸,利用仿真软件建立产品三维模型。

模型应包含产品的主要部件和连接关系,确保仿真结果的准确性。

3. 材料属性设置根据产品材料要求,设置材料属性,包括密度、弹性模量、泊松比等。

确保仿真过程中材料属性的准确性。

4. 边界条件设置根据产品实际运行工况,设置边界条件,如载荷、温度、压力等。

确保仿真过程中边界条件的准确性。

5. 仿真分析(1)结构分析:对产品进行静态和动态分析,验证产品在载荷作用下的强度、刚度和稳定性。

(2)热分析:分析产品在温度变化下的热传导、热辐射和热对流,验证产品在高温或低温环境下的性能。

(3)流体分析:分析产品在流体流动作用下的压力、速度和流量,验证产品在流体作用下的性能。

6. 结果分析根据仿真结果,分析产品在各个工况下的性能表现,找出产品存在的问题,并提出改进措施。

四、实验结果与分析1. 结构分析仿真结果显示,产品在载荷作用下的强度、刚度和稳定性均满足设计要求。

但在某些部位存在应力集中现象,需要进一步优化设计。

2. 热分析仿真结果显示,产品在高温环境下的热传导、热辐射和热对流性能良好,但在低温环境下存在热传导不畅现象,需要优化热设计。

3. 流体分析仿真结果显示,产品在流体流动作用下的压力、速度和流量均满足设计要求。

但在某些部位存在流体阻力较大现象,需要优化流体设计。

五、结论通过本次仿真实验,验证了新型产品的设计合理性和可行性。

编码仿真实验报告(3篇)

编码仿真实验报告(3篇)

第1篇实验名称:基于仿真平台的编码算法性能评估实验日期:2023年4月10日实验地点:计算机实验室实验目的:1. 了解编码算法的基本原理和应用场景。

2. 通过仿真实验,评估不同编码算法的性能。

3. 分析编码算法在实际应用中的优缺点。

实验环境:1. 操作系统:Windows 102. 编译器:Visual Studio 20193. 仿真平台:MATLAB 2020a4. 编码算法:Huffman编码、算术编码、游程编码实验内容:1. 编写Huffman编码算法,实现字符序列的编码和解码。

2. 编写算术编码算法,实现字符序列的编码和解码。

3. 编写游程编码算法,实现字符序列的编码和解码。

4. 在仿真平台上,分别对三种编码算法进行性能评估。

实验步骤:1. 设计Huffman编码算法,包括构建哈夫曼树、编码和解码过程。

2. 设计算术编码算法,包括编码和解码过程。

3. 设计游程编码算法,包括编码和解码过程。

4. 编写仿真实验代码,对三种编码算法进行性能评估。

5. 分析实验结果,总结不同编码算法的优缺点。

实验结果及分析:一、Huffman编码算法1. 编码过程:- 对字符序列进行统计,计算每个字符出现的频率。

- 根据频率构建哈夫曼树,叶子节点代表字符,分支代表编码。

- 根据哈夫曼树生成编码,频率越高的字符编码越短。

2. 解码过程:- 根据编码,从哈夫曼树的根节点开始,沿着编码序列遍历树。

- 当遍历到叶子节点时,输出对应的字符。

3. 性能评估:- 编码长度:Huffman编码的平均编码长度最短,编码效率较高。

- 编码时间:Huffman编码算法的编码时间较长,尤其是在构建哈夫曼树的过程中。

二、算术编码算法1. 编码过程:- 对字符序列进行统计,计算每个字符出现的频率。

- 根据频率,将字符序列映射到0到1之间的实数。

- 根据映射结果,将实数序列编码为二进制序列。

2. 解码过程:- 对编码的二进制序列进行解码,得到实数序列。

历史仿真实验报告(3篇)

历史仿真实验报告(3篇)

第1篇一、实验背景随着科技的飞速发展,计算机技术在各个领域得到了广泛应用。

为了更好地理解历史事件,还原历史场景,我们开展了一次历史仿真实验。

本次实验旨在通过计算机模拟,探究历史事件的发展过程,加深对历史知识的理解。

二、实验目的1. 通过计算机模拟,还原历史事件的发展过程,了解历史事件背后的原因和影响。

2. 培养学生的历史思维能力和计算机应用能力。

3. 提高学生对历史事件的关注度和兴趣。

三、实验内容本次实验选取了我国历史上的一次重大事件——抗日战争,通过计算机模拟,展示了抗日战争的爆发、发展、胜利的全过程。

四、实验步骤1. 收集抗日战争的相关资料,包括历史背景、主要事件、重要人物等。

2. 利用计算机软件,如Photoshop、3D Max等,制作历史场景、人物形象、战争武器等。

3. 编写程序,实现历史事件的动态展示,包括时间轴、战争地图、人物对话等。

4. 进行实验,观察模拟结果,分析历史事件的发展过程。

五、实验结果与分析1. 抗日战争爆发:1931年9月18日,日本帝国主义发动九一八事变,侵占我国东北三省。

通过模拟,我们了解到,日本帝国主义为了实现其侵略野心,蓄谋已久,九一八事变只是其侵略战争的开始。

2. 抗日战争发展:1937年7月7日,日本帝国主义发动卢沟桥事变,全面侵华战争爆发。

通过模拟,我们观察到,我国国民政府在全国人民的压力下,逐渐转变了对日政策,开始了全面抗战。

3. 抗日战争胜利:1945年8月15日,日本帝国主义宣布无条件投降,抗日战争取得伟大胜利。

通过模拟,我们见证了我国人民在抗日战争中的英勇斗争,以及国际反法西斯联盟的支持。

4. 抗日战争的影响:抗日战争使我国付出了巨大的民族牺牲,但也使我国人民团结一心,民族凝聚力得到了空前的提高。

通过模拟,我们认识到,抗日战争是我国近代史上一次伟大的民族解放战争,对世界反法西斯战争做出了重要贡献。

六、实验总结1. 通过本次实验,我们了解了抗日战争的发展过程,认识到抗日战争的伟大意义。

仿真卤化反应实验报告(3篇)

仿真卤化反应实验报告(3篇)

第1篇一、实验目的1. 了解卤化反应的基本原理和过程;2. 掌握仿真实验的操作步骤和数据分析方法;3. 分析卤化反应的实验结果,验证理论知识的正确性。

二、实验背景卤化反应是指卤素原子(如氯、溴、碘等)与其他原子或分子发生化学反应的过程。

卤化反应在化工、医药、农药等领域有着广泛的应用。

为了更好地研究卤化反应,本实验采用仿真实验方法,模拟卤化反应过程,并对实验结果进行分析。

三、实验原理卤化反应的原理如下:1. 卤化反应是指卤素原子取代其他原子或分子中的氢原子、碳原子等原子的化学反应。

2. 卤化反应通常需要催化剂的存在,以降低反应活化能,提高反应速率。

3. 卤化反应的产物包括卤化物和副产物,如水、醇、酸等。

四、实验仪器与试剂1. 仪器:计算机、仿真软件、打印机;2. 试剂:卤化氢(如HCl、HBr)、卤素单质(如Cl2、Br2)、催化剂(如FeCl3、FeBr3)。

五、实验步骤1. 安装并启动仿真软件;2. 根据实验原理,设置反应条件,如温度、压力、催化剂种类等;3. 输入反应物和产物的初始浓度;4. 运行仿真实验,观察反应过程;5. 记录实验数据,如反应时间、反应速率、产物浓度等;6. 分析实验结果,验证理论知识的正确性。

六、实验结果与分析1. 实验结果(1)反应时间:在设定条件下,卤化反应的实验时间为10小时;(2)反应速率:随着反应时间的推移,反应速率逐渐降低;(3)产物浓度:实验过程中,产物浓度逐渐增加,直至反应结束。

2. 分析(1)反应时间与反应速率的关系:实验结果表明,在设定的条件下,反应时间与反应速率呈正相关,即反应时间越长,反应速率越快;(2)产物浓度与反应时间的关系:实验结果表明,在设定的条件下,产物浓度与反应时间呈正相关,即反应时间越长,产物浓度越高;(3)催化剂对反应的影响:实验结果表明,在添加催化剂的情况下,反应速率明显提高,产物浓度也相应增加。

七、实验结论1. 卤化反应在设定的条件下可以进行,且反应时间、反应速率、产物浓度等参数与理论计算结果基本一致;2. 催化剂对卤化反应具有明显的促进作用;3. 仿真实验方法可以有效地模拟卤化反应过程,为实际实验提供理论依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真实验报告(推荐5篇)第一篇:仿真实验报告大学物理仿真实验报告——塞曼效应一、实验简介塞曼效应就是物理学史上一个著名得实验。

荷兰物理学家塞曼(Zeeman)在1896 年发现把产生光谱得光源置于足够强得磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化得谱线,这种现象称为塞曼效应。

塞曼效应就是法拉第磁致旋光效应之后发现得又一个磁光效应。

这个现象得发现就是对光得电磁理论得有力支持,证实了原子具有磁矩与空间取向量子化,使人们对物质光谱、原子、分子有更多了解.塞曼效应另一引人注目得发现就是由谱线得变化来确定离子得荷质比得大小、符号。

根据洛仑兹(H、A、Lorentz)得电子论,测得光谱得波长,谱线得增宽及外加磁场强度,即可称得离子得荷质比.由塞曼效应与洛仑兹得电子论计算得到得这个结果极为重要,因为它发表在J、J 汤姆逊(J、J Thomson)宣布电子发现之前几个月,J、J 汤姆逊正就是借助于塞曼效应由洛仑兹得理论算得得荷质比,与她自己所测得得阴极射线得荷质比进行比较具有相同得数量级,从而得到确实得证据,证明电子得存在。

塞曼效应被誉为继 X 射线之后物理学最重要得发现之一。

1902 年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰她们研究磁场对光得效应所作得特殊贡献).至今,塞曼效应依然就是研究原子内部能级结构得重要方法。

本实验通过观察并拍摄Hg(546、1nm)谱线在磁场中得分裂情况,研究塞曼分裂谱得特征,学习应用塞曼效应测量电子得荷质比与研究原子能级结构得方法。

二、实验目得1、学习观察塞曼效应得方法观察汞灯发出谱线得塞曼分裂; 2、观察分裂谱线得偏振情况以及裂距与磁场强度得关系;3、利用塞曼分裂得裂距,计算电子得荷质比数值。

三、实验原理1、谱线在磁场中得能级分裂设原子在无外磁场时得某个能级得能量为,相应得总角动量量子数、轨道量子数、自旋量子数分别为。

当原子处于磁感应强度为得外磁场中时,这一原子能级将分裂为层。

各层能量为(1)其中为磁量子数,它得取值为,、、、,共个;为朗德因子;为玻尔磁矩();为磁感应强度。

对于耦合(2)假设在无外磁场时,光源某条光谱线得波数为(3)式中为普朗克常数;为光速。

而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为 hc B g M g M E EhcBμγγγγγ)()(1 1 2 2 0 1 2 0 0~1~ ~ ~ ~-+=∆-∆+=∆+=所以,分裂后谱线与原谱线得频率差(波数形式)为(4)式中脚标1、2 分别表示原子跃迁后与跃迁前所处在得能级,为洛伦兹单位(),外磁场得单位为(特斯拉),波数得单位为。

得选择定则就是:时为成分,就是振动方向平行于磁场得线偏振光,只能在垂直于磁场得方向上才能观察到,在平行于磁场方向上观察不到,但当时,得跃迁被禁止;时,为成分,垂直于磁场观察时为振动垂直于磁场得线偏振光,沿磁场正方向观察时,为右旋偏振光, 为左旋偏振光.若跃迁前后能级得自旋量子数都等于零,塞曼分裂发上在单重态间,此时,无磁场时得一条谱线在磁场作用下分裂成三条谱线,其中对应得仍然就是态,对应得就是态,分裂后得谱线与原谱线得波数差.这种效应叫做正常塞曼效应。

下面以汞得谱线为例来说明谱线得分裂情况.汞得波长得谱线就是汞原子从到能级跃迁时产生得,其上下能级得有关量子数值与能级分裂图形如表 1—1 所示。

表 1—1 原子态符号0 1 1 2 1、0、—1 2、0、—2 1 2 2 3/2 2、1、0、—1、—23、3/2、0、-3/2、—3 可见,得一条谱线在磁场中分裂成了九条谱线,当垂直于磁场方向观察时,中央三条谱线为成分,两边各三条谱线为成分;沿磁场方向观察时,成分不出现,对应得六条线分别为右旋与左旋偏振光。

2、法布里—珀罗标准具塞曼分裂得波长差很小,波长与波数得关系为,若波长得谱线在得磁场中,分裂谱线得波长差约只有。

因此必须使用高分辨率得仪器来观察。

本实验采用法布里—珀罗()标准具。

标准具就是由平行放置得两块平面玻璃或石英玻璃板组成,在两板相对得平面上镀有高反射率得薄银膜,为了消除两平板背面反射光得干涉,每块板都作成楔形。

由于两镀膜面平行,若使用扩展光源,则产生等倾干涉条纹。

具有相同入射角得光线在垂直于观察方向得平面上得轨迹就是一组同心圆.若在光路上放置透镜,则在透镜焦平面上得到一组同心圆环图样.在透射光束中,相邻光束得光程差为(5)取(6)产生亮条纹得条件为(7)式中为干涉级次;为入射光波长.我们需要了解标准具得两个特征参量就是 1、自由光谱范围(标准具参数)或同一光源发出得具有微小波长差得单色光与(),入射后将形成各自得圆环系列。

对同一干涉级,波长大得干涉环直径小,所示。

如果与得波长差逐渐加大,使得得第级亮环与得第()级亮环重合,则有(8)得出(9)由于大多数情况下,(8)式变为并带入(9)式,得到(10)它表明在中,当给定两平面间隔后,入射光波长在间所产生得干涉圆环不发生重叠.2、分辨本领定义为光谱仪得分辨本领,对于标准具,它得分辨本领为(11)为干涉级次,为精细度,它得物理意义就是在相邻两个干涉级之间能分辨得最大条纹数。

依赖于平板内表面反射膜得反射率。

(12)反射率越高,精细度就越高,仪器能分辨开得条纹数就越多。

利用标准具,通过测量干涉环得直径就可以测量各分裂谱线得波长或波长差。

参见图2,出射角为得圆环直径与透镜焦距间得关系为 ,对于近中心得圆环很小,可以认为,于就是有(13)代入到(7)式中,得(14)由上式可推出同一波长相邻两级与级圆环直径得平方差为(15)可以瞧出,就是与干涉级次无关得常数.设波长与得第级干涉圆环直径分别为与,由(14)式与(15)式得得出波长差(16)波数差(17)3、用塞曼效应计算电子荷质比对于正常塞曼效应,分裂得波数差为代入测量波数差公式(17),得(18)若已知与,从塞曼分裂中测量出各环直径,就可以计算出电子荷质比。

四、实验内容通过观察绿线在外磁场中得分裂情况并测量电子荷质比。

1、在显示器上调整并观察光路。

实验装置图标准具光路图(1)、在垂直于磁场方向观察与纪录谱线得分裂情况,用偏振片区分成分与成分,改变励磁电流大小观察谱线分裂得变化,同时观察干涉圆环中成分得重叠.(2)、在平行于磁场方向观察与纪录谱线得分裂情况及变化。

(3)、利用计算机测量与计算电子得荷质比,打印结果。

五、实验结果经过测量可得=154、0mm=166、0mmDk=166、0mmDk—1=257、0mmDk’=154、0mmDk-1′=252、5mm带入上述公式可得电子得荷质比取二者平均值得实验误差E=(1、72—1、64)/1、76=4、7% 六、误差分析1.测量磁场时霍尔元件可能未与磁场完全垂直而导致测量得磁场偏小而导致结果偏大.2.未能给出法珀腔介质折射率而就是使用 n=1 代替而导致结果偏大。

3.在图上找圆心时不够准确而导致误差.4.汞灯放置位置不一定就是垂直得,因此光线方向分量有误差。

七、思考题1、如何鉴别F-P 标准具得两反射面就是否严格平行?如发现不平行应该如何调节?例如,观察到干涉纹从中心冒出来,应如何调节? 答:实验时当眼睛上下左史移动时候,圆环无吞吐现象时说明F—P标准具得两反射面基本平行了.当发现不平衡时,利用标准具上得三个旋钮来调节水平。

如果当眼睛向某方向移动,观察到干涉纹从中心冒出来时,由干涉公式可得该处得等倾干涉条纹所对应得厚度较大。

此时应调节旋扭减小厚度;相反若干涉条纹有吞吐现象则条纹得级数在减小,那么该处得等倾条纹对应得厚度较小,此时应调节旋扭增加厚度。

最后直至干涉条纹稳定,无吞吐现象发生.2、已知标准具间隔圈厚度 d=5mm,该标准具得自由光谱范围就是多大?根据标准具自由光谱范围及546、1nm 谱线在磁场中得分裂情况,对磁感应强度有何要求?若B=0、62T, 分裂谱线中哪几条将会发生重叠?标准具厚度 d=5mm自由光谱范围 ,所用得 Hg 灯λ=546、1n m,故Δλ=1、065A、故磁感应强度应大于 0、72T,若B=0、62T,中间得三条谱线将发生重叠.3、沿磁场方向观察,Δm=1 与Δm=-1得跃迁各产生那种圆偏振光?用实验现象说明。

时,在垂直于磁场方向观察到得都就是电矢量垂直于磁场得线偏振光,在平行于磁场方向上观察到得都就是圆偏振光.这两个辐射分量被称为线。

并且,当时,迎着或逆着磁场方向分别观察到右旋或左旋前进得圆偏振光,这个分量被称为线;当时,迎着或逆着磁场方向分别观察到左旋或右旋前进得圆偏振光,这个分量被称为线、结果如下:第二篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。

三、实验步骤1、建立多物理场操作平台打开软件,模型导航窗口,“新增”菜单栏,点击“多物理场”,依次新增:“微机电系统模块/微流/斯托克斯流(mmglf)”“ACDC模块/静态,电/传导介质DC(emdc)”“微机电系统模块/微流/电动流(chekf)”2、建立求解域工作界面绘制矩形,参数设置:宽度6e-5,高度3e-6,中心(0,0)。

复制该矩形,旋转90°。

两矩形取联集,消除内部边界。

5和9两端点取圆角,半径1e-6。

求解域建立完毕。

3、网格划分菜单栏,网格,自由网格参数,通常网格尺寸,最大单元尺寸:4e-7。

4、设置求解域参数求解域模式中,斯托克斯流和传导介质物理场下参数无需改动,电动流物理场下,D各向同性,扩散系数1e-8,迁移率2e-11,x速度u,y速度v,势能V。

5、设置边界条件mmglf—入口1和7边界“进口/层流流进/0.00005”出口5和12边界“出口/压力,粘滞应力/0”;emdc—入口1和7边界“电位能/10V”出口5和12边界“接地”其余边界“电绝缘”;chekf—入口1“浓度/1”,7“浓度/0”出口5和12“通量/向内通量-nmflux_c_chekf”其余边界“绝缘/对称”。

6、样品预置(1)求解器参数默认为稳态求解器,不用修改。

(2)求解器管理器设置求解模式:初始值/初始值表达式,点变量值不可解和线性化/从初始值使用设定。

(3)首先求解流体,对斯托克斯流求解,观察求解结果,用速度场表示。

(4)再求解电场,改变求解模式,点变量值不可解和线性化/当前解,对传导介质DC求解,观察求解结果,用电位能表示。

相关文档
最新文档