数学浙教版八年级下册第3章数据分析初步 教案
初中数学初二数学下册《数据分析初步》教案、教学设计

c.分析数据,得出结论,并撰写调查报告。
-设计意图:通过实地调查,培养学生的数据收集、整理、描述和分析能力,提高合作意识。
3.撰写一篇关于数据分析在生活中的应用的小短文,要求观点明确、论述清晰,不少于300字。
-设计意图:引导学生关注数据分析在日常生活中的应用,提高学生的应用意识。
4.预习下一节课的内容,提前了解数据分布、概率等基本概念,为课堂学习做好准备。
-设计意图:培养学生的自主学习能力,提高课堂学习效果。
5.家长协助学生完成作业,关注学生的学习进度和困难,鼓励学生积极参与课堂讨论和互动。
-设计意图:加强家校合作,共同促进学生的全面发展。
请各位同学认真完成作业,充分发挥自己的潜能,不断提高数据分析能力。同时,希望家长能关注孩子的学习情况,给予必要的指导和鼓励。让我们一起努力,共同进步!
3.创设情境,激发学生的学习兴趣,提高学生对数据分析重要性的认识。
4.培养学生的逻辑推理和批判性思维能力,引导学生形成理性看待数据的习惯。
三、教学重难点和教学设想
(一)教学重难点
1.重点:数据的收集、整理、描述和分析方法,以及图表的制作和解读。
2.难点:
(1)理解并掌握不同类型数据的整理和描述方法。
-小组合作完成数据收集、整理和描述,制作相应的图表。
-各小组分享自己的成果,其他小组提出建议和改进意见。
2.设计意图:通过小组合作,培养学生的合作意识、团队精神和数据分析能力。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,巩固学生对数据分析的理解和应用。
教学过程:
-布置练习题,包括数据收集、整理、描述和分析等方面。
4.具体内容包括:
八年级数学下册 第3章 数据分析初步 3.3 方差和标准差教学课件浙教级下册数学课件

差为 6
.
4、甲、乙两名学生在相同的条件下各射靶10次,命中的
环数如下:甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,7,6,8,6,7,7
经过计算,两人射击环数的平均数相同,但S
2 甲
>
S乙 2 ,
所以确定_乙_去参加比赛.
12/14/2021
达标测评 5、 2
12/14/2021
10
S2乙= 1 (1 1 1 )2 3 (1 1 6 )2 3 (1 1 6 )2 3 1.8 (5 cm2)
10
s甲 2 s乙 2,甲这块地的小麦长较得整比齐。
12/14/2021
分析
S2甲=1 1 ( 1 0 1 2 )2 3 ( 1 1 3 )2 3 ( 1 1 1 )2 3 3 .6 (cm2)
12/14/2021
探究1 现在我们计算一下甲、乙两人每次射击成
绩与平均成绩的偏差的平方和. 甲:(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2= ? 乙:(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2= ?
你发现了甲、乙的区别了吗?
12/14/2021
12/14/2021
情境引入
怎样选择选手去 参加比赛呢?
难道算一下选手平时成 绩的平均数?
12/14/2021
探究1
选谁去参加比赛呢?
我们先来算一算甲 和乙命中环数的平 均数吧!
12/14/2021
探究1
x甲15(78889)8 (环)
x乙
1(1061068) 5
8
( 环)
初中数学浙教版八年级下册第3章数据分析初步3.3方差和标准差公开课

方差和标准差方差和标准差学习目标1、了解方差,标准差的公式的产生过程。
2、熟练掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析数据的离散程度。
导学过程预习课本P62-64思考:选拔射击手参加比赛时,我们应该挑选测试成绩中曾达到最好成绩的选手,还是成绩最稳定的选手?合作学习甲、乙两名射击手的测试成绩统计如下:(1)甲、乙两名射击手的极差分别是多少?(2)请分别计算两名射击手的平均成绩;(3)请分别计算两名射击手的成绩与平均数的差(即偏差)。
(4)甲、乙两人成绩的偏差的平均数是多少?(5)现要挑选一名射击手参加比赛,若你是教练,你能根据偏差的平均数挑选射击手参加比赛吗?为什么?归纳总结方差的概念:例:为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲: 12 13 14 15 10 16 13 11 15 11乙: 11 16 17 14 13 19 6 8 10 16哪种小麦长得比较整齐?归纳总结标准差的概念:自我检测已知数据a1,a2,a3,…,a n的平均数为X,方差为Y标准差为Z。
则①数据a1+3,a2 + 3,a3 +3 ,…,a n +3的平均数为____,方差为______,标准差为______。
②数据3a1,3a2 ,3a3 ,…,3a n的平均数为______,方差为______,标准差为______。
③数据2a1-3,2a2 -3,2a3 -3 ,…,2a n -3的平均数为______,方差为______,标准差为______。
自我反思你有什么收获?你还有什疑问?。
八年级数学下册第3章数据分析初步小结教案(新版)浙教版

第3章数据分析初步小结【教学目标】知识与技能1.复习巩固平均数、中位数、众数、极差、方差的概念与意义.2.综合运用上述知识复习解决具体问题.过程与方法以小组讨论的形式对本章的知识进行系统梳理,总结出本章的知识点.情感、态度与价值观归纳解决具体问题的一般过程积累数学活动的经验,发展归纳与概括的能力.【教学重难点】重点:用方差衡量一组数据的平均水平与波动情况.难点:利用一组数据的五组量(3个平均量和2个波动量)做出决策.【导学过程】【知识结构】本章知识结构:1.加权平均数:一般说来,如果在n个数中,出现次,出现次,…,出现次,则 ,其中、……叫。
2.中位数:将一组数据排列,处于位置的数.3.众数:一组数据中的数据.4.极差:的差。
5.方差:表示一组数据偏离的情况,标准差是方差的算术平方根.【经典例题】1.数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为________.2. 数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________,方差是_________.3.某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下: 10 kg装100袋;20 kg装220袋;50 kg装80袋。
如果每500 g大米的进价和销价都相同,则他最应该关注的是这些销售数据(袋数)中的().A.平均数B.中位数C.众数D.最大值4. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙的平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是().A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同5.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平点35%,创新能力点30%,那么你认为该公司会录取谁?【知识梳理】1.请你谈一谈本章学习的主要内容.2.对“如何选择适当的统计量对数据进行分析?”你有什么样的心得体会?3.请结合实例谈谈统计调查的基本步骤和注意点.【随堂练习】1.已知一组数据为0,1,5,,7,且这组数据的中位数是5,那么x的取值为()A.=5B.<5C.≥5D.≠52.甲乙丙丁四支足球队在全国甲级联赛中进球数分别为:9,9,,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A.10 B.9 C.8 D.73.某生在一次考试中,语文、数学、英语三门学科的平均分为80分,物理、政治两科的平均分为85,则该生这5门学科的平均分为。
浙教版数据的分析初步知识点总结-经典复习教案课案

教师:学生:时间:_ 2016 _年_ _月日段第__ 次课教师学生姓名上课日期月日学科数学年级八年级教材版本浙教版类型知识讲解:√考题讲解:√本人课时统计第()课时共()课时学案主题八下第三章《数据分析初步》复习课时数量第()课时授课时段教学目标1、掌握平均数、中位数、众数、极差、方差的概念并进行数据处理;2、发展学生的统计意识和数据处理的方法与能力;教学重点、难点重点:平均数、中位数、众数、极差、方差概念的理解和掌握;难点:会处理实际问题中的统计内容;教学过程知识点复习【知识点梳理】知识点:平均数、众数、中位数、极差、方差、标准差表示数据集中的统计量:平均数、中位数、众数表示数据离散的统计量:方差、标准差1.(算术)平均数算术平均数:一般地,对于n个数x1、x2、……、x n,我们把121(nX x x xn=+++……)叫做n个数的算术平均数,简称平均数,记作X(读作x拔)加权平均数:若一组数据中x1、x2、……、x n的个数分别是f1、f2、……、f n,则这组数据的平均数11221()n nX x f x f x fn=+++……就叫做加权平均数(其中f1+f2+……+f n=n)f1、f2、……、f n分别叫作x1、x2、……、x n的权。
“权”越大,对平均数的影响越大.例题(1)2、4、7、9、11、13.这几个数的平均数是_______(2)一组数据同时减去80,所得新的一组数据的平均数为2.3,•那么原数据的平均数__________;(3)8个数的平均数是12,4个数的平均为18,则这12个数的平均数为;(4)某人旅行100千米,前50千米的速度为100千米/小时,后50千米速度为为120千米/小时,则此人的平均速度估计为()千米/小时。
A、100 B、109 C、110 D、1152.中位数将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
八年级数学下册第3章数据分析初步3.3方差和标准差教案(新版)浙教版

3.3 方差和标准差教学目标1、知识目标:了解方差、标准差的概念.2、能力目标:会求一组数据的方差、标准差,并会用他们表示数据的离散程度,能用样本的方差来估计总体的方差.3、情感目标:通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.教学重点理解并记忆方差和标准差公式,能灵活地运用方差和标准差公式解题.教学难点灵活地运用方差和标准差公式解决实际问题.教学设计一、创设情景,提出问题甲、乙两名射击手的测试成绩统计如下表:第一次第二次第三次第四次第五次甲命中环数7 8 8 8 9乙命中环数10 6 10 6 82.请根据这两名射击手的成绩在图中画出折线图.3.现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较合适?为什么?(各小组讨论)二、合作交流,感知问题请根据统计图,思考问题:①甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?(甲射击成绩与平均成绩的偏差的和:(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0;乙射击成绩与平均成绩的偏差的和:(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0)②射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?(甲射击成绩与平均成绩的偏差的平方和:(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=2;乙射击成绩与平均成绩的偏差的平方和:(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=16)上述各偏差的平方和的大小还与什么有关?——与射击次数有关.③用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均数的差的累计数来表示数据的偏离程度?④是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?⑤数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据偏离平均数的程度,应如何比较?三、概括总结,得出概念根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法及用方差来判断数据的稳定性.用各数据偏离平均数的差的平方的平均数来衡量数据的稳定性.设一组数据x 1,x 2,…,x n 中,各数据与它们的平均数的差的平方分别是(x 1-x )2, (x 2-x )2,… ,(x n -x )2,那么我们称它们的平均数,即s 2=n1[(x 1-x )2+(x 2-x )2+(x 3-x )2+…+(x n -x )2]为这组数据的方差.方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小) 方差的单位和数据的单位不统一,引出标准差的概念.(注意:比较两组数据的特征时,应取相同的样本容量,计算过程可借助计数器.) 现可以请学生回答③的问题(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论).四、应用概念,巩固新知1、例:为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位: cm):甲: 12 13 14 15 10 16 13 11 15 11 乙: 11 16 17 14 13 19 6 8 10 16 问:哪种小麦长得比较整齐?思考:求数据的方差的一般步骤是什么? (1)求数据的平均数;(2)利用方差公式求方差.(在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定)师生共同完成.2、数据的单位与方差的单位一致吗? 为了使单位一致,可用方差的算术平方根:S =. 五、小结回顾,反思提高1、这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数.方差越大,说明数据的波动越大,越不稳定.2、标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便.3、利用方差比较数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论.。
浙教版数学八下课件3数据分析初步

初中数学课件
金戈铁骑整理制作
数据分析初步总复习
一、众数和中位数
中位数定义:将一组数据按大小依次排列,把 处在最中间位置的一个数据(或最中间两个数 据的平均数)叫做这组数据的中位数。
众数的定义:
在一组数据中,出现次数最多的数据叫做这组数据 的众数。
二、平均数
1. 一般地,如果有n个数 x1, x2 , , xn,那么
42
46
49
读数
如 果 每 度 电 费 用 是 0.53 元 , 估 计 小 明 家 11 月 (30天)的电费是元。
重要结论
有两组数据,它们的平均数分别为 x1、x2,
方差分别为S12 , S22
(1)当第二组的每一个数据比第一组的每个数据增加
(或减
少
)
m个
单位时
,则 n2
有
:
x2 x1 m, S12 S22
三、方差与标准差
设一组数据 x1, x2 , , xn中,各数据与它们的平均数
的差的平方分别是 x1 x 2 、 x2 x 2 、 、 xn x 2 ,那么
我们用它们的平均数,即用:
S2
1 n
x1
x 2
x2
x 2
xn
浙教版初中数学初二数学下册《数据分析初步》说课稿

浙教版初中数学初二数学下册《数据分析初步》说课稿一、课程背景和教材分析1.1 课程背景《数据分析初步》是浙江教育版初中数学下册的一章内容,属于初二上学期的数学课程之一。
本章主要介绍数据分析的基本概念和方法,帮助学生掌握通过统计图表、数据整理和分析等方法对数据进行理解和应用的能力。
1.2 教材分析本章节是初二数学下册的第八章内容,总共包含了三个主要部分:统计图表的应用、数据整理和分析以及实际问题的应用。
通过教材的学习,学生将学会通过统计图表展示数据、理解数据的特征,同时掌握数据的整理和分析方法。
二、学习目标和教学重点2.1 学习目标•理解统计图表的作用和应用;•掌握数据整理和分析的基本方法;•培养解决实际问题的能力。
2.2 教学重点•理解统计图表的含义和用途;•掌握数据整理的基本步骤;•学会利用已有数据进行分析和解决问题。
三、教学内容和教学方法3.1 教学内容3.1.1 统计图表的应用•了解常见的数据统计图表包括柱状图、折线图、饼图等;•理解统计图表的含义和用途;•学会根据给定数据绘制相应的统计图表。
3.1.2 数据整理和分析•掌握数据整理的基本步骤,包括收集数据、整理数据、计算数据等;•学会根据已有数据分析和归纳数据特征。
3.1.3 实际问题的应用•学会运用数据分析方法解决实际问题;•培养学生的创新思维和实际操作能力。
3.2 教学方法•通过示例和练习,引导学生尽可能多地接触和分析多样化的数据;•结合实际问题,让学生运用所学的知识进行实际应用;•创设情境,培养学生的观察力和动手能力。
四、教学过程4.1 导入引导通过提问的方式引导学生思考:什么是数据分析?为什么我们需要进行数据分析?数据分析在我们的生活中有哪些应用?4.2 知识讲解4.2.1 统计图表的应用•使用思维导图的形式,介绍常见的数据统计图表;•讲解每种统计图表的定义和特点,以及具体应用场景;•通过示例,演示如何绘制统计图表。
4.2.2 数据整理和分析•讲解数据整理的基本步骤,包括数据收集、数据整理和数据计算;•引导学生通过实例进行数据整理和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 平均数教学目标知识与技能1.在实际情境中理解平均数的概念和意义,会计算一组数据的算术平均数.2.理解加权平均数的意义,会进行加权平均数的计算.过程与方法初步经历数据的收集、加工整理的过程,能利用算术平均数和加权平均数解决一些实际问题,提髙学生的数学应用能力.情感、态度与价值观培养学生互相合作与交流的能力,增强学生的数学应用意识.教学重点算术平均数和加权平均数的意义和计算方法.教学难点算术平均数和加权平均数的计算方法.教学设计一.创设情境,提出问题.图片欣赏(出示课件:水果在收获前,果农常会先估计果园里果树的产量,你认为应该怎样估计呢?)二.启发诱导,探索新知.1.合作学习某果农种植的100棵苹果树即将收获.果品公司在付给果农定金前,需要对这些果树的苹果总产量进行估计.(1)果农任意摘下20个苹果,称得这20个苹果的总质量为4千克.这20个苹果的平均质量是多少千克?(2)果农从100棵苹果树中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据(单位:个):154, 150,155,155,159,150,152,155,153,157.你能估计出平均每棵树的苹果个数吗?(3)根据上述两个问题,你能估计出这100棵苹果树的苹果总产量吗?2.引出平均数的概念,平均数用符号x表示,读做“x拔”,计算平均数的公式x=1n(12x x++…+nx).指出:在实践中,常用样本的平均数来估计总体的平均数.例如,在上面的例子中,用20个苹果的平均质量0.2千克来估计100棵苹果树上苹果的平均质量,用10棵苹果树的平均苹果个数(154个)来估计100棵苹果树的平均苹果个数.3.完成教材P54做一做.三、学以致用,体验成功.1.例题讲解例1 统计一名射击运动员在某次训练中15次射击的中靶环数,获得如下数据:6,7,8,7,7,8,10,9,8,8,9,9,8,10,9.方法(一):直接根据平均数的意义来计算,这里的1x,2x,…,n x指的是什么?n等于多少?方法(二):15个数据中有几个6,几个7,几个8,几个9,几个10?n=15与这些相同数的个数之间有什么关系?所求的平均数x的算式还可以写成怎样的算式?2.由上例中的方法(二)概括出加权平均数的概念和权的意义.3.例题讲解.(2)如果学校认为这三个项目的重要程度有所不同,而给予“服装统一”“动作整齐”“动作准确”三个项目在总分中所占的比例分别为15%,35%,50%,那么三个班的排名顺序又怎样?分析:(1)求算术平均数.(2)涉及加权平均数,不妨以801班为例,表中相应的3个数据为1x =80,2x =84,3x =87, 给定三个项目的权的比为15:35:50,即表示1f :2f :3f =15:35:50,因此可设1f =15k ,2f =35k ,3f =50k (k >0),加权平均数x =158035845087158035845087153550153550k k k k k k ⨯+⨯+⨯⨯+⨯+⨯=++++=84.9(分).4.完成教材P56课内练习第1,2题.四、总结回顾,反思内化.1.学习了平均数、加权平均数,会计算平均数和加权平均数.2.会用样本的平均数来估计总体的平均数. 五、作业教材P57作业题第1,2,4,5,6题.3.2 中位数和众数教学目标 知识与技能理解中位数、众数的概念和意义,会求一组数据的中位数、众数. 过程与方法通过数据的整理与分析,体会统计的数学思想. 情感态度与价值观培养学生互相合作与交流的能力,增强学生的数学应用能力. 教学重点理解中位数、众数的概念和意义,会求一组数据的中位数、众数. 教学难点求一组数据的中位数、众数. 教学设计1.情境创设(1)课本提供的情境,是为了说明“平均数”不能准确反映“平均水平”,教学中也可设计其他的情境,只要一组数据中,个别数据与其他数据有很大的差异即可.(2)结合课本中的“讨论”,还可选用以下的情境:一家鞋店在一段时间内销售了某种女鞋111双,其中各种尺码的鞋销售量如下:这些数据的平均数约等于39.6码,中位数等于39.5码.事实上,根本就不存在39.6码和39.5码的鞋子,此时平均数和中位数并没有什么意义.在这个问题中,鞋店比较关心什么?2.探索活动通过探索活动,让学生认识到此时平均数和中位数并没有什么意义,从而引进众数.一般来说,商店应多进众数所对应的尺码的鞋子.为了便于学生理解众数的概念,可考虑补充一些应用众数的实例.3.课堂探讨平均数、中位数和众数的关系?平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小.中位数是描述一组数据的另一种指标,如果将一组数据按由小到大的顺序排列(有相等的数据也要全部参加排列),那么中位数的左边和右边恰有一样多的数据.众数告诉我们,这个值出现的次数最多.一组数据可以有不止一个众数,也可以没有众数.平均数、中位数和众数从不同的侧面概括了一组数据,我们应根据不同情况,选择这—个指标中的一个作为一组数据的代表.4.例题教学技术部员工总工程师工程师技术员A技术员B技术员C技术员D技术员E技术员F技术员G见习生H工资10000 6000 4000 4000 3000 2800 2800 2800 2400 800(2)作为一般技术员,若考虑该公司技术部门工作,该如何看待工资情况?5.小结(1)一般地,设有n个数据,首先将这n个数据由小到大(或由大到小)的顺序排列.若n是奇数,则把最中间位置的一个数据称为这组数据的中位数;若n是偶数,则把最中间位置的两个数据的平均数称为这组数据的中位数.(2)一般地,在一组数据中,我们把重复出现次数最多的那个数据称为这组数据的众数.3.3 方差和标准差教学目标1、知识目标:了解方差、标准差的概念.2、能力目标:会求一组数据的方差、标准差,并会用他们表示数据的离散程度,能用样本的方差来估计总体的方差.3、情感目标:通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.教学重点理解并记忆方差和标准差公式,能灵活地运用方差和标准差公式解题.教学难点灵活地运用方差和标准差公式解决实际问题.教学设计一、创设情景,提出问题甲、乙两名射击手的测试成绩统计如下表:2.请根据这两名射击手的成绩在图中画出折线图.3.现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较合适?为什么?(各小组讨论)二、合作交流,感知问题 请根据统计图,思考问题:①甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?(甲射击成绩与平均成绩的偏差的和:(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0;乙射击成绩与平均成绩的偏差的和:(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0)②射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?(甲射击成绩与平均成绩的偏差的平方和:(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=2;乙射击成绩与平均成绩的偏差的平方和:(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=16)上述各偏差的平方和的大小还与什么有关?——与射击次数有关.③用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均数的差的累计数来表示数据的偏离程度?④是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?⑤数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据偏离平均数的程度,应如何比较?三、概括总结,得出概念根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法及用方差来判断数据的稳定性.用各数据偏离平均数的差的平方的平均数来衡量数据的稳定性.设一组数据x 1,x 2,…,x n 中,各数据与它们的平均数的差的平方分别是(x 1-x )2, (x 2-x )2,… ,(x n -x )2,那么我们称它们的平均数,即s 2=n1[(x 1-x )2+(x 2-x )2+(x 3-x )2+…+(x n -x )2]为这组数据的方差.方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小) 方差的单位和数据的单位不统一,引出标准差的概念.(注意:比较两组数据的特征时,应取相同的样本容量,计算过程可借助计数器.)现可以请学生回答③的问题(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论).四、应用概念,巩固新知1、例:为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲: 12 13 14 15 10 16 13 11 15 11乙: 11 16 17 14 13 19 6 8 10 16问:哪种小麦长得比较整齐?思考:求数据的方差的一般步骤是什么?(1)求数据的平均数;(2)利用方差公式求方差.(在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定)师生共同完成.2、数据的单位与方差的单位一致吗?为了使单位一致,可用方差的算术平方根:S=.五、小结回顾,反思提高1、这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数.方差越大,说明数据的波动越大,越不稳定.2、标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便.3、利用方差比较数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论.。