二氧化碳压裂页岩技术
二氧化碳压裂页岩技术

二氧化碳压裂页岩技术
二氧化碳压裂页岩技术
二氧化碳压裂页岩技术
二氧化碳压裂是一种新兴的页岩气开采技术。
它利用高压二氧化碳替代传统的水和化学品作为压裂液,将其注入到页岩岩层中,从而使岩石裂缝扩大,释放出埋藏在其中的天然气。
相比于传统压裂技术,二氧化碳压裂具有更高的效率和更少的环境影响。
二氧化碳压裂技术的优势在于其压裂液为二氧化碳,不仅可以减少对地下水资源的污染,还可以将二氧化碳气体注入到岩层中进行封存,起到减缓气候变化的效果。
此外,二氧化碳压裂所需的水资源也较少,适用于缺水地区的页岩气开采。
不过,二氧化碳压裂技术也存在一些挑战,例如二氧化碳的成本较高、压裂液的注入需要更高的压力等。
此外,岩层中的二氧化碳含量也会影响二氧化碳压裂的效果。
总体来说,二氧化碳压裂技术是一种有前途的页岩气开采方法,其环境友好、高效节能的特点使其备受关注。
未来随着技术的不断进步,二氧化碳压裂技术的应用前景也将变得更加广阔。
- 1 -。
超临界CO2开发页岩气技术

超临界CO2开发页岩气技术I. 引言- 研究背景和研究意义- 研究目的和研究方法II. 超临界CO2技术概述- 超临界CO2的特点和优势- 超临界CO2在页岩气开采中的应用III. 超临界CO2开发页岩气的工程实践- 超临界CO2开发页岩气的工程流程- 超临界CO2在页岩气井压裂中的应用- 基于超临界CO2的页岩气开发案例分析IV. 超临界CO2开发页岩气的技术优化- 超临界CO2在页岩气开采中存在的问题和挑战- 技术优化方案和实现途径- 基于超临界CO2的页岩气开采可行性评估V. 结论与展望- 结论总结和对研究成果的评价- 基于目前的研究进展,对于超临界CO2在页岩气开发中的未来发展进行探讨和展望注:本提纲仅供参考,具体内容需要根据研究实际情况进行适当调整。
第1章引言研究背景和研究意义随着全球能源消费的不断增长,传统化石能源的逐渐枯竭以及环境污染的日益严重,对新能源的研发和利用越来越受到人们的重视。
而页岩气作为一种新型的天然气资源,不仅开采量丰富,而且对环境的影响相对较小。
因此,页岩气开发已成为全球范围内的研究热点和发展趋势。
但是,页岩气的地质复杂性、开采难度和生产成本等问题制约着其规模化开采。
因此,如何开发出高效、可持续、低成本的页岩气开采技术,成为了当前亟待解决的问题。
研究目的和研究方法超临界CO2开发页岩气技术是一种新型的开采技术,其特点在于使用超临界状态下的CO2来提高页岩气的开采效率。
本文旨在探讨超临界CO2开发页岩气技术的原理、应用和优化方法,并通过实例分析和对比,总结超临界CO2开采技术的优势和局限性,为其进一步推广和应用提供参考。
本文采用文献综述和案例分析的方法进行研究,整理国内外相关文献,分析超临界CO2开采技术的发展历程、原理和应用情况,并结合当今国内外页岩气开发现状,探讨了超临界CO2技术在页岩气开采中的优化方法和未来发展趋势。
第2章超临界CO2技术概述超临界CO2的特点和优势超临界CO2是CO2在高温高压条件下处于气体和液体状态之间的状态。
《CO2气相压裂条件下钻孔孔周裂隙演化及抽采半径时变规律研究》

《CO2气相压裂条件下钻孔孔周裂隙演化及抽采半径时变规律研究》篇一一、引言随着对清洁能源和环境保护的日益关注,CO2气相压裂技术作为一种有效的地热能开采和碳封存技术手段,越来越受到重视。
这种技术不仅对地质结构的钻孔与裂隙发展提出了较高的要求,而且对裂隙的演化及抽采半径的时变规律有着深远的影响。
本文将围绕CO2气相压裂条件下的钻孔孔周裂隙演化及抽采半径时变规律展开研究,以期为相关技术的优化提供理论支持。
二、CO2气相压裂技术概述CO2气相压裂技术是利用高压CO2气体对地下岩石进行裂隙扩张的一种技术。
其原理是利用高压CO2的物理性质,对目标层位施加高压力,促使地层裂隙扩张,以实现地热能的开采或碳的封存。
该技术具有操作简便、成本低廉、环境友好等优点,已在全球范围内得到广泛应用。
三、钻孔孔周裂隙演化分析在CO2气相压裂过程中,钻孔周围的岩石在高压作用下产生裂隙。
这些裂隙的演化过程受到多种因素的影响,包括地层的岩石性质、CO2的压力和流量、温度等。
随着CO2的不断注入,裂缝不断扩张和连接,形成更为复杂的裂隙网络。
此外,这些裂隙的演化还受到时间的影响,随着时间的推移,裂隙的形态和分布将发生变化。
四、抽采半径时变规律研究抽采半径是衡量CO2气相压裂效果的重要指标,其时变规律反映了裂缝演化的动态过程。
在压裂初期,由于裂缝的扩张主要受到近钻孔区域的岩石性质和压力影响,抽采半径的增长速度较快。
然而,随着裂缝网络的复杂化,近钻孔区域和远距离区域的联系加强,抽采半径的增长速度将逐渐减缓。
此外,随着时间的推移,由于地层中流体的流动和压力的传播,抽采半径还将继续扩大。
五、实验研究及模拟分析为了深入研究CO2气相压裂条件下钻孔孔周裂隙的演化及抽采半径的时变规律,本文采用了实验研究和模拟分析相结合的方法。
通过实验室模拟实验,观察和分析不同条件下钻孔孔周裂隙的演化过程;同时,利用数值模拟软件对实际地层的压裂过程进行模拟,以获得更为准确的结果。
二氧化碳压裂页岩技术

二氧化碳压裂页岩技术
二氧化碳压裂页岩技术是一项新兴的能源开发技术,它可以通过
压缩并注入二氧化碳气体,将页岩岩石裂开,从而释放出可用的石油
和天然气资源。
这项技术可以帮助我们在开采天然气和石油时,更加
高效的利用能源资源,减少我们对化石燃料的依赖。
以下是二氧化碳压裂页岩技术步骤的详细介绍:
第一步:选择适当的地质地形
在开展二氧化碳压裂页岩技术前,需要先找到一个适合的目标地点。
这通常需要考察以下因素:该地区的地质构造、气候条件、附近
的水源、居民密度等。
第二步:确定压裂的位置和深度
一旦找到了适合的地点,就需要将压裂的位置和深度选定。
一般
来说,压裂的深度深度通常要深达地表以下的几千英尺,这可以确保
能够到达富含石油和天然气的页岩层。
第三步:注入压裂液
一旦确定了压裂的位置和深度,就需要注入压裂液。
压裂液主要
由水、沙子和添加剂(如二氧化碳)组成。
在注入压裂液时,需要确
保压力可以足够高,以便将页岩层裂开。
第四步:卸压和石油开采
当压裂液注入完毕后,需要将压力卸掉,并将岩石破碎的碎片放
回地面。
此外,还需要抽取含有石油和天然气的混合物,并将其输送
到加工厂进行处理,在这里经过处理,石油和天然气就可以用于工业、运输和家庭使用等各个领域了。
综上所述,二氧化碳压裂页岩技术是一项强大的、高效的、可持
续的能源开发技术,它可以帮助我们更好的利用现有的化石燃料资源,减少对可再生能源的依赖。
其技术步骤简单明了,未来将可以在能源
开发领域扮演重要的角色。
页岩气开发环保技术系列-二氧化碳干法加砂压裂技术

CO2压裂裂缝尺寸模拟
CO2注入后的岩样裂缝透视图
7
7
02 技术原理及特点
Technical Principles and Characteristics
通过多年的持续推进,突破2项关键技术(CO2增粘剂开发和密闭混砂装置研
31℃
9
02 技术原理及特点
Technical Principles and Characteristics
采用数值模拟方法,对CO2压裂的裂缝特征进行了分析,模拟结果显示:与 水、滑溜水压裂液相比,CO2压裂液会产生更长但较窄的裂缝。
室内物模实验结果显示,与常规压裂相比,CO2压裂的人工裂缝网络发达, 形态更加复杂。
准化的施工步骤,用于指导现场施工作业;对不同类型的井层,提出了施工参
数设计建议。
(1)标准地面流程
(2)标准施工步骤 第一步、将液态CO2储罐运至 井场 第二步、设备摆放及联接 第三步、氮气泵车试压 第四步、冷却地面管线及压裂 设备 第五步、压裂施工 第六步、关井 第七步、放喷
12
02 技术原理及特点
支撑剂速冷技术
氮气增压技术
技
压裂装备
储、运、泵、控系列装备
术
标准规范
工艺、产品、装置系列标准
8
02 技术原理及特点
Technical Principles and s
1、实验研究了压裂中CO2的相态特征及变化
通过下入井下压力计的方式,监测了压裂施工过程中的井下压力、温度变 化情况,监测结果显示: p井筒中的CO2前期为超临界态,中后期为液态。以2.0-4.0m3/min的排量注入液 态CO2计140m3后,井底温度由98 ℃降低至31℃,井底CO2的相态由超临界态变为 液态。 p地层中的CO2以普遍为超临界态。关井后井底温度在10min内迅速由20 ℃上升 至31℃以上 。
页岩气co2泡沫压裂技术

页岩气co2泡沫压裂技术
现阶段,利用岩石毛细孔中的co2赋存量,利用其作为液体的体积膨胀及液体的许多性质,结合页岩气压裂技术,从而开发出了页岩气co2泡沫压裂技术。
首先,页岩气co2泡沫压裂技术是以低温液体co2为介质,通过液体发泡及压裂,使得油气藏毛细孔内许多封闭的油气节点与此液体co2充分接触,从而获得大量的页岩气。
其次,这样的技术能够有效的提高对深层页岩气的采收率,同时能够有效的减少污染,减少对环境的污染。
最后,岩石毛细孔中的co2不仅当作介质使用,其在页岩气开发过程中也可以被有效的利用,从而达到节能环保的目的。
总之,页岩气co2泡沫压裂技术是一种能够有效实现页岩气开采过程中高效减排的环保技术,并且具有节能环保、节约用水、降低开采成本等优点。
超临界CO2与裂缝性页岩作用机理

超临界CO2在裂缝性页岩地热能开采 中的应用可以通过提高地热能开采效 率,降低开采成本。与传统的开采技 术相比,超临界CO2地热能提取技术 具有更高的提取效率和更少的能源消 耗。
超临界CO2在裂缝性页岩地热能开采 中的应用可以减少对环境的影响。与 传统的开采技术相比,超临界CO2地 热能提取技术产生的废弃物量更少, 从而降低了对环境的影响。同时,超 临界CO2地热能提取技术还可以减少 对地下水资源的使用和污染,保护地 下水资源的可持续利用。
超临界CO2在裂缝性页岩油开采中的应用
提高原油采收率
超临界CO2在裂缝性页岩油开采中可以提高原油采收率。超临界CO2可以有效地溶解和携带原油,将其从岩石裂缝中提取出来。
降低开采成本
超临界CO2在裂缝性页岩油开采中的应用可以通过提高原油采收率,降低开采成本。与传统的开采技术相比,超临界CO2抽油技术具有更高的原油抽取效率 和更少的能源消耗。
含有机质
含有有机质,如炭质、沥青质等。
裂缝性页岩的物理性质
01
02
03
孔隙性
具有多孔性,孔隙率较高 。
渗透性
渗透性能较差,水不易渗 透。
脆性
在一定应力作用下容易破 裂,表现出脆性特征。
裂缝性页岩的力学性质
强度
在一定应力作用下能够维持较高的强度。
弹性模量
具有较高的弹性模量,表明不易变形。
泊松比
泊松比值较低,表明横向变形较小。
03
超临界CO2与裂缝性页岩的相 互作用
超临界CO2在裂缝性页岩中的扩散与吸收
扩散系数
超临界CO2在裂缝性页岩中的扩散系数 受到温度、压力、岩石孔隙率和表面能 等因素的影响。
VS
吸收速率
超临界CO2在裂缝性页岩中的吸收速率受 到岩石的物理性质、CO2的浓度和压力等 因素的影响。
页岩超临界二氧化碳压裂分析

平均源幅值67.53dB 破裂压力25.93MPa
随着压力梯度的增大,破裂压力增大,平均源幅值增大,说明压力梯度
较大时裂缝扩展所需能量较高
1. CO2压裂
应力差异 系数定义
k H h H
1.6 大尺寸试样不同应力差异系数超临界CO2压裂
k 0.050
k 0.286
两种试验工况:(左图)k=0.050,(右图) k=0.286
两种试验工况下页岩压裂后剖面:(左图)k=0.050,(右图)
1. CO2压裂
k 0.050
加 围 压 阶 段
k 0.286
压 裂 阶 段
破裂压力23.71MPa
破裂压力28.07MPa
;平均源幅值
;平均源幅值
应力差异系6数4.越55大dB,破裂压力越大。限于试验数据偏6少4.,33规dB律性仍需重复验
28 MPa 续上升
时页岩形 直至37.4
成贯穿裂 MPa而
缝;
引起密
平均源幅 封失效
声发射事件累计值随孔压变化 较低强值4裂6.0缝源dB扩幅展值能平力;均源较高弱
声发射定位图
声发射事件累计值随孔压变化
1. CO2压裂
1.2 圆柱试样不同压力梯度CO2压裂(轴压16kN,围压20MPa)
页岩L145三轴超临界CO2压裂
页岩超临界二氧化碳压裂试验分析
1. CO2压裂
1.1 圆柱试样超临界CO2/水压裂(轴压16kN,围压
页岩L145三轴超临界CO2压裂
20MPa) 页岩L143三轴水力压
声发射定位与实际
裂
位置基本吻合。
声发射定位图
超临界CO2压裂形 成了一个贯穿缝;
水力压裂只是在模 拟井筒周围形成裂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳压裂页岩技术
二氧化碳压裂是一种新兴的页岩气开采技术。
它利用高压二氧化碳替代传统的水和化学品作为压裂液,将其注入到页岩岩层中,从而使岩石裂缝扩大,释放出埋藏在其中的天然气。
相比于传统压裂技术,二氧化碳压裂具有更高的效率和更少的环境影响。
二氧化碳压裂技术的优势在于其压裂液为二氧化碳,不仅可以减少对地下水资源的污染,还可以将二氧化碳气体注入到岩层中进行封存,起到减缓气候变化的效果。
此外,二氧化碳压裂所需的水资源也较少,适用于缺水地区的页岩气开采。
不过,二氧化碳压裂技术也存在一些挑战,例如二氧化碳的成本较高、压裂液的注入需要更高的压力等。
此外,岩层中的二氧化碳含量也会影响二氧化碳压裂的效果。
总体来说,二氧化碳压裂技术是一种有前途的页岩气开采方法,其环境友好、高效节能的特点使其备受关注。
未来随着技术的不断进步,二氧化碳压裂技术的应用前景也将变得更加广阔。
- 1 -。