abaqus系列教程-07线性动态分析

abaqus系列教程-07线性动态分析
abaqus系列教程-07线性动态分析

7 线性动态分析

如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。

7.1 引言

动态模拟是将惯性力包含在动力学平衡方程中:

+P

M

u

I

-

=

其中

M结构的质量。

u 结构的加速度。

I在结构中的内力。

P 所施加的外力。

在上面公式中的表述是牛顿第二运动定律(F = ma)。

在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u )。在两类模拟之间的另一个区别在于内力I的定义。在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)和结构的变形的贡献。

7.1.1 固有频率和模态

最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。

图7–1 质量-弹簧系统

在弹簧中的内力给出为ku ,所以它的动态运动方程为

mu ku P +-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为

ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。

实际结构具有大量的固有频率。因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为

M u I +=0 对于无阻尼系统,I Ku =,因此有

M u Ku +=0 这个方程的解具有形式为

t i e u ωφ=

将此式代入运动方程,得到了特征值(eigenvalue )问题

K M φλφ= 其中2λω=。

该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。记j λ是第j 个

特征值;它的平方根j ω是结构的第j 阶模态的固有频率(natural frequency ),而j φ是相应的第j 阶特征向量(eigenvector )。特征向量也就是所谓的模态(mode shape )(也称为振型),因为它是结构以第j 阶模态振动的变形形状。

在ABAQUS/Standard 中,应用频率的提取过程确定结构的振型和频率。这个过程应用起来十分容易,你只要指出所需要的振型数目或所关心的最高频率即可。

7.1.2 振型叠加

在线性问题中,可以应用结构的固有频率和振型来定性它在载荷作用下的动态响应。采用振型叠加(modal superposition )技术,通过结构的振型组合可以计算结构的变形,每一阶模态乘以一个标量因子。在模型中的位移矢量u 定义为

∑∞==1i i

i u φα

其中i α是振型i φ的标量因子。这一技术仅在模拟小变形、线弹性材料和无接触条件的情况下是有效的,换句话说,即线性问题。

在结构的动力学问题中,结构的响应往往被相对较少的几阶振型控制,在计算这类系统的响应时,应用振型叠加成为特别有效的方法。考虑一个含有10,000个自由度的模型,对动态运动方程的直接积分将在每个时间点上同时需要联立求解10,000个方程。如果通过100个振型来描述结构的响应,则在每个时间增量步上只需求解100个方程。更重要的是,振型方程是解耦的,而原来的运动方程是耦合的。在计算振型和频率的过程中,开始时需要一点成本,但是,在计算响应时将会节省大量的计算花费。

如果在模拟中存在非线性,在分析中固有频率会发生明显的变化,因此振型叠加法将不再适用。在这种情况下,只能要求对动力平衡方程直接积分,它所花费的时间比振型分析昂贵得多。

必须具备下列特点的问题才适合于进行线性瞬态动力分析:

?

系统应该是线性的:线性材料行为,无接触条件,以及没有非线性几何效应。 ? 响应应该只受相对少数的频率支配。当在响应中频率的成分增加时,诸如是打击和

碰撞的问题,振型叠加技术的效率将会降低。

?

载荷的主要频率应该在所提取的频率范围之内,以确保对载荷的描述足够精确。 ?

应用特征模态,应该精确地描述由于任何突然加载所产生的初始加速度。 ? 系统的阻尼不能过大。

7.2 阻尼

如果允许一个无阻尼结构做自由振动,则它的振幅会是一个常数。然而在实际中,能量被结构的运动耗散,振动的幅度减小直至振动停止。这种能量耗散被称为阻尼(damping )。通常假定阻尼为粘滞的,或者正比于速度。包含阻尼的动力平衡方程可以重新写为

Mu I P I Ku Cu +-==+0 其中

C 是结构的阻尼矩阵

u

是结构的速度。 能量耗散来自于诸多因素,其中包括结构连接处的摩擦和局部材料的迟滞效应。阻尼是一种很方便的方法,它包含了重要的能量吸收而又无需模拟具体的效果。

在ABAQUS/Standard 中,特征模态的计算是关于无阻尼系统的。然而,大多数工程问题都包含某种阻尼,尽管阻尼可能很小。对于每个模态,在有阻尼和无阻尼的固有频率之间的关系是

ωωξd =-12

其中 d ω 是阻尼特征值,

0c c =

ξ 是临界阻尼比, c

是该振型的阻尼, 0c 是临界阻尼。

对于ξ的较小值(1.0<ξ),有阻尼系统的特征频率非常接近于无阻尼系统的相应值;当ξ增大时,无阻尼系统的特征频率成为不太准确的;而当ξ接近于1时,采用无阻尼系统的特征频率就成为无效的。

如果结构是处于临界阻尼(1=ξ),在任何扰动后,结构不会有摆动而是尽可能迅速地恢复到它的初始静止构形。(见图7-2)

图7–2 阻尼

7.2.1 在ABAQUS/Standard 中阻尼的定义

对于瞬时模态分析,在ABAQUS/Standard 中可以定义一些不同类型的阻尼:直接模态阻尼(direct modal damping ),瑞利阻尼(Rayleigh damping )和复合模态阻尼(composite modal damping )。

阻尼是针对模态动力学过程定义的,阻尼是分析步定义的一部分,每阶模态可以定义不同量值的阻尼。

直接模态阻尼

应用直接模态阻尼可以定义与每阶模态相关的临界阻尼比ξ,其典型的取值

范围是在临界阻尼的1%到10%之间。直接模态阻尼允许用户精确地定义系统的每阶模态的阻尼。

Rayleigh 阻尼

在Rayleigh 阻尼中,假设阻尼矩阵是质量和刚度矩阵的线性组合,

K M C βα+=,

其中α和β是由用户定义的常数。尽管阻尼是正比于质量和刚度矩阵的假设没有严格的物理基础,实际上我们对于阻尼的分布知之甚少,也就不能保证其它更为复杂的模型是正确的。一般的,这个模型对于大阻尼系统不可靠;即超过临界阻尼的大约10%。相对于其它形式的阻尼,你可以精确地定义系统的每阶模态的Rayleigh 阻尼。

对于一个给定模态i ,临界阻尼值为i ξ,而Rayleigh 阻尼值α和β的关系为

i i

i βωωαξ22+=

复合阻尼 在复合阻尼中,对于每种材料定义一个临界阻尼比,这样就得到了对应于整体结构的复合阻尼值。当结构中有多种不同的材料时,这一选项是有用的。在本指南中将不对复合阻尼做进一步的讨论。

7.2.2 选择阻尼值

在大多数线性动力学问题中,恰当地定义阻尼对于获得精确的结果是十分重要的。但是,在某种意义上阻尼只是近似地模拟了结构吸收能量的特性,并非试图去模拟引起这种效果的物理机制。因此,在模拟中确定所需要的阻尼数据是很困难的。偶尔,你可以从动态试验中获得这些数据,但是,你不得不通过查阅参考资料或者经验获得这些数据。在这些情况下,你必须十分谨慎地解释模拟结果,并通过参数分析研究来评估模拟对于阻尼值的敏感性。

7.3 单元选择

事实上,ABAQUS的所有单元均可用于动态分析,选取单元的一般原则与静力分析相同。但是,在模拟冲击和爆炸载荷时,应该选用一阶单元,因为它们具有集中质量公式,这种公式模拟应力波的效果优于二阶单元采用的一致质量公式。

7.4 动态问题的网格剖分

当你正在设计应用于动态模拟的网格时,你需要考虑在响应中将被激发的振型,并且使所采用的网格能够充分地反映出这些振型。这意味着能够满足静态模拟的网格,不一定能够计算由于加载激发的高频振型的动态响应。

例如,考虑图7-3所示的板。一阶壳单元的网格对于板受均布载荷的静力分析是适合的,并也适合于一阶振型的预测。但是,该网格是明显地过于粗糙以至于不能够精确地模拟第六阶振型。

图7–3 板的粗网格

图7-4显示了同样的板采用了一阶单元的精细网格的模拟。现在,第六阶振型的位移形状看起来明显变好,对于该阶振型所预测的频率更加准确。如果作用在板上的动态载荷会显著地激发该阶振型,则必须采用精细的网格;采用粗网格将得不到准确的结果。

图7–4 板的精细网格

7.5 例题:货物吊车—动态载荷

这个例子采用在第6.4节“例题:货物吊车”中已分析过的同样的货物吊车,现在要求研究的问题是当10 kN的载荷在0.2秒的时间中落到吊车挂钩上所引起的响应。在A, B, C和D点(见图7-5)处的连接仅能够承受的最大拉力为100 kN。你必须决定这些连接的任何一个是否会断裂。

图7–5 货物吊车

加载的持续时间很短意味着惯性效应可能是很重要的,基本上要进行动态分析。这里没有提供关于结构的阻尼的任何信息。由于在桁架和交叉支撑之间采用的是螺栓连接,因此由摩擦效应引起的能量吸收可能是比较显著的。因此,基于经验可以对每

一阶振型选择5%的临界阻尼。

施加载荷的值与时间的关系,如图7-6所示。

图7–6 载荷-时间特性

在本手册的在线文档第A.5节“Cargo crane – dynamic loading”提供了输入文件。当通过ABAQUS/CAE运行这个输入文件时,将创建关于该问题的完整的分析模型。根据下面给出的指导如果你遇到困难,或者如果你希望检查你的工作,则可以运行这个输入文件。在附录A“Example Files”中,给出了如何提取和运行输入文件的指导。

如果你没有进入ABAQUS/CAE或者其它的前处理器,可以人工创建关于这个问题的输入文件,关于这方面的讨论,见Getting Started with ABAQUS/Standard:Keywords Version,第9.5节“Example:Cargo crane – dynamic loading”。

7.5.1 修改模型

打开模型数据库文件Crane.cae,将Static模型复制成一个名为Dynamic

的模型。除了下面描述的修改之外,动态分析的模型基本上与静力分析的模型相同。材料

在动态分析中,必须给定每种材料的密度,这样才能形成质量矩阵。在吊车中钢的密度为7800 kg/m3。

在这个模型中,材料属性是作为截面特性定义的一部分给出的。所以需要在Property模块中编辑BracingSection和MainMemberSection截面定义来指定密度。在Edit Beam Section(编辑梁截面)对话框的Section material density (截面材料密度)域中,为每个截面输入密度值为7800。

注意:如果材料数据的定义是独立于截面属性的,通过编辑材料定义可以将密度包括在内,即在Edit Material对话框中,选择General-->Density。

分析步

应用于动态分析的分析步定义与静力分析的分析步定义具有本质上的不同。

因此,两个新的分析步将取代前面所建立的静力分析步。

在动态分析中的第一个分析步用于计算结构的自振频率和振型。第二个分析步则应用这些数据来计算吊车的瞬态(模型)动态响应。在这个分析中,我们假定一切都是线性的。如果你想在分析中模拟任何的非线性,必须使用隐式动态(implicit dynamic)过程对运动方程进行直接积分。关于进一步的细节请参阅第

7.9.2节“非线性动态分析”。

ABAQUS/Standard提供了Lanczos和子空间迭代(subspace iteration)的特征值提取方法。对于具有很多自由度的系统,当要求大量的特征模态时,一般来说Lanczos方法的速度更快。当需要仅少数几个(少于20)特征模态时,则应用子空间迭代法的速度可能更快。

在这个分析中,我们使用Lanczos特征值求解器并求解前30个的特征值。除了指定所要提取模态的数目,也可以指定所感兴趣的最小和最大频率,因此,一旦ABAQUS/Standard已经提取了在这个指定范围内的所有特征值,就会结束该分析步。也可以指定一个变换点(shift point),距离这个变换点最近的特征值将被提取。在默认情况下,不使用最小或最大的频率或变换点。如果没有约束结构的刚体模态,必须设置变换值为一个小的负值,以避免由于刚体运动产生的数值问题。

采用频率提取分析步代替静态分析步:

1.从主菜单栏中,选择Step-->Replace-->Tip Load。在Replace Step(替换分析步)对话框中,从Linear perturbation(线性摄动)过程的列表中,选择Frequency(频率)。

将删除不能转换的模型参数。在本例中删除了集中力,因为在频率提取分析中不能应用它们。但是,频率提取分析步继承了与静态分析步相关的边界条件和输出需求。

2.在Edit Step(编辑分析步)对话框的Basic(基础)页中,输入分析步描述First 30 modes;接受Lanczos特征求解器选项;并要求前30阶特征值。3.将分析步重新命名为Extract Frequencies。

在结构动态分析中,响应通常地是与低阶模态有关。但是,应该提取足够的

模态以便较好地表达结构的动态响应。检查是否已经提取了足够数量的特征值的

一种方法是查看在每个自由度上的全部有效质量,它表明了在所提取模态的每个

方向上激活了多少质量。在数据文件(.dat)的特征值输出中,给出了有效质量

的列表。在理想情况下,对于每个振型在每个方向上,有效质量的总和应当至少

占总质量的90%。在第7.6节“模态数目的影响”中将给出进一步的讨论。

应用模型动态过程进行瞬时动态分析。瞬时响应是基于在第一个分析步中提

取全部的模态;在全部的30阶模态中均采用了5%的临界阻尼。

创建瞬时模型动态分析步:

1.从主菜单栏中,选择Step-->Create。从Linear perturbation过程列表中选择Modal dynamics,并命名分析步为Transient modal dynamics。在上面定义的频率提取分析步之后插入这个分析步。

2.在Edit Step对话框的Basic页中,输入分析步的描述Simulation of Load Dropped on Crane,并指定分析步的时间为0.5和时间增量(time increment)为0.005。在动态分析中,时间是一个真实的物理量。

3.在Edit Step对话框的Damping页中,指定直接模态阻尼(direct modal),并对第1阶至第30阶的模态输入临界阻尼比为0.05。

如果使用了模态阻尼,必须指定在基于模态的动态过程中使用的特征模态。

ABAQUS/CAE默认自动地选择所有可能得到的特征模态。当然, 如果你希望改变默认的选择,也可以应用Keywords Editor(关键词编辑器)编辑

*SELECT EIGENMODES块。在这个问题中,接受默认的选择。

输出

应用Field Output Request Manager(场变量输出管理器),对于Extract Frequencies分析步,修改场变量输出设置,因此,选择了Preselected defaults(预选默认值)。在默认情况下,ABAQUS/Standard将振型写入到输出数据库文件(.odb),以便应用Visualization模块绘制振型图。对于每阶振型的节点位移都是经过单位化的,所以最大的位移为1单位。因此,这些结果和对应的应力和应变是没有物理意义的:它们仅能够用于相互的比较。

完成动态分析通常比静态分析需要更多更多的增量步。做为结果,来自动态分析的输出量可能是非常大,你应该控制输出要求以确保输出文件具有一个合理的量。在本例中,要求在每第5个增量步结束时,向输出数据库文件中输出一次位移形状。在分析步中有100个增量步(0.5/0.005);因此,有20组场变量输出。

另外在每个增量步,将在模型加载端(例如,Tip-a集合)的位移和在固定端(Attach集合)的约束反力作为历史数据写入到输出数据库文件中,以便从这些数据中得到更好的解答。在动态分析中,我们也关心在模型中的能量分布以及能量采用的形式。在模型中表现出的动能是质量运动的结果;表现出的应变能是结构位移的结果;通过阻尼也耗散了能量。在默认情况下,对于模型动态过程,整个模型的能量将作为历史数据写入到.odb文件中。

对瞬时模型动态分析步中的输出请求:

1.从主菜单栏中,选择Output-->Field Output Requests-->Manager。在标记Transient modal dynamics的列中(可能需要拉大这列表格才能看见完整的分析步名称),选择标有Created的单元格。

2.编辑场变量输出要求,使得仅将每第5个增量步的节点的位移写入到.odb文件中。

3.从主菜单栏中,选择Output-->History Output Requests-->Manager。在标记Transient modal dynamics的分析步中创建两个新的输出要求。在第一个中,输出集合Tip-a在每个增量步结束时的位移;在第二个中,输出集合Attach在每个增量步结束时的约束反力。

载荷和边界条件

边界条件与在静力分析中的条件相同。由于在分析步替换过程中保留了这些条件,无需再定义新的边界条件。

在吊车的端部施加一个集中力,它的量级是与时间相关的,如图7-6所示。

与时间相关的载荷可以应用幅值曲线(amplitude curve)进行定义。通过幅值曲线上的值乘以载荷的值(?10,000 N),可以获得当时的任意点处施加荷载的实际值。

指定与时间相关的载荷:

1.首先定义幅值。从在Load模块的主菜单栏中,选择Tools--> Amplitude-->Create,命名幅值为Bounce,并选择Tabular(数据表)类型。

在Edit Amplitude(编辑幅值)对话框中,输入在表7-1中所示的数据。接受

默认的Step time(分析步时间)的选择作为时间跨度,并输入0.25作为光滑

参数值。

注意:点击鼠标键3,进入表格选项。

表7–1 幅值曲线数据

2.现在定义载荷。从主菜单栏中,选择Load-->Create。在Transient modal dynamics分析步中施加载荷,命名为Tip load,并选择Concentrated force

(集中力)作为载荷类型。施加载荷到集合Tip-b。在集合Tip-a 和Tip-b之

间,前面定义的约束方程意味着吊车的两半部分将平均地分担载荷。

3.在Edit Load对话框中,输入-1.E4作为CF2(2方向作用力)的值,并为幅值选择Bounce。

在本例中,结构默认没有初始的速度或者加速度。然而,如果你希望定义初始的速度,则你可以做。通过在主菜单栏中,选择Field-->Create,并在分析步开始时,将初始平移速度设置到在模型中所选择的区域。为了引入初始条件,你也需要编辑模型动态分析步的定义。

运行分析

在作业(Job)模块中,创建一个名为DynCrane的作业,采用下面的描述:3-D model of light-service cargo crane-dynamic analysis。

将模型保存在模型数据库文件中,并提交作业进行分析和监控求解过程;纠正发现的任何一个模拟错误,研究引起任何警告信息的原因,如果必要则采取相应的措施。

7.5.2 结果

在分析中对于每一个增量步,Job Monitor(作业监视器)给出了所采用的自动时间增量步的简明总结。一旦该增量步结束就立刻写出相应的信息,这样你可以在作业运行中监控分析的过程。对于大型、复杂的问题,这个功能十分有用。在Job Monitor 中给出的信息与在状态文件(DynCrane.sta)中给出的信息相同。

查看Job Monitor和打印的输出数据文件(DynCrane.dat)以评估分析结果。Job Monitor

在Job Monitor中,第1列显示了分析步编号,第2列给出了增量步编号。

在每个增量步中为了得到收敛的结果,第6列显示了ABAQUS/Standard所需要的迭代次数。观察Job Monitor的内容,可以发现在分析步1中与单一增量步相关的时间增量非常小。因为时间是与频率提取过程无关的,所以这个分析步没有占用时间。

在分析步2的输出显示,在整个分析步中时间增量的大小保持为常数,并且每个增量步只需迭代一次。在图7-7中显示了Job Monitor的结束部分。

图7-7 Job Monitor的结束部分:货物吊车动态分析

数据文件

对于分析步1的主要结果是提取的特征值(eigenvalue)、参与系数(participation factor)和有效质量(effective mass),如下所示:

所提取的最高频率为96Hz,与此频率对应的周期为0.0104秒,可以将它与固定的时间增量0.005秒相比较。在所提取的振型中,其周期没有远小于时间增量的。相反地,时间增量必须能够求解感兴趣的最高频率。

广义质量列(generalized mass)给出了对应于该阶振型的单自由度系统的质量。

振型参与系数(participation factor)列表反映了在哪个自由度上该振型起主导作用。例如,根据结果可以看出1阶振型主要在3方向上起作用。

有效质量(effective mass)列表反映了对于任何一个模态在每个自由度上所激活的质量的大小。结果表明,在方向2上具有显著质量的第一个模态是第3阶模态。在该方向上总的模型有效质量为378.23 kg。

前面在数据文件中,给出了模型的总质量为414.34kg。

为了保证已经采用了足够的模态,在每个方向上的总有效质量必须占模型质量的绝大部分(即90%)。然而,模型中的某些质量是与约束节点相联系的,这些约束的质量占与约束节点相连接的所有单元质量的大约1/4,在本例中,约为

28 kg。因此,在模型中能够运动的质量是385 kg。在x-、y-和z-方向上的有效质

量分别为可运动质量的6%,98%和97%。在2-和3-方向上的总有效质量远远超过了前面所建议的90%,在1-方向上的总有效质量是低得多。然而,由于载荷是作用在2-方向上的,在1-方向上的响应是不明显的。

对于模型动态分析步,由于关闭了所有数据文件的输出要求,所以在数据文件中没有包含任何结果。

7.5.3 后处理

进入Visualization模块,并打开输出数据库文件DynCrane.odb。

绘制振型

通过绘制与该频率相应的振型可以观察与一个给定的频率相应的变形状态。

选择一个模态并绘制对应的振型:

1.从主菜单栏中,选择Result-->Step/Frame。

弹出Step/Frame(分析步/画面)对话框。

2.从Step Name(分析步名称)表中,选择第一个分析步(Extract Frequencies)。

从Frame列表中,选择Mode 1。

3.从主菜单栏中,选择Plot-->Deformed Shape;或者使用工具箱中的工具。

ABAQUS/CAE显示了关于第一阶振型的变形形态,如图7–8所示。

图7–8 第一阶模态

4.从Step/Frame对话框中,选择第三阶模态。

5.点击OK。

ABAQUS/CAE显示出第三阶振型,如图7-9所示,并且Step/Frame对话框

消失了。

图7–9 第三阶模态

结果的动画演示

用动画(animate)演示分析的结果。首先创建一个第三阶特征模态的动画放大系数,然后创建一个瞬时结果的时间历史动画(time-history animation)。

创建一个特征模态的动画放大系数:

1.从主菜单栏中,选择Animate-->Scale Factor;或者使用工具箱中的工具。

通过从0到1不同的变形放大系数,ABAQUS/CAE显示第三阶振型和步骤。

在提示区的左侧,ABAQUS/CAE也显示了电影播放控制器。

2.在提示区中,点击停止动画。

创建瞬时结果的时间历史动画:

1.从主菜单栏中,选择Options-->Animation观察动画选项。

ABAQUS/CAE显示Animation Options(动画选项)对话框。

2.点击Time History(时间历史)页。

abaqus系列教程-13ABAQUSExplicit准静态分析

13 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit 在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型成为很大时,显式过程比隐式过程需要较少的系统资源。关于隐式与显式过程的详细比较请参见第2.4节“隐式和显式过程的比较”。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 13.1 显式动态问题类比 为了使你能够更直观地理解在缓慢、准静态加载情况和快速加载情况之间的区别,我们应用图13-1来类比说明。

(完整)总结Abaqus操作技巧总结(个人),推荐文档

Abaqus操作技巧总结 打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions 17、后处理有些字符(图例啊,版本号啊,坐标系啊)不想显示, viewport-viewport annotation option ,选择打勾。同样可以修改这些字体大小、位置等等。

abaqus 后处理

22 后处理 22.1 显示局部坐标系上的结果 问:我前处理用的是直角坐标系,但是我想在后处理中输出关于柱坐标的位移分量 是不是要设计局部的坐标系?怎样设计? 答:后处理时点菜单tools / coordinates system / create, 创建柱坐标系(例如使用默认的名称csys-1). 菜单result / options, 点tranformation, 点user-specified, 选中csys-1, 点OK. 窗口左上角显示的变量如果原来是U, U1,现在就变为U,U1(CSYS-1). 22.1 显示局部坐标系上的结果 问:我前处理用的是直角坐标系,但是我想在后处理中输出关于柱坐标的位移分量 是不是要设计局部的坐标系?怎样设计? 答:后处理时点菜单tools / coordinates system / create, 创建柱坐标系(例如使用默认的名称csys-1). 菜单result / options, 点tranformation, 点user-specified, 选中csys-1, 点OK. 窗口左上角显示的变量如果原来是U, U1,现在就变为U,U1(CSYS-1). 22.2 绘制曲线(X–Y data) 问:例如我想用odb文件建立这样一个曲线: x y(自行指定) currentmax("my-xy01") 1.0 currentmax("my-xy02") 3.3 ……………… 搜索了半天也找不到,在此向用过的前辈请教,或者有第三方软件也请指点。(虽然我手工 excel也能做,但是那个时间就……-_-b) 答: 后处理菜单 tools / XY Data / Create, 先创建你的"my-xy01",再选择Operate on XY Data,

abaqus系列教程 多步骤分析

11 多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第7.7.2节“Transfering results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

ABAQUS后处理中各应力解释个人收集

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变) LEij---真应变 ... 应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力PS stress in the plastic-viscous network 塑粘性网格应力 SFABRIC stress components in fabric constitutive measure 纤维本构应力分量 SSAVG average shell section stress 平均壳节点应力 Strain E total strain components 总应变分量 VE viscous strain in the elastic-viscous network 黏性应变弹黏性网格PE plastic strain components 塑性应变分量 PEVAVG volume-averaged plastic strain components (Eulerian only) VEEQ equivalent viscous

abaqus后处理中各应力解释个人收集修订版

a b a q u s后处理中各应力 解释个人收集修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。 LE----真应变(或对数应变) LEij---真应变 ... 应变分量; PE---塑性应变分量; PEEQ---等效塑性应变 ABAQUS Field Output Stresses S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力 PS stress in the plastic-viscous

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。它拥有大量不同种类的单元模型、材料模型、分析过程等。可以进行结构的静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富的单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛的材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构的几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适的荷载增量和收敛准则,它不仅能自动选择这些参数的值,而且在分析过程中也能不断调整这些参数值,以确保获得精确的解答。用户几乎不必去定义任何参数就能控制问题的数值求解过程。 1.1 ABAQUS产品 ABAQUS由两个主要的分析模块组成,ABAQUS/Standard和ABAQUS/Explicit。前者是一个通用分析模块,它能够求解广泛领域的线性和非线性问题,包括静力、动力、构件的热和电响应的问题。后者是一个具有专门用途的分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题,此外,它对处理改变接触条件的高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(Complete ABAQUS Environment) 它是ABAQUS的交互式图形环境。通过生成或输入将要分析结构的几何形状,并将其分解为便于网格划分的若干区域,应用它可以方便而快捷地构造模型,然后对生成的几何体赋予物理和材料特性、荷载以及边界条件。ABAQUS/CAE具有对几何体划分网格的强大功能,并可检验所形成的分析模型。模型生成后,ABAQUS/CAE可以提交、监视和控制分析作业。而Visualization(可视化)模块可以用来显示得到的结果。 1.2 有限元法回顾 任何有限元模拟的第一步都是用一个有限元(Finite Element)的集合

总结Abaqus操作技巧总结

打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions

利用Python对Abaqus进行后处理结果输出

利用Python对Abaqus进行后处理结果输出 -----中大_戚超_2016.10.3 1 概述 在Abaqus的二次开发过程中,通常需要采用Python脚本语言将Abaqus的计算结果进行输出,然后再进行处理。Python使Abaqus的内核语言,使用较为方便,Abaqus运行Python语言的方式有多种,可以直接命令窗口,也可以读入脚本,还可以采用类似批处理的方式。 本次以一个例子细说Python语言在Abaqus后处理中的应用,模型的计算结果云图如图1所示。 图1 计算结果 2 输出所有积分点上的Mises应力 直接上Python代码: import os from odbAccess import* from textRepr import* myodb=openOdb(path='Job-1.odb') cpFile=open('artlcF1.txt','w') RF=myodb.steps['Step-1'].frames[1].fieldOutputs['S'].values for i in range(len(RF)) :

cpFile.write('%.3F\n' %(RF[i].mises)) else: cpFile.close() #引入模块,因为需要打开结果文件 #打开结果文件,并复制给变量myodb #打开一个txt文件 #将输出场赋值给RF #循环语句,向txt文件逐行写入mises应力 Abaqus的结构层次分的很细,比如结果文件下分如下: 使用过Abaqus的都知道step表示载荷步,frame表示载荷子步,因而在读取Mises应力时需要详细地指定输出哪一步的应力,而应力结果是输出场数据(fieldOutput)的中一种,需要指定是何种应力,程序才知道怎么读取并写入。 由于Abaqus里面涉及的变量特别多,通常很难记清楚那一项下面都有哪些量可以调用,此时比较好的方式是采用print 函数查看,例如查看myodb.steps['Step-1'].frames[1].fieldOutputs 下面有哪些变量可以调用,在窗口输入: print myodb.steps['Step-1'].frames[1].fieldOutputs 显示:

abaqus系列教程11多步骤分析 (1)

11多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

【2018年整理】abaqus的后处理

1 如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location 2 后处理有些字符(图例啊,版本号啊,坐标系啊)不想显示 view-view annotation option ,选择打勾 3 后处理中显示边界条件 Viewport--ODB Display Options 边界条件处打勾 4 在模型上只显示云图,不显示网格 option菜单-common-visible edges--free edges 顺便窜一下,在前处理mesn之后不想显示网格,只显示模型的话,更简单:工具栏有显示mesh、显示线框、显示实体连续的三个按钮。 5 你想调大变形放大系数(Deformation Scal Factor)让变形显示更明显一点? 注意:非线性问题,这个默认为是1(也就是不放大),只有线性的才能改。 option菜单-common-visible edges--Deformation Scale factor 6 如何在后处理中移动图例 选Gneral--legend 可以隐藏 选Legent--Upper left corner 可以移动 7 对ODB结果处理以后,如何保存结果 從visualization模塊開啟odb檔(不要直接從job manager開啟),並取消勾 選 read only,對已有的XY-data作copy to odb。 8 job步提交运算后警告信息出现setwarning 或者nodewarning,(类似这样 的语句: ....have been identified in element set ErrElemVolSmallNegZero .... identified in element set ErrElemDistorted WarnNodeUnconstrained WarnNodeMissMasterIntersect

Abaqus实例教程——网格划分

Workshop 9 自動型與掃掠型網格建構技術: 幫浦模型 w9-meshing.avi Introduction(介紹) 在本練習中你將會使用ABAQUS/CAE 中的Mesh 模組來為整個幫浦組裝模型建構 有限元素網格. 需要做的工作包括將網格屬性指定給每一個組件, 指定網格的種子點, 以及建立網格. Modifying the pump housing element type(修改幫浦外殼元素類型) 1.從../IntroClass/workshops/ pump目錄啟動 ABAQUS/CAE 並且開啟 模型的資料檔Pump.cae. 2.在模型樹中, 將零件PUMP-1展開並在其中的Mesh上快點兩下將工作環境 切換到 Mesh 模組然後在PUMP-1上開始工作. 3.按照以下的步驟來製做一個組別(set)在其中將包含組成幫浦外殼的全部元素: a.在模型樹中, 將零件PUMP-1展開並在其中的Sets 上快點兩下. b.在Create Set對話框中, 選取Element作為組別類型. 將此組別取名 為pump-mesh然後按下Continue按鈕. c.使用拉方框的方式將幫浦外殼的全部元素都選起來. 如果有必要的話 可以使用選取過濾器. 選好之後按下Done按鈕. 4.使用Query指令來確認目前你所指定到網格中的元素類型: a.從上方的下拉式功能表中, 選取Tools→Query功能選項. 會彈出Query對話框. b.從其中所列出來的General Queries中, 選取Element然後按下Apply 按鈕. 在任一元素上點一下並注意在訊息區中所列出來的元素編號, 類 型, 以及節點連接順序, 如圖 W9–1 中所示. 重複這個程序檢查此網格 中的其它元素. Figure W9–1 Selected element attributes. c.按下在Query對話框中的Cancel按鈕結束此查詢指令.

ABAQUS分析教程.

ABAQUS瞬态动力学分析 瞬态动力学分析 一、问题描述 一质量块沿着长度为1500mm的等截面梁运动,梁的材料为钢(密度 =7.8E-9 ton/mm3,弹性模量E=2.1E5MPa,泊松比=0.3),宽为60mm,高为40mm。质量块的长为50mm,宽为60mm,高为30mm。质量块的密度=1.11E-007 ton/mm3,弹性模量E=2.1E5MPa,泊松比=0.3,如图5.1所示。质量块以10000mm/s 的速度匀速通过悬臂梁(从固定端运动到自由端),计算梁自由端沿y方向的位移、速度和加速度。

图1 质量块沿梁运动的示意图 二、目的和要求 掌握结构的动力学分析方法,会定义历史输出步。 1)用六面体单元划分网格,厚度方向有4排网格。 2)采用隐式算法进行计算。 三、操作步骤 1、启动ABAOUS/CAE [开始][程序][ABAQUS 6.7-1][ABAQUS CAE]。 启动ABAQUS/CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。 2、创建部件 在ABAQUS/CAE窗口顶部的环境栏中,可以看到模块列表Module:Part,这表示当前处在Part(部件)功能模块,可按照以下步骤来创建梁的几何模型。 创建两个零件分别命名为mass(质量块)和beam(梁),均为三维实体弹性体。 3、创建材料和截面属性 在窗口左上角的Module(模块)列表中选择Property(特性)功能模块。 (1)创建梁材料 Name:Steel,Density:7.8E-9,Young’s Modulus(弹性模量):210000,Poisson’s Ratio(泊松比):0.3。 (2)创建截面属性点击左侧工具箱中的(Create Section),弹出Create Sectio n对话框,Category:Solid,Type:Homogeneous,保持默认参数不变(Material:Steel;Plane stress/strain thickness:1 ),点击OK。 (3)给部件赋予截面属性点击左侧工具区中的(Assign Section),将上一步创建的截面属性赋给梁。 (4)重复步骤(1)~(4),为质量块赋截面属性。 注意:质量块的密度为 1.11E-007 ton/mm3。 4、定义装配件

ABAQUS前_后处理模块二次开发的应用_朱兆华

文章编号:1001-2265(2009)01-0030-04 收稿日期:2008-08-11  *基金项目:江西省科技厅科技支撑项目[2007];江西省教育厅2009年度一般科技项目(G J J 09025);江西省教育厅科技研究项目(G J J 08429) 作者简介:朱兆华(1979—)男,江苏涟水人,南昌大学机电学院硕士研究生,助理工程师,研究方向为材料加工新技术,(E-m a i l )b y j 245@163. c o m 。 A B A Q U S 前、后处理模块二次开发的应用 * 朱兆华1 ,黄菊花1 ,张庭芳1 ,谢世坤2 ,白引娟 3 (1.南昌大学机电工程学院,南昌 330031;2.井冈山大学工学院,江西吉安 343009;3.江西协中汽车 内饰有限公司,南昌 330032) 摘要:文章以实例说明了P y t h o n 脚本语言和A B A Q U S G U I T o o l k i t 在A B A Q U S 的前、后处理模块二次开发中的应用,并阐述了不同模块之间的调用流程。通过二次开发程序控制A B A Q U S 的建模和装配的过程,有效地解决了模型装配时的繁琐、易错等问题,提高了前处理的效率;因A B A Q U S 对板料拉深进行数值 模拟的后处理功能不够全面,为扩展后处理的功能,更好地查看和分析模拟的结果,文章对A B A Q U S 后处理进行二次开发来达到这一目的。 关键词:A B A Q U S ;P y t h o n ;A B A Q U S G U I T o o l k i t ;二次开发中图分类号:T H 16;T G 65 文献标识码:A A p p l i c a t i o no f S e c o n d -d e v e l o p e d o n A B A Q U S P r e -p r e c e s s a n d P o s t -p r o c e s s Z H UZ h a o -h u a 1,H U A N GJ u -h u a 1,Z H A N GT i n g -f a n g 1,X I ES h i -k u n 2,B A I Y i n -j u a n 3 (1.S c h o o l o f M e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,N a n c h a n g U n i v e r s i t y ,N a n c h a n g 330031;2.C o l l e g e o f E n g i n e e r i n g ,J i n g g a n g s h a n U n i v e r s i t y ,J i a n g x i J i 'a n 343009,C h i n a ) A b s t r a c t :T h i s a r t i c l e u s i n g a n e x a m p l e t o e x p l a i n P y t h o n a n d A B A Q U S G U I T o o l k i t p r o g r a m m e f o r A B A Q U S p r e -p r o c e s s a n d p o s t -p r o c e s s s e c o n d -d e v e l o p m e n t a n de x p o u n dt h e p r o c e s s a m o n g d i f f e r e n t m o d u l e s 。T h o u g h s e c o n d -d e v e l o p m e n t t h e p r o c e s s o f m o d e l a n da s s e m b l e c a n b e c o n t r o l l e d ,t h e t e d i o u s 、e r r o r -p r o n e a n do t h e r p r o b l e m s c a n b e e f f e c t i v e l y s o l v e d ,s o t h ew o r k i n g e f f i c i e n c y c a nb e h i g h l y i m p r o v e di nt h e p r e -p r o c e s s ;F o r d r a w i n g s h e e t ,p o s t -p r o c e s s f u n c t i o n s p r o v i d e db y A B A Q U S a r ei n s u f f i c i e n t .I no r d e r t o e x t e n dp o s t -p r o c e s s f u n c t i o n s a n d e x a m i n e s i m u l a t i o n r e s u l t e f f e c t i v e l y s e c o n d d e v e l o p o n A B A Q U S p o s t -p r o c e s s i s u s e d i n t h i s p a -p e r . K e y w o r d s :A B A Q U S ;P y t h o n ;A B A Q U S G U I T o o l k i t ;s e c o n d -d e v e l o p m e n t 0 引言 A B A Q U S 是国际上最先进的大型通用有限元计算分析软件之一,可以模拟绝大部分工程材料的线性和非线性行为。A B A Q U S 自带的C A E 是进行有限元分析的前后处理模块,也是建模、分析和后处理的人机交互平台,它具有良好的人机对话界面,因此A B A Q U S 软件在工程中得到了广泛的应用。 P y t h o n 是一种面向对象的脚本语言,它功能强大,既可以独立运行,也可以用作脚本语言。特别适用于 快速的应用程序开发。 1 A B A Q U S /C A E 处理过程和二次开发接口 介绍 A B A Q U S /C A E 处理有两个程序:①内核程序;②G U I 程序。内核程序实际上就是它的脚本语言,它采用的是P y t h o n 语言,同时扩展了P y t h o n 语言,额外提供了大约500个对象模型,对象模型之间的关系复杂,它们间部分关系如图1所示。 图1中,C o n t a i n e r 表示容器,里面包括其他对象, · 30·

abaqus系列教程-05应用壳单元

5 应用壳单元 应用壳单元可以模拟结构,该结构一个方向的尺度(厚度)远小于其它方向的尺度,并忽略沿厚度方向的应力。例如,压力容器结构的壁厚小于典型整体结构尺寸的1/10,一般就可以用壳单元进行模拟。以下尺寸可以作为典型整体结构的尺寸:支撑点之间的距离。 加强件之间的距离或截面厚度有很大变化部分之间的距离。 曲率半径。 所关注的最高阶振动模态的波长。 ABAQUS壳单元假设垂直于壳面的横截面保持为平面。不要误解为在壳单元中也要求厚度必须小于单元尺寸的1/10,高度精细的网格可能包含厚度尺寸大于平面内尺寸的壳单元(尽管一般不推荐这样做),实体单元可能更适合这种情况。 单元几何尺寸 在ABAQUS中具有两种壳单元:常规的壳单元和基于连续体的壳单元。通过定义单元的平面尺寸、表面法向和初始曲率,常规的壳单元对参考面进行离散。但是,常规壳单元的节点不能定义壳的厚度;通过截面性质定义壳的厚度。另一方面,基于连续体的壳单元类似于三维实体单元,它们对整个三维物体进行离散和建立数学描述,其动力学和本构行为是类似于常规壳单元的。对于模拟接触问题,基于连续体的壳单元与常规的壳单元相比更加精确,因为它可以在双面接触中考虑厚度的变化。然而,对于薄壳问题,常规的壳单元提供更优良的性能。 在这本手册中,仅讨论常规的壳单元。因而,我们将常规的壳单元简单称为“壳单元”。关于基于连续体的壳单元的更多信息,请参阅ABAQUS分析用户手册的第节“Shell elements:overview”。 壳体厚度和截面点(section points) ¥ 需要用壳体的厚度来描述壳体的横截面,必须对它进行定义。除了定义壳体厚度

abaqus--后处理

1 如何显示最大、最小应力 在V isualization>Options>contour >Limits中选中Min/Max:Show Location 2 后处理有些字符(图例啊,版本号啊,坐标系啊)不想显示 view-view annotation option ,选择打勾 3 后处理中显示边界条件 V iewport--ODB Display Options 边界条件处打勾 4 在模型上只显示云图,不显示网格 option菜单-common-visible edges--free edges 顺便窜一下,在前处理mesn之后不想显示网格,只显示模型的话,更简单:工具栏有显示mesh、显示线框、显示实体连续的三个按钮。 5 你想调大变形放大系数(Deformation Scal Factor)让变形显示更明显一点? 注意:非线性问题,这个默认为是1(也就是不放大),只有线性的才能改。 option菜单-common-visible edges--Deformation Scale factor 6 如何在后处理中移动图例 选Gneral--legend 可以隐藏 选Legent--Upper left corner 可以移动 7 对ODB结果处理以后,如何保存结果 從visualization模塊開啟odb檔(不要直接從job manager開啟),並取消勾 選 read only,對已有的XY-data作copy to odb。 8 job步提交运算后警告信息出现setwarning 或者nodewarning,(类似这样 的语句: ....have been identified in element set ErrElemV olSmallNegZero .... identified in element set ErrElemDistorted WarnNodeUnconstrained WarnNodeMissMasterIntersect

abaqus系列教程-03有限单元和刚性体

3. 有限单元和刚性体 有限单元和刚性体是ABAQUS模型的基本构件。有限单元是可变形的,而刚性体在空间运动不改变形状。有限元分析程序的用户可能多少理解有限单元,而对在有限元程序中的刚性体的一般概念可能多少会感到陌生。 为了提高计算效率,ABAQUS具有一般刚性体的功能。任何物体或物体的局部可以定义作为刚性体;大多数的单元类型都可以用于刚性体的定义(例外的类型列出在ABAQUS分析用户手册第2.4.1节“Rigid Body definition”)。刚性体比变形体的优越性在于对刚性体运动的完全描述只需要在一个参考点上的最多六个自由度。相比之下,可变形的单元拥有许多自由度,需要昂贵的单元计算才能确定变形。当这变形可以忽略或者并不感兴趣时,将模型一个部分作为刚性体可以极大地节省计算时间,并不影响整体结果。 3.1 有限单元 ABAQUS提供了广泛的单元,其庞大的单元库为你提供了一套强有力的工具以解决多种不同类型的问题。在ABAQUS/Explicit中的单元是在ABAQUS/Standard中的单元的一个子集。本节将介绍影响每个单元特性的五个方面问题。 3.1.1 单元的表征 每一个单元表征如下: ●单元族 ●自由度(与单元族直接相关) ●节点数目 ●数学描述 ●积分 ABAQUS中每一个单元都有唯一的名字,例如T2D2,S4R或者C3D8I。单元的名字标识了一个单元的五个方面问题的每一个特征。命名的约定将在本章中说明。

单元族 图3-1给出了应力分析中最常用的单元族。在单元族之间一个主要的区别是每一个单元族所假定的几何类型不同。 实体单元壳单元梁单元刚体单元 弹簧和粘壶 桁架单元 无限单元 膜单元 图3-1 常用单元族 在本指南中将用到的单元族有实体单元、壳单元、梁单元、桁架和刚性体单元,这些单元将在其它章节里详细讨论。本指南没有涉及到的单元族;读者若在模型中对应用它们感兴趣,请查阅ABAQUS分析用户手册的第V部分“Elements”。 一个单元名字第一个字母或者字母串表示该单元属于哪一个单元族。例如,S4R 中的S表示它是壳(shell)单元,而C3D8I中的C表示它是实体(contimuum)单元。自由度 自由度(dof)是在分析中计算的基本变量。对于应力/位移模拟,自由度是在每一节点处的平动。某些单元族,诸如梁和壳单元族,还包括转动的自由度。对于热传导模拟,自由度是在每一节点处的温度;因此,热传导分析要求使用与应力分析不同的单元,因为它们的自由度不同。 在ABAQUS中使用的关于自由度的顺序约定如下: 1 1方向的平动 2 2方向的平动 3 3方向的平动

相关文档
最新文档