实验五异方差模型的检验
异方差实验报告

《计量经济学》实训报告实训项目名称异方差的检验及修正实训时间 2011年12月13日实训地点班级学号姓名实训(实践) 报告实训名称异方差的检验及修正一、实训目的深刻理解异方差性的实质、异方差出现的原因、异方差的出现对模型的不良影响(即异方差的后果),掌握估计和检验异方差性的基本思想和修正异方差的若干方法;能够运用所学的知识处理模型中的出现的异方差问题,并要求初步掌握用EViews处理异方差的基本操作方法。
二、实训要求使用教材第五章的数据做异方差的图形法检验、Goldfeld-Quanadt检验与White检验,使用WLS法对异方差进行修正。
三、实训内容1、用图示法、戈德菲尔德、white验证法,验证该模型是否存在异方差。
2、用加权最小二乘法消除异方差。
四、实训步骤练习题5.8数据1998年我国重要制造业销售收入和销售利润的数据Y—销售利润,x—销售收入1. 用OLS方法估计参数,建立回归模型:ls y c x回归结果如下:Y=12.036+0.1044x;S = (19.5178) (0.00844)T= (0.6167) (12.3667)R^2=0.8547 S.E.=56.90372.检验是否存在异方差(1) 图形检验:残差图形scat x e2结果表明:残差平方e2对解释变量的x的散点图主要分布在图形的下方,大致看出残差平方随X 的变动呈增大的趋势,因此,模型很可能出现异方差。
(2)戈德菲尔德-夸特检验首先,对变量进行排序,在这个题目中,我选择递增型排序,这是y与x将以x按递增型排序。
然后构造子样本区间,建立回归模型。
在本题目中,n=28,删除中间的1/4,的观测值,即大约8个观测值,剩余部分平分得两个样本区间:1—10和19-28,他们的样本个数均为10。
用OLS方法得到前10个数的样本结果(ls y c x):用OLS方法得到后10个数的样本结果(ls y c x):接着,根据戈德菲尔德检验得到F统计量:(两个残差平方和相除,大的除以小的)F=63769.67/2577.969=24.736。
异方差检验

第四次实验报告---异方差检验一 实验内容建国以来,各地区的粮食产量有了较大提高。
近年来,城市开发占用了大量耕地面积,各地区政府为了在保证粮食产量的情况下尽可能的加快城镇化。
现根据1983年至2000年的数据,来研究粮食产量与播种面积之间的关系。
二 模型设定为了定量分析播种面积和粮食产量之间的关系,弄清是否是播种面积越大粮食产量越高,建立了粮食产量与播种面积的回归模型。
12i i i Y X u ββ=++其中i Y 表示第年的粮食产量;i X 表示播种面积。
数据如下:年份粮食产量Y (万吨) 粮食播种面积X3(千公顷) 1983 38728 114047 1984 40731 112884 1985 37911 108845 1986 39151 110933 1987 40208 111268 1988 39408 110123 1989 40755 112205 1990 44624 113466 1991 43529 112314 1992 44264 110560 1993 45649 110509 1994 44510 109544 1995 46662 110060 1996 50454 112548 1997 49417 112912 1998 51230 113787 1999 50839 113161 2000 46218 108463三 参数估计运用Eviews 软件,进行简单线性回归分析,得出参数估计值。
回归结果如下:Dependent Variable: Y Method: Least Squares Date: 10/26/11 Time: 08:47Sample: 1983 2000 Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -33822.41 68409.15 -0.494414 0.6277 X20.6988800.6132731.1395900.2712R-squared 0.075073 Mean dependent var 44127.11 Adjusted R-squared 0.017265 S.D. dependent var 4409.100 S.E. of regression 4370.873 Akaike info criterion 19.70775 Sum squared resid 3.06E+08 Schwarz criterion 19.80668 Log likelihood -175.3698 F-statistic 1.298665 Durbin-Watson stat 0.118043 Prob(F-statistic)0.271231估计结果为 ˆ-33822.410.69888i iY X =+ (-0.494414)(1.13959) 20.075073,F=1.298665R =括号内为t 统计量从上述估计值中,我们可以看出其可决系数较低,F 统计量的值也很低。
异方差性的检验及处理方法

异方差性的检验及处理方法异方差性是指随着自变量变化,因变量的方差不保持恒定,即方差存在不均匀的变化趋势。
在统计分析中,如果忽视了异方差性,可能会导致误差的不准确估计,从而影响对因变量的显著性检验和参数估计结果的准确性。
为了避免异方差性给统计分析带来的影响,需要进行异方差性的检验和处理。
下面将介绍几种常用的异方差性检验及处理方法。
一、异方差性的检验方法:1.绘制残差图:绘制因变量的残差(观测值与拟合值之差)与自变量的散点图,观察残差是否随着自变量的变化而存在明显的模式。
如果残差图呈现出锥形或漏斗形状,则表明存在异方差性。
2.帕金森检验:帕金森检验是一种常用的检验异方差性的方法。
该方法的原理是通过对残差进行变换,判断变换后的残差是否与自变量相关。
3. 布罗斯-佩根检验(Breusch-Pagan test):布罗斯-佩根检验是一种常用的检验异方差性的方法。
该方法的原理是通过计算残差与自变量的相关系数,进而判断是否存在异方差性。
4. 品尼曼检验(Leve ne’s test):品尼曼检验是一种非参数的检验方法,可以用于检验不同组别的方差是否存在显著差异。
二、异方差性的处理方法:1.变量转换:通过对因变量和自变量进行变换,可以使数据满足异方差性的假设。
比如可以对因变量进行对数转换或平方根转换,对自变量进行标准化处理等。
2.使用加权最小二乘法(WLS):加权最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差与自变量无关。
3.使用广义最小二乘法(GLS):广义最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差可以通过自变量的一个线性组合来估计。
4.进行异方差性的鲁棒估计:鲁棒估计是一种对异常值和异方差性具有较好鲁棒性的估计方法。
通过使用鲁棒估计,可以减少异方差性对参数估计的影响。
综上所述,异方差性是统计分析中需要重视的问题。
计量经济学--异方差、多重共线性

计量经济学实验报告实验1.异方差检验及修正一、 实验目的影响各地居民人均年消费支出的因素有多种,其中最主要的影响因素应当为收入,对于农村居民来说,收入包括从事农业经营的纯收入和其他来源的纯收入。
本题研究的是内地2006年各地区农村居民家庭人均纯收入与消费支出消费支出之间的关系是否存在异方差,如存在异方差并做出修正。
数据来源为《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》。
二、 实验步骤 1、建立模型01122Y X X u βββ=+++其中,Y 表示人均消费支出,X1表示从事农业经营的纯收入,X2表示其他来源的纯收入,单位为元。
2、从excel 中将数据导入EViews 中,得到图1。
图13、在EViews 命令框中直接键入“ls y c x1 x2”,按回车,即出现回归结果,如表2。
表2Dependent Variable: Y Method: Least Squares Date: 12/04/13 Time: 17:20 Sample: 1 31Included observations: 31Coefficient Std. Error t-Statistic Prob.C 728.1402 328.1558 2.218886 0.0348 X1 0.402097 0.164894 2.438514 0.0213 X20.7090300.041710 16.999110.0000R-squared0.922173 Mean dependent var 2981.623 Adjusted R-squared 0.916614 S.D. dependent var 1368.763 S.E. of regression 395.2538 Akaike info criterion 14.88870 Sum squared resid 4374316. Schwarz criterion 15.02747 Log likelihood -227.7748 Hannan-Quinn criter. 14.93394 F-statistic 165.8853 Durbin-Watson stat 1.428986Prob(F-statistic)0.000000由表可以得到:12728.14020.4020970.70903i Y X X =++(328.1558)(0.164894) (0.041710) t= (2.218886) (2.438514) (16.99911)220.922173,0.916614,165.8853R R F ===4、模型检验在显著性为0.05时,P 值都小于0.05,通过显著性检验,认为X1、X2显著。
异方差实验报告步骤(3篇)

第1篇一、实验目的1. 掌握异方差性的基本概念和检验方法。
2. 学会运用统计软件进行异方差的检验和修正。
3. 提高对计量经济学模型中异方差性处理能力的实践应用。
二、实验原理1. 异方差性:在回归分析中,若回归模型的误差项(残差)的方差随着自变量或因变量的取值而变化,则称模型存在异方差性。
2. 异方差性的检验方法:图形检验、统计检验(如F检验、Breusch-Pagan检验、White检验等)。
3. 异方差性的修正方法:加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
三、实验步骤1. 数据准备1. 收集实验所需数据,确保数据质量和完整性。
2. 对数据进行初步处理,如剔除异常值、缺失值等。
2. 模型设定1. 根据研究问题,选择合适的回归模型。
2. 利用统计软件(如Eviews、Stata等)进行初步的回归分析。
3. 异方差性检验1. 图形检验:绘制散点图,观察残差与自变量或因变量的关系,初步判断是否存在异方差性。
2. 统计检验:- F检验:检验回归系数的显著性。
- Breusch-Pagan检验:检验残差平方和与自变量或因变量的关系。
- White检验:检验残差平方和与自变量或因变量的多项式关系。
4. 异方差性修正1. 若检验结果表明存在异方差性,则需对模型进行修正。
2. 选择合适的修正方法:- 加权最小二乘法(WLS):根据残差平方与自变量或因变量的关系,计算权重,加权最小二乘法进行回归分析。
- 广义最小二乘法(GLS):根据残差平方与自变量或因变量的关系,选择合适的方差结构,广义最小二乘法进行回归分析。
5. 结果分析1. 对修正后的模型进行回归分析,观察回归系数的显著性、拟合优度等指标。
2. 对实验结果进行分析,解释实验现象,验证研究假设。
6. 实验报告撰写1. 撰写实验报告,包括以下内容:- 实验目的- 实验原理- 实验步骤- 实验结果- 分析与讨论- 结论2. 实验报告应结构清晰、逻辑严谨、语言简洁。
实验异方差模型的检验和处理学生实验报告

4.703427
Durbin-Watson stat
1.930056
Prob(F-statistic)
0.018458
模型【3】
Heteroskedasticity Test: White
F-statistic
14.65680
Prob. F(1,16)
0.0015
Obs*R-squared
Prob.
Y
-0.100666
0.093257
-1.079451
0.3297
C
9534.708
1265.147
7.536443
0.0007
R-squared
0.188998
Mean dependent var
8243.949
Adjusted R-squared
0.026798
S.D. dependent var
19.56939
Log likelihood
-76.19814
Hannan-Quinn criter.
19.41558
F-statistic
5.587862
Durbin-Watson stat
0.656404
Prob(F-statistic)
0.055988
(请对得到的图表进行处理,以上在一页内)
3.White检验法
实验报告
课程名称:计量经济学
实验项目:实验五异方差模型的
检验和处理
实验类型:综合性□设计性□验证性
专业班别:
姓名:
学号:
实验课室:
指导教师:石立
实验日期:
广东商学院华商学院教务处制
计量经济学实验5 异方差

具体步骤是:
1 .选择普通最小二乘法估计原模型,得到随机误差 项的近似估计量 û t; 2.建立 1/| û t | 的数据序列; 3.选择加权最小二乘法,以 1/| û t |序列作为权,进
行估计得到参数估计量。实际上是以 1/| û t |乘原模型的两
边,得到一个新模型,采用普通最小二乘法估计新模型。
以不必把它们全包括在内。无交叉项选项仅使用解释变
量平方进行检验回归。
例:人均家庭交通及通讯支出(CUM)和可支配收入(IN ) 的回归方程的 White 异方差检验的结果:
该结果F 统计量和 Obs*R2 统计量的P值均很小,表明 拒绝原假设,即残差存在异方差性。
利用加权最小二乘法消除异方差
1.方差已知的情形 假设有已知形式的异方差性,并且有序列w,其值与误差标 准差的倒数成比例。这时可以采用权数序列为w 的加权最小二乘 估计来修正异方差性。对加权自变量和因变量最小化残差平方和 得到估计结果 :
四、实验原理与操作
异方差性检验
1. 图示检验法 (1) 用X-Y的散点图进行判断 观察是否存在明显的散点扩大、缩小或复杂型趋势(即 不在一个固定的带型域中)
2的散点图进行判断 (2)X - û i 首先采用OLS方法估计模型,以求得随机误差项的估计量 (注意,该估计量是不严格的),我们称之为“近似估计量”,用 2 表示。于是有 û i
5.随机误差项服从0均值、同方差的正态分布。即
ui ~
N (0, )
2
i=1,2,…,N
当随机误差项满足假定1 ~ 4时,将回归模型”称为 “标准回归模型”,当随机误差项满足假定1 ~ 5时,将回 归模型称为“标准正态回归模型”。如果实际模型满足不 了这些假定,普通最小二乘法就不再适用,而要发展其他 方法来估计模型。
计量经济学--异方差的检验及修正

经济计量分析实验报告一、实验项目异方差的检验及修正二、实验日期2015.12.06三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,进行异方差的检验和补救。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在。
六、实验结果(一)、消除多重共线性之后的模型多元线性回归模型估计结果如下:4321000779.0053329.0151924.0720076.0-99.81113ˆX +X +X +X =Y i SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502) t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693R2=0.957571F=79.98987(1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
-354.7917
388.1454
-0.914069
0.3751
X^2
0.018810
0.011686
1.609597
0.1283
R-squared
0.505630
????Mean dependent var
1232693.
Adjusted R-squared
0.439714
????S.D. dependent var
Dependent Variable: RESID^2
Method: Least Squares
Date: 06/07/15 Time: 12:47
Sample: 1978 2005
Included observations: 28
Variable
Coefficient
Std. Error
t-Statistic
实验报告
课程名称:计量经济学
实验项目:实验五异方差模型的
检验和处理
实验类型:综合性□设计性□验证性
专业班别:12国
姓名:
学号:412
实验课室:厚德楼A404
指导教师:
实验日期:2015年5月28日
广东商学院华商学院教务处制
一、实验项目训练方案
小组合作:是□否
小组成员:无
实验目的:
掌握异方差模型的检验和处理方法
8296.43
11
1
229.17
9505.66
12
15762.77
12651.95
13
17680.1
14485.61
14
18287.24
14468.24
15
18907.73
14323.66
16
21015.03
18550.56
17
22881.8
21767.78
18
28665.25
21188.84
Dependent Variable: Y
实验场地及仪器、设备和材料
实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):
【实验原理】
异方差的检验:图形检验法、Goldfeld-Quanadt检验法、White检验法、Glejser检验法;
异方差的处理:模型变换法、加权最小二乘法(WLS)。
【实验步骤】
2511199.
S.E. of regression
187பைடு நூலகம்689.
????Akaike info criterion
31.88212
Sum squared resid
5.30E+13
592.8541
????Akaike info criterion
15.84273
Sum squared resid
1757380.
????Schwarz criterion
15.82728
Log likelihood
-53.44956
????Hannan-Quinn criter.
15.65172
Prob.??
C
1837.898
6243.701
0.294360
0.7712
GDPS
-3.395093
5.407361
-0.627865
0.5366
GDPS^2
-9.08E-05
0.000185
-0.489537
0.6293
GDPS*T
0.160300
0.315176
0.508604
0.6161
T
-491.5614
-267.3508
????Hannan-Quinn criter.
19.35441
F-statistic
4.940866
????Durbin-Watson stat
2.144291
Prob(F-statistic)
0.015552
模型【2】
Heteroskedasticity Test: White
F-statistic
1.993171
????Prob. F(5,22)
0.1195
Obs*R-squared
8.729438
????Prob. Chi-Square(5)
0.1204
Scaled explained SS
14.67857
????Prob. Chi-Square(5)
0.0118
Test Equation:
模型【2】
相关分析图
残差散点图
模型【3】
相关分析图
残差散点图
【思考】①相关分析图和残差散点图的不同点是什么?
②*在模型【2】中,自变量有两个,有无其他处理方法?尝试做出来。
(请对得到的图表进行处理,以上在一页内)
2.Goldfeld-Quanadt检验法
用Goldfeld-Quanadt检验法检验模型【3】是否存在异方差。
Eviews操作:先做模型,选view/Residual Tests/ Heteroskedasticity Tests/White/(勾选cross terms)。摘录主要结果附在本页内。
模型【1】
Heteroskedasticity Test: White
F-statistic
4.
40866
????Prob. F(2,25)
1982.891
-0.247901
0.8065
T^2
49.08543
152.9875
0.320846
0.7514
R-squared
0.311766
????Mean dependent var
3461.910
Adjusted R-squared
0.155349
????S.D. dependent var
????S.D. dependent var
4080.739
S.E. of regression
3590.225
????Akaike info criterion
19.31077
Sum squared resid
3.22E+08
????Schwarz criterion
19.45351
Log likelihood
Method: Least Squares
Date: 06/07/15 Time: 12:44
Sample: 1978 2005
Included observations: 28
Variable
Coefficient
Std. Error
t-Statistic
Prob.??
C
-879.8513
1125.376
Method: Least Squares
Date: 06/07/15 Time: 12:51
Sample: 1 18
Included observations: 18
Variable
Coefficient
Std. Error
t-Statistic
Prob.??
C
1865425.
2810916.
0.663636
本实验考虑三个模型:
【1】广东省财政支出CZ对财政收入CS的回归模型;(数据见附表1:附表1-广东省数据)
【2】广东省固定资产折旧ZJ对国内生产总值GDPS和时间T的二元回归模型;(数据见附表1:附表1-广东省数据)
【3】广东省各市城镇居民消费支出Y对人均收入X的回归模型。(数据见附表2:附表2-广东省2005年数据)
0.0051
Obs*R-squared
9.101341
????Prob. Chi-Square(2)
0.0106
Scaled explained SS
14.09286
????Prob. Chi-Square(2)
0.0009
Test Equation:
Dependent Variable: RESID^2
(一)异方差的检验
1.图形检验法
分别用相关分析图和残差散点图检验模型【1】、模型【2】和模型【3】是否存在异方差。
注:①相关分析图是作应变量对自变量的散点图(亦可作模型残差对自变量的散点图);
②残差散点图是作残差的平方对自变量的散点图。
③模型【2】中作图取自变量为GDPS来作图。
模型【1】
相关分析图
F-statistic
10.96274
????Durbin-Watson stat
1.761325
Prob(F-statistic)
0.021217
Dependent Variable: Y
Method: Least Squares
Date: 06/07/15 Time: 11:20
Sample: 12 18
将实验中重要的结果摘录下来,附在本页。
obs
X
Y
1
7021.94
2
7220.44
6317.03
3
7299.25
6463.37
4
6350.38
5
8842.84
6757.02
6
9214.6
7294.93
7
9867.36
7669.84
8
10097.2
7476.65
9
10908.36
8113.64
10
11944.08
注:Goldfeld-Quanadt检验法的步骤为:①排序:②删除观察值中间的约1/4的,并将剩下的数据分为两个部分。③构造F统计量:分别对上述两个部分的观察值求回归模型,由此得到的两个部分的残差平方为 和 。 为较大的残差平方和, 为较小的残差平方和。④算统计量 。⑤判断:给定显着性水平 ,查F分布表得临界值 。如果 ,则认为模型中的随机误差存在异方差。(详见课本135页)