广义异方差模型例题
异方差性习题及答案

异方差性一、单项选择1.Goldfeld-Quandt 方法用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.Glejser 检验方法主要用于检验( )A.异方差性B.自相关性C.随机解释变量D.多重共线性 5.下列哪种方法不是检验异方差的方法 ( )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 6.当存在异方差现象时,估计模型参数的适当方法是 ( ) A.加权最小二乘法 B.工具变量法C.广义差分法D.使用非样本先验信息7.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即 ( )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用8.如果戈里瑟检验表明,普通最小二乘估计结果的残差i e 与i x 有显著的形式ii i v x e +=28715.0的相关关系(i v满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为 ( )A. i xB. 21i x C. i x 1D. i x 19.如果戈德菲尔特——匡特检验显著,则认为什么问题是严重的 ( )A.异方差问题B.序列相关问题C.多重共线性问题D.设定误差问题10.设回归模型为i i i u bx y +=,其中i i x u Var 2)(σ=,则b 的最有效估计量为( )A.∑∑=2ˆx xy bB. 22)(ˆ∑∑∑∑∑--=x x n y x xy n bC.x y b=ˆ D. ∑=xy n b 1ˆ二、多项选择1.下列计量经济分析中那些很可能存在异方差问题( ) A.用横截面数据建立家庭消费支出对家庭收入水平的回归模型 B.用横截面数据建立产出对劳动和资本的回归模型C.以凯恩斯的有效需求理论为基础构造宏观计量经济模型D.以国民经济核算帐户为基础构造宏观计量经济模型E.以30年的时序数据建立某种商品的市场供需模型 2.在异方差条件下普通最小二乘法具有如下性质()A 、线性B 、无偏性C 、最小方差性D 、精确性E 、有效性 3.异方差性将导致A 、普通最小二乘法估计量有偏和非一致B 、普通最小二乘法估计量非有效C 、普通最小二乘法估计量的方差的估计量有偏D 、建立在普通最小二乘法估计基础上的假设检验失效E 、建立在普通最小二乘法估计基础上的预测区间变宽 4.下列哪些方法可用于异方差性的检验()A 、DW 检验B 、方差膨胀因子检验法C 、判定系数增量贡献法D 、样本分段比较法E 、残差回归检验法5.当模型存在异方差现象进,加权最小二乘估计量具备( )A 、线性B 、无偏性C 、有效性D 、一致性E 、精确性 6.下列说法正确的有()A 、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B 、当异方差出现时,常用的t 和F 检验失效C 、异方差情况下,通常的OLS 估计一定高估了估计量的标准差D 、如果OLS 回归的残差表现出系统性,则说明数据中不存在异方差性E 、如果回归模型中遗漏一个重要变量,则OLS 残差必定表现出明显的趋势 三、名词解释1.异方差性2.格德菲尔特-匡特检验3.怀特检验4.戈里瑟检验和帕克检验 四、简答题1.什么是异方差性?试举例说明经济现象中的异方差性。
异方差性、自相关以及广义最小二乘(GLS)

(6)
其中C的各列是Ω的特征向量经过正交化而得到,即CC’=I,而且Ω的特征根被放在对角矩阵 中。令 是对角元素为 的对角矩阵,并令 ,于是 。另外,令 ,因此
用P’前乘(1)中的模型可得
或
(7)
的方差是
因此,这个变换后的模型就是一个我们熟悉的古典回归模型。由于Ω已知,所以,
三)可行的最小二乘估计(FGLS)
上一节的结果是基于Ω必须是已知的条件基础上的。如果Ω含有必须估计的未知参数,则GLS是不可行的。但在无约束的情况下, 中有n(n+1)/2个附加参数。这对于用n个观测值来估计这么多的参数是不现实的。只有当模型中需要估计的参数较少时,即模型中Ω某种结构要简化,才可以找到求解的方法。
异方差性、自相关以及广义最小二乘(GLS、FGLS)
蒋岳祥
(浙江大学经济学院)
一、古典模型中的b的非线性函数的分布及其检验
二、异方差性和自相关(非球形扰动)
1、问题的提出
2、广义最小二乘(GLS)
3、可行广义最小二乘(FGLS)
三、异方差不含自相关的检验(怀特检验)
一、古典模型中的b的非线性函数的分布及其检验
对于假设检验,我们可以把所有结果应用到变换后的模型(7)中。为了检验J个线性约束Rβ=q,相应的统计量是
,
其中残差向量是
而
有约束的GLS残差 ,基于
(11)
总之,对于古典模型的所有结果,包括通常的推断过程,都适用于(7)中的模型。
应该注意的是:在广义回归模型中没有R2的准确对等物。不同的统计量有不同的意义,但使用它们时一定要谨慎。
可行的最小二乘估计(FGLS)
具有代表性的问题涉及到一小组参数 ,满足 。例如, 只有一个未知数 ,其常见的表达形式是
异方差练习题参考解答

异方差练习题参考解答练习题1.设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
2.由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84 115 140 205 115 180 98 130 178 265 130 185 95 140 191 270 135 190 90 125 137 230 120 200 75 90 189 250 140 205 74 105 55 80 140 210 110 160 70 85 152 220 113 150 75 90 140 225 125 165 65 100 137 230 108 145 74 105 145 240 115 180 80 110 175 245 140 225 84 115 189 250 120 200 79 120 180 260 14524090125178265130185981301912703.表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。
第三章 异方差与自相关广义线性模型

第三章 异方差与自相关广义线性模型本章继续讨论线性模型Y =X β+ε, E (ε)=0 ()所不同在于以前的关于误差方差的假定是Var(ε)=σ2I n ()这一章逐次推广讨论。
第一节讨论异方差的存在与检验,尤其是在经济模型资料中的存在与影响,第二节讨论的是n i diag Var i n ,,1,),,,()(2221 ==σσσε已知()2221222222212121,),,,,,,,,,()(σσσσσσσσε diag Var =未知 ())ex p(),,,()(2221ασσσεi i n Z diag Var '== ,α未知()这些都是误差方差为对角阵的模型。
第三节讨论自相关线性模型。
首先讨论的是残差一阶自回归线性模型,它的残差满足i i i υρεε+=-1() )(,0)(,)(,0)(22j i E E E j i i i ≠===υυσυυ()此时残差εi 的方差虽不为对角阵,但只含一个参数。
接着我们介绍自回归条件异方差(ARCH)模型,它的误差假设是i p i p i i υεαεααε++++=--221102() )(,0)(,)(,0)(22j i E E E j i i i ≠===υυσυυ()因为模型计算中用到了广义矩估计方法(GMM),我们在第四节又介绍了GMM 。
第五节讨论的是22,0)(σσε>=M Var 未知,M 已知()第六节讨论的是22,0)(σσε≥=M Var 未知,M 已知()所讨论的内容还是各种回归模型、算法及性质。
第一节 异方差的存在与检验一、异方差的存在与影响前面介绍的线性回归模型,都是假定随机误差项εi 独立同分布,有相同的方差 (Homoscedasticity)2)( ,0)(σεε==i i Var E()但是实际抽样很难保证这一点。
经济对象千差万别,可以按不同标准划分成不同的群体。
这些群体间的差别导致样本方差不一致,于是就有所谓异方差(Heteroscedasticity):2)( ,0)(i i i Var E σεε==()反映在散点图上,如下图可以明显看出样本方差与点 (X i , Y i )有关,随着样本数值增大而增大。
异方差性习题与答案

第五章 异方差性习题与答案1、产生异方差的后果是什么?2、下列哪种情况是异方差性造成的结果? (1)OLS 估计量是有偏的(2)通常的t 检验不再服从t 分布。
(3)OLS 估计量不再具有最佳线性无偏性。
3、已知模型:i i i i u X X Y +++=22110βββ式中,i Y 为某公司在第i 个地区的销售额;i X 1为该地区的总收入;i X 2为该公司在该地区投入的广告费用(i=0,1,2……,50)。
(1)由于不同地区人口规模i P 可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项u i 是异方差的。
假设i σ依赖于总体i P 的容量,逐步描述你如何对此进行检验。
需说明:A 、零假设和备择假设;B 、要进行的回归;C 、要计算的检验统计值及它的分布(包括自由度);D 、接受或拒绝零假设的标准。
(2)假设i i P σσ=。
逐步描述如何求得BLUE 并给出理论依据。
4、下表数据给出按学位和年龄划分的经济学家的中位数工薪: 表1 经济学家的工资表年 龄 中位数工薪(以千美元计算) 硕士 博士 25-29 8.0 8.8 30-34 9.2 9.6 35-39 11.0 11.0 40-44 12.8 12.5 45-49 14.2 13.6 50-54 14.7 14.3 55-59 14.5 15.0 60-64 13.5 15.0 65-6912.015.0(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么? (2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查”中的截面数据,研究男女工资有没有差别。
这项多元回归分析研究所用到的变量有: W —雇员的工资率(美元/小时) 1表示雇员为女性, 0表示女性意外的雇员。
6 广义最小二乘法(GLS)与异方差

e =α0 +α1 f (X j ) +ε
c. 用WLS法消除。 法消除。 法消除
3、怀特(White)检验 、怀特( ) a. 建立模型 例如: 例如 2 b. 检验统计量 检验统计量:
2 e =α0 +α1X1 +α2 X2 +α3X12 +α4 X2 +α5 X1X2
m= nR
2
n为样本容量,R2为可决系数,m 即LM统计量 朗格 为样本容量, 为可决系数, 统计量(朗格 为样本容量 统计量 拉日乘子统计量),近似服从自由度为 k (解释变量 拉日乘子统计量),近似服从自由度为 解释变量 ), 2 的个数) 分布。 的个数 的 χ 分布 c. 判断 判断:在Eviews的模型估计结果输出窗口中, 选 View/ Residual Test/ White Heteroskedasticity
X2
2526.9 875.6 839.8 1088.0 1067.7 647.8 644.3 814.4 876.0 887.0 753.5 963.4 410.3 2526.9 875.6
4446.4 湖 2633.1 湖 1674.8 广 1346.2 广 480.5 海 1303.6 重 547.6 四 596.2 贵 5218.4 云 2607.2 西 3596.6 陕 1006.9 甘 2327.7 青 1203.8 宁 1511.6 新 1014.1
异方差检验
(1)图示法 )
进一步的统计检验 (2)G-Q检验 检验 将原始数据按X 排成升序,去掉中间的7 将原始数据按 2排成升序,去掉中间的 个数据,得两个容量为12的子样本 的子样本。 个数据,得两个容量为 的子样本。 对两个子样本分别作OLS回归,求各自的 对两个子样本分别作 回归, 回归 2 2 e1 和 残差平方和 e2 :
异方差完整案例分析
10.5 一个更完整例子让我们来看一个更完整基于横殿面异方差例子。
20世纪70年代中期,美国能源部门试图基于各地过去汽油消耗量与人口变动情况以及其他一些因素给各地区、各州甚至各零售点直接分配汽油。
实现这种分配必须将大量因素作为各州〔各地区〕燃油消耗量(应变量)函数而建立模型。
而对于这样横截面模型,即使是估计模型,也很可能会具有异方差问题。
在模型中,应变量为各州燃油消耗量,可能解释变量包括:与各州规模大小相关变量〔例如公路里程数、注册机动车数量与人口〕,以及与各州规模大小无关变量〔例如燃油税率与最高限速〕。
因为在模型中反映各州规模大小变量不应多于一个〔如果包含过多变量容易导致多重共线性〕,因为有许多州最高限速一样〔但在时间序列模型中,它将是一个有用变量〕。
因此,一个合理模型为:012(,)i i i i iPCON f REG TAX REG TAX εβββε+-=+=+++〔10-20〕式中 i PCON ——第i 个州燃油消耗量〔百万BTU 〕, i REG ——第i 个州注册机动车数量〔千辆〕, i TAX ——第i 个州燃油税率〔美分/加仑〕, i ε——经典误差项。
我们可以认为一个州注册汽车数量越多,该州所消耗燃油也越多;而一个州燃油税率越高那么该州燃油消耗量越小1。
我们搜集那一时1在方程中我们也可用*TAX REG 或者*TAX POP 〔iPOP 代表第i 个州的人口〕期数据〔见表10-1〕用于估计方程〔10-20〕,得到: i i i TAX REG PCON 59.531861.07.551-+=∧〔10-21〕〔0.0117〕 〔16.86〕15.88t = 3.18-20.861R = 50N =表10-1 燃油消费例子中数据PCON UHM TAX REG POP e state 270 9 743 1136 Maine 122 14 774 948 New Hampshire 58 11351 520 Vermont 8213750 5750 Massachusetts98 13 586 953 Rhode lsland 450 11 2258 3126 Connecticut1819 8 8235 17567 New York 1229 8 4917 7427 New lersey 1200116725 11879Pennsylvania1205763610772Ohio取代TAX 作为方程的解释变量。
ccc-garch广义自回归条件异方差模型
ccc-garch广义自回归条件异方差模型GARCH(广义自回归条件异方差)模型是一种用于时间序列分析中处理异方差性的模型。
它是ARCH(自回归条件异方差)模型的扩展,通过引入额外的参数,能够更准确地捕捉时间序列数据中的波动性、异方差性和相关性的变化。
GARCH模型的基本形式可以表示为:\[\sigma_t^2 = \omega + \sum_{i=1}^{p}\alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{q}\beta_j \sigma_{t-j}^2\]其中,\(\varepsilon_t\) 是时间序列数据在时间点 \(t\) 的残差,\(\sigma_t^2\) 是时间点 \(t\) 的方差,\(\omega\)、\(\alpha_i\) 和\(\beta_j\) 是模型的参数,\(p\) 和 \(q\) 分别代表了模型的自回归部分和移动平均部分的阶数。
GARCH模型的核心思想是使用历史残差的平方项作为预测当前期方差的主要指标,同时考虑了之前期方差的影响。
因此,GARCH模型能够根据历史数据的波动性和相关性,进行对未来方差的预测,从而实现风险管理和投资决策。
在应用GARCH模型时,一般需要经历以下步骤:1. 数据预处理:对原始数据进行平稳性检验,如ADF检验、单位根检验等。
如果数据不满足平稳性条件,需要进行差分处理,将其转化为平稳序列。
2. 模型拟合:选取适当的GARCH模型阶数 \(p\) 和 \(q\),通过拟合数据估计GARCH模型的参数。
可以使用最大似然估计法(Maximum Likelihood Estimation)或其他拟合方法。
3. 模型诊断:对拟合后的模型进行统计检验,检查模型残差的自相关性是否存在显著性、残差是否符合正态分布等。
可以应用Ljung-Box检验、正态性检验等。
4. 模型选择:根据诊断结果和实际应用需求,选择最优GARCH模型。
计量经济学第五章异方差性参考答案讲解
计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。
若干广义自回归条件异方差模型的统计推断
若干广义自回归条件异方差模型的统计推断汇报人:日期:•引言•广义自回归条件异方差模型理论基础•若干广义自回归条件异方差模型的构目录建•若干广义自回归条件异方差模型的统计推断方法•若干广义自回归条件异方差模型的实目录证分析•研究结论与展望引言01研究背景与意义广义自回归条件异方差模型(GARCH模型)是一种重要的时间序列模型,广泛应用于金融、经济等领域。
GARCH模型能够捕捉时间序列数据的波动性和相关性,对于金融市场的风险管理和预测具有重要意义。
在实际应用中,GARCH模型的表现和性质取决于一系列参数的设定和估计,因此,研究GARCH模型的统计推断具有重要意义。
研究现状与问题01目前,关于GARCH模型的研究主要集中在模型的估计、选优和扩展应用等方面。
02对于GARCH模型的统计推断,尤其是对于模型的诊断和检验,研究相对较少,且存在一些挑战。
03如何对GARCH模型进行有效的诊断和检验,以确保模型选择的正确性和适用性,是当前亟待解决的问题。
01首先,我们将介绍GARCH模型的基本原理和性质,包括模型的种类、特点和应用。
其次,我们将针对GARCH模型的诊断和检验进行深入研究,提出一系列有效的诊断方法和检验统计量。
最后,我们将应用这些方法和统计量对实际数据进行建模和分析,并对模型的适用性和有效性进行评估和比较。
本研究旨在探讨若干广义自回归条件异方差模型的统计推断方法,包括模型的诊断、检验和参数估计等。
020304研究内容与方法广义自回归条件异方差模型理论基础0201 02 03GARCH模型的定义GARCH(广义自回归条件异方差模型)模型是一种时间序列模型,旨在描述时间序列数据的波动性。
它基于自回归条件异方差模型(ARCH模型)发展而来,能够更好地捕捉时间序列数据的波动性聚集现象。
GARCH模型的原理GARCH模型通过引入滞后期的误差项和滞后期的条件方差作为解释变量,来建模时间序列数据的波动性。
它假设误差项服从正态分布,且扰动项的方差与滞后期的误差项相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义异方差模型例题:例:1969年1月至1994年9月澳大利亚储备银行2年期有价证券月度利率数据如表所示(行数据)4.99 55.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.75.68 5.65 5.86.5 6.45 6.48 6.45 6.35 6.4 6.43 6.436.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.75.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.64.67 4.69 4.68 4.62 4.63 4.95.44 5.566.04 6.06 6.068.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 1111 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.498.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.478.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.919.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8 513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.15 11.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12 .814.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.2 513 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.9 12.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.1 514.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.258.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.16.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.155.4 5.35 5.1 5.86.35 6.5 6.95 8.057.85 7.758.6(1)考察该序列的方差齐性。
(2)选择适当的模型拟合该序列的发展解答:(1)1、时序图:时序图显示序列存在曲线趋势,我们对原序列进行差分得到残差序列的图。
差分后的残差图整均值平稳,但伴随大小不等的随机波动。
我们对残差序列进行自回归,再考察自回归残差序列的方差齐性。
2、用AUTOREG过程建立序列{Xt}关于一阶滞后项lagx的回归模型,并检验残差序列的自相关性和异方差性。
检验显示Dh统计量为1.8550,Dh统计量的P值为0.0318小于0.05,结果显示残差序列具有显著的自相关性。
显示回归模型常数截距项不显著(0.0736>0.05)。
显示残差序列具有显著的异方差性。
3、arch的定阶proc autoreg data=hh;model x=lagx /lagdep=lagx archtest;model x=lagx/nlag=4backstep garch=(p=1,q=1);output out=res cev=v;run;参数检验显示除AR5参数不显著外,其它参数显著。
综合考虑残差序列自相关性和异方差性检验结果,尝试拟合无回归常数项的广义异方差模型,nlag=4,garch=(p=1,q=1)。
4、异方差模型:拟合效果很理想。
⎪⎪⎩⎪⎪⎨⎧-+==+=+=---15123173.62700.01272.09997.0t t t t t t t t t t t h E h e h u u x x εεε(其中e^t~n(0,0.26999))附程序:data hh;input x@@; difx=dif(x); lagx=lag(x);year=intnx("month","01jan1969"d ,_n_-1);format year monyy7.;cards ; 4.99 5 5.03 5.03 5.25 5.26 5.3 5.45 5.49 5.52 5.7 5.68 5.65 5.8 6.5 6.45 6.48 6.45 6.35 6.4 6.43 6.43 6.44 6.45 6.48 6.4 6.35 6.4 6.3 6.32 6.35 6.13 5.7 5.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 4.65 4.6 4.67 4.69 4.68 4.62 4.63 4.9 5.44 5.56 6.04 6.06 6.06 8.07 8.07 8.1 8.05 8.06 8.07 8.06 8.11 8.6 10.8 11 11 11 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.49 8.54 8.54 8.5 8.44 8.49 8.4 8.46 8.5 8.5 8.47 8.47 8.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.91 9.9 9.88 9.86 9.86 9.74 9.42 9.27 9.26 8.99 8.83 8.838.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.779 9.61 9.7 9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.8310.75 11.2 11.4 11.54 11.5 11.34 11.5 11.5 11.58 12.42 12.8513.1 13.12 13.1 13.15 13.1 13.2 14.2 14.75 14.6 14.6 14.4514.5 14.8 15.85 16.2 16.5 16.4 16.4 16.35 16.1 13.7 13.514 12.3 12 14.35 14.6 12.5 12.75 13.7 13.45 13.55 12.612 11 11.6 12.05 12.35 12.7 12.45 12.55 12.2 12.1 11.1511.85 12.1 12.5 12.9 12.5 13.2 13.65 13.65 13.5 13.45 13.35 14.45 14.3 15.05 15.55 15.65 14.65 14.15 13.3 12.65 12.7 12.8 14.5 15.1 15.15 14.3 14.25 14.05 14.7 15.05 14.05 13.8 13.25 13 12.85 12.6 11.8 13 12.35 11.45 11.35 11.55 10.85 10.912.3 11.7 12.05 12.3 12.9 13.05 13.3 13.85 14.65 15.05 15.15 14.85 15.7 15.4 15.1 14.8 15.8 15.8 15 14.4 13.8 14.314.15 14.45 14.1 14.05 13.75 13.3 13 12.55 12.25 11.85 11.5 11.1 11.15 10.7 10.25 10.55 10.25 10.3 9.6 8.4 8.2 7.258.35 8.25 8.3 7.4 7.15 6.35 5.65 7.4 7.2 7.05 7.16.85 6.5 6.25 5.95 5.65 5.85 5.45 5.3 5.2 5.55 5.155.4 5.35 5.1 5.86.35 6.5 6.95 8.057.85 7.758.6;run;proc gplot data=hh;plot (x difx)*year;symbol i=line;run;proc autoreg data=hh;model x=lagx /lagdep=lagx archtest;model x=lagx /nlag=4backstep garch=(p=1,q=1) noint;output out=out p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl cev=cev; run;data out;set out;uclr=1.96*sqrt(0.26747);lclr=-1.96*sqrt(0.26747);cuclr=1.96*sqrt(cev);clclr=-1.96*sqrt(cev);cuclp=p+1.96*sqrt(cev);clclp=p-1.96*sqrt(cev);run;proc gplot data=out;plot x*year=1 p*year=2 cuclp*year=3 clclp*year=3 lcl*year=4 ucl*year=4/overlay;symbol1c=black i=none v=star;symbol2c=red i=line v=none;symbol3c=blue i=lnie;symbol4c=green i=join v=star;run;proc gplot data=out;plot r*year=1 uclr*year=2 lclr*year=2 clclr*year=3 cuclr*year=3 /overlay; symbol1c=black i=none v=star;symbol2c=red i=line v=none;symbol3c=blue i=lnie;run;proc arima data=out;identify var=r nlag=24;run;。