高速磨削工艺特点及其发展现状
高速超高速磨削技术发展与关键技术

* 国家自然科学基金资助项目(编号:50475052) 教育部科学技术研究重点项目(编号:104190)高校博士学科点专项科研基金资助项目(编号:20040145001)高速超高速磨削技术发展与关键技术*青岛理工大学 机械工程学院 ( 266033) 李长河东北大学 机械工程与自动化学院 (110004) 修世超 蔡光起摘 要 论述了高速超高速磨削加工技术的发展、特点以及关键技术。
关键词 高速超高速 磨粒加工 关键技术1 高速/超高速磨削技术发展超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。
德国著名磨削专家T.Tawakoli 博士将超高速磨削誉为“现代磨削技术的最高峰”。
日本先端技术研究学会把超高速加工列为五大现代制造技术之一。
在1996年国际生产工程学会(CIRP )年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术。
高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining )的概念是由德国切削物理学家Carl.J.Salomon 博士于1931年首先提出,他发表了著名的Salomon 曲线,创造性地预言了超越Talor 切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。
他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。
通常将砂轮线速度大于45 m/s 的磨削称为高速磨削,而将砂轮线速度大于150 m/s 的磨削称为超高速磨削。
超高速磨削在欧洲、日本和美国等发达国家发展较快。
欧洲高速超高速磨削技术的发展起步比较早, 最初在20世纪60年代末期就开始进行高速超高速 磨削的基础研究,当时实验室的磨削速度就已经达到210~230 m/s 。
磨削技术论文:超高速磨削及其优势探析

磨削技术论文:超高速磨削及其优势探析一、概述超高速磨削作为一种高精度精密加工技术,已在各个领域得到广泛应用。
本文将从超高速磨削的基本原理入手,分析其优势,探讨其在建筑领域的应用前景。
二、基本原理超高速磨削是利用高速旋转的砂轮磨削工件表面,以达到高精度加工的一种技术。
它与传统的磨削技术不同之处在于,超高速磨削使用的砂轮转速通常在1万~10万转/分之间,较传统的磨削转速快得多。
这种高速磨削技术可以大幅提高加工效率,同时还能够获得更高的精度和光洁度。
三、优势分析1. 精度高超高速磨削的砂轮转速快,磨削力大,可以快速去除工件表面杂质,得到更加精细的加工表面,精度可达到0.005mm以下。
2. 效率高由于砂轮转速快,磨削力大,超高速磨削速度比传统磨削技术快得多。
工件加工时间可以降低30%以上,大幅提高生产效率。
3. 造价低超高速磨削使用的砂轮寿命长,能够在保证加工效率的情况下,延长更换周期,降低磨具成本。
4. 应用范围广超高速磨削是一种高效、环保、精细化的磨削技术,可适用于各种材料的加工,包括金属、非金属材料、陶瓷材料等。
5. 环保超高速磨削使用的是无毒、无害、无污染的磨料,减少了对环境的污染。
四、应用前景在建筑领域,超高速磨削技术可以用于加工各类构件。
它能够大幅节约加工时间,提高生产效率。
同时,它还能精细加工各类构件表面,达到工艺标准,节约原材料,降低生产成本。
在未来,超高速磨削技术有望得到更加广泛的应用。
五、案例分析1. XXX公司的构件加工中,采用超高速磨削技术,成功优化了加工效率,降低了产品成本,得到了客户的一致好评。
2. XX公司将超高速磨削技术应用于钢筋加工中,减少了加工时间,提高了钢筋的精度和尺寸的一致性,受到了建筑公司的赞扬。
3. XX公司采用超高速磨削技术加工门窗构件,成功提高了构件的表面精度和光洁度,降低了产品的废品率,提高了客户的满意度。
4. XX公司采用超高速磨削技术加工凸轮、传动齿轮等构件,减少了加工时间,提高了精度和表面光洁度,获得了广泛应用。
超过速磨削的技术及发展

超高速磨削砂轮的发展及关键技术超高速磨削通常指砂轮速度大于150m/s的磨削。
超高速磨削在欧洲、日本和美国等发达国家发展很快,被誉为“现代磨削技术的最高峰”。
国际生产工程学会(CIRP)将其确定为面向21世纪的中心研究方向,并进行了一些著名的合作研究。
超高速磨削可以对硬脆材料实现延性域磨削加工,对高塑性等难磨材料也有良好的磨削表现。
与普通磨削相比,超高速磨削显示出极大的优越性: 大幅度提高磨削效率,减少设备使用台数。
如采用电镀CBN砂轮以123m/s的高速磨削割草机曲轴,原来需要6个车削和3个磨削工序,现在只需要3个磨削工序,生产时间减少65%,每小时可以加工180件。
再如人们以125m/s的速度应用普通砂轮高效磨削淬硬低碳钢42CrMo4,切除率达167mm3/mms,比缓进给磨削大11倍。
磨削力小,零件加工精度高。
速度360m/s以下的试验表明,在一个较窄的速度范围(180-200 m/s)内,摩擦状态由固态向液态急剧变化,并伴随着磨削力的急剧下降。
笔者在单颗磨粒高速磨削45钢和20Cr钢试验中发现,摩擦系数在临界速度以下,随速度的增大而大幅度减少;超过临界速度后,摩擦系数却随速度的增大而略有增加。
降低加工工件表面粗糙度。
在其它条件相同时33m/s,100m/s和200m/s的速度磨削时,表面粗糙度值分别为Ra2.0,Ra1.4和Ra1.1μm。
砂轮寿命延长。
在金属切除率相同的条件下,砂轮速度由80m/s提高到200m/s,砂轮寿命提高8.5倍。
在200m/s的速度磨削时,以2.5倍于80m/s时的磨除率,寿命仍然提高1倍。
1 超高速磨削的发展欧洲,高速磨削技术的发展起步早。
最初高速磨削基础研究是在60年代末期,实验室磨削速度已达210-230m/s。
70年代末期,高速磨削采用CBN砂轮。
意大利的法米尔(Famir)公司在1973年9月西德汉诺威国际机床展览会上,展出了砂轮圆周速度120m/s的RFT-C120/50R型磨轴承内套圈外沟的高速适用化磨床。
高速强力磨削在机械加工中的发展与应用

高速强力磨削在机械加工中的发展与应用
高速强力磨削(High-speed strong grinding)是指通过使用更高转速及更高切削速
率的研磨工具,以达到更高的加工效率和更好的加工质量。
其发展历程起源于20世纪60
年代,随着磨削技术、设备和工具的不断进步,也不断地推动着高速强力磨削的应用领域
不断扩大,如航空、汽车、模具、压力容器、光电子等行业。
高速强力磨削的优点主要表现在以下几个方面:
1.高效率:由于使用高转速、高切削速率的工具,磨削过程可以更加迅速、高效地完成。
2.高精度:磨削工具具备更好的刚度和振动抑制能力,可以在更高的速度下保证磨削
质量。
3.高表面质量:由于磨削工具的高速磨削作用,能够对工件表面进行更充分的去毛刺、去匀层、去表面膜等处理,从而使工件表面质量得到提高。
4.高加工质量稳定性:由于磨削工具具备较高的韧性和手感,可以更好的控制加工过程,从而提高加工质量的稳定性和一致性。
应用方面,高速强力磨削在航空、汽车、模具、压力容器等行业中得到了广泛应用。
在航空领域,高速强力磨削被用于高精度航空零部件的制造,如液压阀等。
在汽车行业中,高速强力磨削在发动机气门、气缸套等高精度部件的磨削加工中得到
了广泛应用。
模具领域中,高速强力磨削被广泛应用于大型压铸模和挤铸模等模具的制造。
总之,高速强力磨削在机械加工中的应用领域不断扩大,将会为我们的生产带来更高
效率、更好质量的加工服务。
高速磨削

高速磨削高速磨削是国内外正在大力研究并逐步推广的一种先进的机械加工方法 , 它是近代磨削加工技术发展的一种新工艺 , 与普通磨削相比 , 其优点是能够大大提高被加工工件的精度 , 降低零件表面粗糙度。
随着科学技术的不断进步和发展 , 对零件的加工精度和生产率提出了更高的要求 , 高速磨削技术更加显示出它的重要性。
1 国外高速磨削技术的现状与发展趋势早在上世纪 50年代 , 国外就已经开始研究高速磨削 , 到 60年代 , 许多国家在高速磨削方面的研究更加得到普遍重视 , 并取得了许多成功经验 , 如日本京都大学工学部冈村健二郎教授首先提出了高效磨削理论 , 当时在日本也是盛行一时。
德国阿亨大学Optiz教授系统地发表了 60m /s高速磨削的实验结果。
在 70年代 , 高速磨削在许多工业国家迅速发展 , 60m /s以上高速磨床品种超过 50种 , 少数磨床磨削速度达到 125m /s, 到了 80年代 , 许多国家继续在提高磨削速度上进行努力 , 但是高速磨削并未按原先预料的情况发展 , 它受到许多条件的制约 , 如受到机床结构、动态特性、砂轮速度及磨料耐磨性等的限制 , 实际上在这个时期磨削速度的提高也受到了一定的限制。
近年来 , 高速磨削加工技术又有了很大发展 , 主要表现在以下几个方面 :(1)高速磨削机理方面。
在越过能产生磨削热损伤的国限带之后 , 磨削用量进一步加大不仅不会使热损伤加剧 , 反而会使其不再发生。
这一发现 , 开拓出一个广阔的高速磨削参数领域 , 为实现超高速的磨削提供了理论基础 , 加上人造金刚石和立方氮化硼在砂轮制造中的大量应用 , 高速磨削得以再度兴起 , 并实现了线速度高于普通磨削 5 - 6倍甚至更高的超高速磨削。
(2)高速磨削的有利环节。
继喷雾润滑轴承和空气润滑轴承之后 , 利用磁力承受负荷的磁悬浮轴承已进入实用阶段 , 它的转速可以在主轴强度所能承受的限度内任意提高。
高速强力磨削在机械加工中的发展与应用

高速强力磨削在机械加工中的发展与应用
高速强力磨削是一种在机械加工中相对较新的技术,它的应用领域包括航空航天、汽车、电子、半导体等领域。
高速强力磨削的发展源于对精度、表面质量和加工效率的要求。
高速强力磨削的基本原理是利用高速旋转的砂轮在磨削过程中带动工件旋转,以达到高效、精度高的加工效果。
相较于传统的磨削加工方法,高速强力磨削具有加工效率高、加工表面精度高和磨损小等优势,因此在汽车工业、模具制造和医疗器械制造等领域得到广泛应用。
在航空航天领域,高速强力磨削被广泛应用于钛合金、铝合金等难加工材料的表面加工和腔孔加工,以及零件修整和修复等工艺。
与传统的磨削加工相比,高速强力磨削在加工效率和表面质量上都有明显提高的优势。
在汽车工业上,高速强力磨削技术在轴承、传动零件、气门座等核心零件的加工中应用较广,而且随着汽车行业的快速发展,对零件加工的要求不断提高,高速强力磨削技术将会有更加广泛的应用。
在电子及半导体领域,高速强力磨削主要应用于硬盘盘片和半导体等超精密零件的制造,因其能够实现极高的加工精度和表面质量,而且磨削切进量小、残留应变小,从而提高了零件的使用寿命。
综上所述,在机械加工中,高速强力磨削技术是一种具有广泛应用前景的技术,尤其是难加工材料的加工领域和超精密零件的制造领域。
随着技术的不断发展,高速强力磨削技术在未来有望成为机械加工领域的主流加工方式之一。
高速强力磨削在机械加工中的发展与应用

高速强力磨削在机械加工中的发展与应用高效率是国内外机械加工的主要发展方向之一。
提高效率的重要方法,是提高切削,磨削速度及增大进给量。
目前高速磨削已广泛应用于生产,普遍认为50-80m/s的高速磨削是经济可行的。
最高磨削速度已达到120m/s,试验室的速度已达到210-250m/s。
现在有的工件的实际磨削速度可以提高到300m/s。
目前正朝着高速度磨削、强力磨削,高速强力磨削力一向发展。
1高速磨削高速磨削是指砂轮线速度在45米/秒以上的磨削力一法。
高速磨削是提高磨削效率的重要途经之一。
1.1高速磨削的特点(1)它与普通磨削相比,可以提高生效率1-3倍;(2)由于磨削速度的提高,工件表面在磨粒犁耕后所形成的隆起高度减小,因而使磨削的表面粗糙度减小;(3)砂轮的寿命提高1倍左右;(4)磨髁ο陆?0%左右,加工的精度相应也提高。
1.2高速磨削必须采取的措施(1)使用高速砂轮;(2)使用高速磨床;(3)采用自动上料、自动检测装置以减小辅助时间。
1.3高速磨削的发展与应用近年来,国内外高速磨床品种已有外圆磨床、曲轴磨床、凸轮磨床,轴承磨床、平面磨床,内圆磨床等。
工业发达的国家在推广采用45-60m/s的高速磨削,80-150m/s的高速磨削已在一些国家开始应用。
我国已生产磨削速度为50-80m/s的外圆磨床、凹轮磨床和轴承磨床等。
目前国外高速磨削采用较多的是轴承行业磨削轴承环内外沟,在发动机行业高速磨削也得到广泛应用,如,美国AIM公司磨削V8发动机曲轴连杆颈用高速磨削,英国的Newall公司高速磨削锻钢4拐汽车曲轴。
不少国家磨削曲轴还采用多砂轮高速磨削(用三、四个,甚至七、八个砂轮同时磨),大大提高了磨削效率。
高速磨削对于多数牌号的钢材是适用的,但对磨削时易产生裂纹的材料,如钦合金,耐热合金则不适用。
对于某些材料,如,不锈钢,当砂轮线速度高于45m/s时,磨削效率反而下降。
由于高速磨削对机床、砂轮、冷却和安全技术力一面都有特殊要求,这将增加机床成本。
磨削技术的发展现状

磨削技术的发展现状磨削技术是一种将工件表面精确加工为所需形状和尺寸的机械加工方法。
随着现代制造业的发展,磨削技术也在不断进步和完善。
首先,磨削技术的机械设备得到了极大的改进和发展。
传统的磨床已经不再能够满足工艺要求,取而代之的是高速、精密、自动化的磨床。
这些先进的磨床设备具有更高的加工精度和效率,能够处理更复杂和精细的工件。
其次,使用的磨削工具也得到了改进。
传统的磨石逐渐被高硬度、高韧性的刚性磨削磨料所取代。
这些磨料能够更好地满足精密磨削的要求,并且能够提高加工效率和降低成本。
此外,磨削技术的自动化程度也在不断提高。
现代磨床配备了先进的数控系统,可以实现自动化的加工过程。
操作人员只需设定加工参数并监控加工过程,在大部分情况下无需直接干预。
这样不仅提高了加工效率和稳定性,还减少了人工操作错误的可能性。
此外,磨削技术在实现工艺的同时也注重环保和能源的节约。
一方面,磨削加工可以减少物料的浪费。
传统的切削加工通常会产生大量的切屑,而磨削加工则可大大减少切屑。
另一方面,磨削工具的设计也越来越注重能源的节约。
例如,通过优化磨削参数和减少磨削路径的方式,可以大大降低能源的消耗。
此外,磨削技术也逐渐向无损工艺方向发展。
传统的切削加工往往会对工件表面产生变形和残余应力,而磨削加工则可以减少或避免这些问题。
因此,磨削技术在航空航天、汽车、船舶等高精度产品行业得到广泛应用。
总的来说,磨削技术在机械设备、磨削工具、自动化程度、环保性能和应用范围等方面都取得了显著的发展。
随着科技的不断进步和制造业的高速发展,磨削技术将继续迎来新的突破,以满足不断增长的工艺需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)磨削温度低。超高速磨削中磨削热传入工件的比率减小,使工件表面 磨削温度降低,能越过容易发生热损伤的区域,受力受热变质层减薄, 具有更好的表面完整性。使用CBN 砂轮200 m/ s 超高速磨削钢件的 表面残余应力层深度不足10微米。从而极大地扩展了磨削工艺参数地 应用范围.
(6)充分利用和发挥了超硬磨料的高硬度和高耐磨性的优异性能。电镀和 钎焊单层超硬磨料砂轮是超高速磨削首选的磨具,特别是高温钎焊金 属结合剂砂轮,磨削力及温度更低,是目前超高速磨削新型砂轮.
(4)磨削状态检测及数控技术
高速超高速磨削加工中,由于砂轮线速度极高,砂轮由于 超高速引起的破碎现象时常发生,砂轮破碎及磨损状态的 监测是关系到磨削工作能否顺利进行和保证加工质量和零 件表面完整性的关键;在超高速加工中,砂轮与工件的对 刀精度,砂轮与修整轮的对刀精度将直接影响到工件的尺 寸精度和砂轮的修整质量。
(7)具有巨大的经济效益和社会效益,并具有广阔的绿色特性。 高速超高 速磨削加工能有效地缩短加工时间,提高劳动生产率,减少能源的消 耗和噪声的污染。因超高速磨削热的70%被磨屑所带走,所以加工表 面的温度相对低,所需磨削液的流量和压力可相对减少,使冷却液的 需求量减少,能量需求减少,污染减少。
三、技术支持
一、磨削机理
①在高速超高速磨削加工过程中,在保持其它参数不变的条件下,随着 砂轮速度的大幅度提高,单位时间内磨削区的磨粒数增加,每个磨粒 切下的磨屑厚度变小,导致每个磨粒承受的磨削力大大变小,总磨削 力也大大降低。
②超高速磨削时,由于磨削速度很高,单个磨屑的形成时间极短。在极 短的时间内完成的磨屑的高应变率(可近似认为等于磨削速度) 形成 过程与普通磨削有很大的差别,表现为工件表面的弹性变形层变浅, 磨削沟痕两侧因塑性流动而形成的隆起高度变小,磨屑形成过程中的 耕犁和滑擦距离变小,工件表面层硬化及残余应力倾向减小。
Ⅰ相关概念
磨削定义:
通常所说的“磨削”主要是指用砂轮或砂带进行去除材料加 工的工艺方法,它是应用广泛的高效精密的终加工工艺方 法。
所属范畴:
先进制造技术 →先进加工技术→去除加工→力学加工
分类:
普通磨削 高速磨削 超高速磨削
V<45m/s 45m/s<V<150m/s V>150m/s
Ⅱ工艺特点
机电动平衡系统
(2)高速磨削砂轮
①砂轮基体(满足通用化,降低连接处应力,满足磨削时的强度和刚度 要求)
②锋利(也就是说,磨粒突出高度要大,以便能容纳大量的长切屑,一 般采用电镀结合砂轮)
③结合剂必须具有很高的耐磨性,以减少砂轮的磨损。(电镀结合砂轮, 多孔陶瓷结合剂砂轮)
高速磨削砂轮
(3)冷却润滑系统
③此外,超高速磨削时磨粒在磨削区上的移动速度和工件的进给速度均 大大加快,加上应变率响应的温度滞后的影响,会使工件表面磨削温 度有所降低,因而能越过容易发生磨削烧伤的区域,而极大扩展了磨 削工艺参数的应用范围。
二、高速磨削的加工特点
(1)生产效率高。由于单位时间内作用的磨粒数增加,使材料磨除率 成倍增加,比普通磨削可提高30%-100% ; (2)砂轮使用寿命长。由于每颗磨粒的负荷减小,磨粒磨削时间相应 延长,提高了砂轮使用寿命。磨削力一定时,200m/s磨削砂轮的寿 命是80m/s 磨削的两倍;磨削效率一定时,200m/s 磨削砂轮的寿命 则是80m/s磨削的7. 8倍。这非常有利于实现磨削自动化; (3)磨削表面粗糙度值低。超高速磨削单个磨粒的切削厚度变小,磨 削划痕浅,表面塑性隆起高度减小,表面粗糙度数值降低;同时由于 超高速磨削材料的极高应变率,磨屑在绝热剪切状态下形成,材料去 除机制发生转变,因此可实现对脆性和难加工材料的高性能加工; (4)磨削力和工件受力变形小,工件加工精度高。由于切削厚度小, 法向磨削力Fn相应减小,从而有利于刚度较差工件加工精度的提高。 在切深相同时,磨削速度250 m/ s 磨削时的磨削力比磨削速度 180m/s 时磨削力降低近一倍;
由于高速磨削砂轮转速极高,对机床功率及性能、砂轮强 度、振动、平衡、气流扰动、安全防护和冷却液注入等工 艺措施提出了特殊要求。因此,与其相关的关键技术有:
(1)高速主轴 ①高速主轴须有连续自动动平衡系统 属于自动控制技术,利用反馈调节模式,采用测量元件和控制元件进 行动平衡 ②保证主轴在高速状态下有足够的转矩用于切削 无功功率与转速和砂轮直径有关,在高速磨削状态下可通过选用直径 小的砂轮
冷却润滑系统由冷却润滑液、泵、过滤器等组成,对高精度磨 削还需有温度控制系统以确保冷却润滑液的温度恒定。
冷却润滑液必须完成润滑、冷却、清洗砂轮和传送切屑四大任 务。故它必须满足以下的技术要求:
①较高的热容量和导热率,以提高冷却率 ②能承受较高的压力 ③良好的过滤性能,防腐蚀性和附着力 ④较高的稳定性,不起泡,不变色 ⑤对健康无害,易于清洗 ⑥有利于环境保护,易于处理。
Ⅲ高速磨削的发展现状
一、目前高速磨削的应用主要有三个方面:
(1)高速高效深磨(起源于德国)
以砂轮高速(>150m/s)、高进给速度(0.5~10m/min)和大 切深(0.1~30mm)为主要特征的高效深磨技术是高速磨削在高效 加工方面的最新应用。
(2)高速精密磨削
高速精密磨削在日本应用最为广泛。因为日本的高速磨削主要 不是以获得高生产率为目的,而是对磨削过程的综合性能(如加工精 度和表面质量)更感兴趣,它的磨削效率普遍地维持60mm3/mm.s 以下,这是与欧洲高速磨削高效深磨工艺的显著差别。
(3)难磨材料的高速磨削
利用高速磨削实现对硬脆材料(工程陶瓷及光学透镜等)的高 性能加工是高速磨领域的一个重要组成部分。
二、高速磨削继续发展所要做的技术突破
欲将磨削速度进一步提高,目前仍受许多因素的限制,要 想充分发挥高速磨削的优势,必须从制约切削速度的各个 方面进行研究。 (1)发展高功率高速主轴 关键在于开发大功率高速主轴。 (2) 研制适应高速磨削的新颖砂轮 (3) 磨床结构的改进 尽可能降低机床在高速时由于砂轮不平衡引起的振动,应 配置在线自动动平衡系统,以使机床在不同转速时,始终 处于最佳的运行状态。为了提高生产效率和工件的加工精 度,则应采用高速、高效和高精度进给驱动系统。比如在 平面磨床上采用直线电机替代丝杠螺母传动;在进行偏心 磨削时,外圆磨床除了须具备高速滑台系统外,还要配备 高速数控系统,以保证工件的精度及较高的生产率。