高二数学定积分的概念
高二数学定积分的概念

nqx37kop
熘土豆丝嘛,也是咱娘最拿手的厨艺哇!”耿英瞪了弟弟一眼,说:“你奇怪什么啊?难道说俺们这些年在南边儿吃过这些菜吗?”耿 直忽然明白了,说:“可不是耶!江南没有土豆啊?”尚武说:“听也不曾听说过呢!”耿老爹说:“这土豆其实很好种的,估计江南 也应该能种!你走的时候带一些回去哇,试着种种!”尚武说:“唔,好好好,如果真能种得成,那可就太好啦!”大家一边吃饭,一 边继续聊着。耿正看到小妹妹耿兰一直拘谨地坐在那里默默地吃饭,就站起来探手给她的碗里夹一块儿红烧肉,亲切地说:“兰兰,这 是爹、大哥、二哥和姐姐啊,你怎么不跟俺们说话呢?”看到耿兰红着脸不敢抬头看大哥的样子,耿直摇着头说:“唉,兰兰啊,你忘 记了吗?咱爹带哥哥姐姐和俺走之前,你可是二哥的小尾巴呢!二哥在南边,像想娘一样想你„„”想起来离家一年之后的那个八月十 五夜里耿直哭着睡去的情景,耿老爹、耿正、耿英和耿直都声噎了„„郭氏赶快说:“兰儿,你成天跟娘念叨爹和哥哥姐姐们,这会儿 他们就在你的眼前儿了,你倒是叫啊!爹、大哥、二哥和姐姐想听呢!”耿兰怯怯地低着头小声儿说:“俺很想叫呢,可俺就是„„” 耿英含泪轻轻地推一推妹妹,小声说:“这是咱爹!你快叫啊!”耿兰慢慢地抬起头来,又怯怯地扭过头望着身旁慈祥的爹爹正眼含热 泪,满怀歉意和期待地看着自己„„她嗫嚅着,终于轻轻地叫了一声:“爹!”“哎!”耿老爹高兴地答应着,一串眼泪噗噜噜滚落下 来。他顾不上抬手擦去眼泪,就低头在耿兰的额头上轻轻亲了一下。看到妹妹转回头来看着哥哥耿正迟疑着,耿英又含泪低声儿催促她: “快叫大哥啊!”耿兰又轻轻地叫了一声:“大哥!”“哎!”耿正高兴地答应着,又往小妹妹的碗里夹了一大块烤鸭!急性子耿直等 不及了,说:“小尾巴,俺呢?”“二哥!”“哎!”耿直高兴地跳起来,满桌子寻找着说:“二哥看看俺的小尾巴最爱吃什么?”耿 英擦一把眼泪,笑着说:“行了哇小直子,你小尾巴的碗里好吃的多着呢,你就免了哇!”耿直也笑了,把胳膊搭在尚武的肩膀上,歪 着头说:“那二哥就送你一个更大的礼物,叫三哥!”“三哥!”“哎!”尚武答应着,赶快站起身来给耿兰施礼!耿英忍不住笑出声 来,说:“俺说三弟啊,你在咱家门口已经给妹妹施过礼了,哪来的那么多礼节啊!快坐下吃饭哇!”尚武笑着坐下了。“姐 姐!”“哎!”耿英大声答应着抱住妹妹,在她的脸颊上“吧”地亲了一大口!郭氏擦去满脸的泪水,高兴地说:“好啦,俺们的兰儿 好不容易叫出口了!”说罢了,又转身招呼旁边桌上都停止了吃饭的董、耿两家人,高兴地说:“大家伙儿都快吃,这顿俺们等了快十 年的‘团圆面’,咱们可一定要吃
高二数学定积分的概念

1
解
1分割
令 f x x 3 .
0
在区间0,1上等间隔地插入n 1分点, 把
i 1 i 区间0,1等分成n个小区间 , (i 1,2, , n), 每 n n i i 1 1 个小区间的长度为Δx . n n n i 2近似代替、作和 取ξ i i 1,2, ,n,则 n 3 n n 1 i i 1 f x dx S f Δ x n 0 i1 n n i1 n
1.5.3 定积分的概念
从曲边梯形面积以及求 变速直线运动路程 的过程可以发现 ,它们都可以通过 " 四步曲" : 分割、近似代替、求和 、取极限得到解决, 且都可以归结为求一个 特定形式和的极限: 曲Δx lim f ξ i ; Δx 0 n i1 i1 n 变速运动的路程 1 S lim v ξ i Δt lim v ξ i . Δt 0 n i1 i1 n
定积分的一般定义是相 当的,并且ξ i可都取为每 或都取为右端点 . 个小区间的左端点
限接近某个常数 , 这个常数叫做函数 f x 在区间 a,b上的 定 积 分definite int egral, 记作 n b b ba f ξ i . a f x dx,即 a f x dx nlim n i1 这里, a与b分别叫做积分下限与积分上限,区间 a,b 叫做积分区间,函数f x 叫做被积函数, x叫 做积分变量, f x dx叫做被积式. 根据定积分的概念 ,1.5 1 中的曲边梯形的面积 1 1 1 2 S f x dx x dx . 0 0 3 同样地 ,1.5.2中汽车在 0 t 1这段时间内经过 1 1 5 2 的路程 S v t dt t 2 dt . 0 0 3
高二数学定积分知识点总结

高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
高数定积分定义

高数定积分定义
定积分是微积分中的一个重要概念,它是对函数在一定区间上的
积分结果的确定。
在数学中,积分是微积分中的一种基本概念,定义
了一种反向操作,即由导数得到原函数。
定积分的定义是指在函数y=f(x)的x轴某一区间[a,b]上,将其分割成许多小的矩形,并将这些矩形的面积分别求出。
当分割的小矩形
数趋向于无穷大时,这些小矩形组成的面积总和即为该函数在区间[a, b]上的定积分,用符号∫abf(x)dx表示。
其中dx代表自变量的微元,f(x)代表被积函数,而a和b是积分
的上下限。
上述式子也可以看作是在曲线y=f(x)与x轴之间的面积之
积分。
为了方便计算,往往将上述区间分割成等分的若干小区间,其中
小区间的个数记作n,区间长为Δx。
于是有Δx=(b-a)/n,而小矩形
面积为f(xi)Δx,其中xi为小区间的中点。
将这些面积相加,即可得到该函数在区间[a, b]上的近似定积分。
在极限n趋向于无穷大的情况下,上述近似定积分将趋近于函数
在区间[a, b]上的定积分,即∫abf(x)dx。
因此,定积分又可以描述为曲线y=f(x)在区间[a, b]上与x轴之
间面积大小的确定。
而由于定积分的值只与积分区间及被积函数有关,因此在定积分的计算中,被积函数函数的表达式及积分区间的范围就
成为了最为重要的关键。
定积分在实际问题中的应用非常广泛,例如可以用于求曲线与坐标轴的面积,求函数在某个区间上的平均值,以及求物体在某一时间间隔内的位移等问题。
同时,定积分也是微积分中重要的积分概念之一,有较高的理论和实际应用价值。
定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。
定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。
2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。
3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。
当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。
4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。
二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。
2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。
3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。
4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。
5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。
三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。
高二数学人选修课件定积分的概念

在计算广义积分时,需要判断其是否 收敛。常用的判断方法包括比较判别 法、狄利克雷判别法和阿贝尔判别法 等。
无界函数广义积分的计算
对于无界函数广义积分,需要找到函 数的瑕点,并通过分割区间、去掉瑕 点等方法将其转化为定积分进行计算 。
广义积分的应用举例
物理学中的应用
广义积分在物理学中有广 泛应用,如求解物体的质 心、转动惯量以及电磁学 中的相关计算等。
x)dx。
保号性
若在区间[a,b]上,f(x)≤g(x) ,则∫abf(x)dx≤∫abg(x)dx。
绝对值不等式
对于任意函数f(x),有 |∫abf(x)dx|≤∫ab|f(x)|dx。
02 定积分的计算
牛顿-莱布尼兹公式
01
公式表述
若函数$f(x)$在$[a,b]$上连续,且$F(x)$是$f(x)$在$[a,b]$上的一个原
。
不规则图形面积的计算
02
对于不规则的平面图形,可以使用定积分来求解其面积。具体
步骤包括确定被积函数、确定积分区间、求解定积分等。
定积分在面积计算中的应用举例
03
例如,可以使用定积分来计算抛物线与直线所围成的平面图形
的面积。
体积的计算
1 2 3
规则几何体体积的计算
对于规则的几何体,如长方体、球体、圆柱体等 ,可以直接使用相应的体积公式进行计算。
函数,则$int_{a}^{b}f(x)dx=F(b)-F(a)$
02 03
几何意义
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使得定积分的计算 可以转化为求原函数在区间端点的函数值之差,从而大大简化了定积分 的计算过程。
应用范围
适用于被积函数具有原函数的情况,是定积分计算的基本方法。
高二数学 第一章1.5.3 定积分的概念

a2- x2
(-a≤x≤a).
于是椭圆在第一象限的部分与坐标轴围成的平面图形的
面积为
S1=0aba a2-x2 dx=ba0a a2-x2 dx,
栏目 导引
第一章 导数及其应用
令 g= a2-x2(0≤x≤a),
得 x2+g2=a2(0≤x≤a,g≥0),
依题意,得0a
a2-x2dx=πa2, 4
(1)02 (3x3)dx; (2)14 (6x2 )dx; (3)12(3x2- 2x3)dx.
[解] (1)02(3x3)dx
= 302x3 dx
= 3(01x3dx+12x3 dx)
=3×(1+15)=12. 44
栏目 导引
第一章 导数及其应用
(2)14(6x2)dx=614x2dx
栏目 导引
第一章 导数及其应用
1.用定积分的定义证明abkdx=k(b-a).
证明:令 f(x)=k,用分点 a=x0<x1<x2<…<xi-1<xi<…<xn
=b 将区间[a,b]等分成 n 个小区间[xi-1,xi](i=1,2,…,
n),在每个小区间上任取一点 ξi(i=1,2,…,n).
=6(12x2dx+24x2dx)=6×(73+536)=126. (3)12(3x2-2x3)dx =12(3x2)dx-12(2x3)dx
=
312x2dx-
212x3dx=3×73-
2×15=-1. 42
栏目 导引
第一章 导数及其应用
方法归纳
定积分与函数的奇 偶性
若函数 f(x)的奇偶性已经明确,且 f(x)在[-a,a]上连续,
a
∴ab3f(x)dx = 3abf(x)dx= 3× 6= 18.
高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。