北师大版九年级数学下公式法

合集下载

北师大版九年级数学-第二章-一元二次方程知识点

北师大版九年级数学-第二章-一元二次方程知识点

北师大版九年级数学-第二章-一元二次方程知识点知识点一:认识一元一次方程(一)一元二次方程的定义:只含有一个未知数(一元)并且未知数的次数是2(二次)的整式方程;这样的方程叫一元二次方程.(注意:一元二次方程必须满足以下三个条件:是整式方程;一元;二次)(二) 一元二次方程的一般形式:把20ax bx c ++=(a 、b 、c 为常数;a ≠0)称为一元二次方程的一般形式.其中a 为二次项系数;b 为一次项系数;c 为常数项. 【例题】1、一元二次方程3x 2=5x -1的一般形式是 ;二次项系数是 ;一次项系数是 ;常数项是 .2、一元二次方程(x+1)(3x -2)=10的一般形式是 .3、当m= 时;关于x 的方程5)3(72=---x x m m是一元二次方程.4、下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-=知识点二:求解一元一次方程(一)一元二次方程的根定义:使得方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根. 【例题】例1、关于x 的一元二次方程()22110a x x a -++-=的一个根是0;则a 值为( ) A 、1 B 、1- C 、1或1- D 、12(二)解一元二次方程的方法: 1.配方法 <即将其变为2()0x m +=的形式> 配方法解一元二次方程的基本步骤: ①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方; ⑤把方程转化成2()0x m +=的形式; ⑥两边开方求其根. 【例题】例2 一元二次方程x 2-8x-1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x-4)2=17D .(x-4)2=15例3 用配方法解一元二次方程x 2-6x-4=0;下列变形正确的是( ) A .(x-6)2=-4+36B .(x-6)2=4+36C .(x-3)2=-4+9D .(x-3)2=4+9例4 x 2-6x-4=0; x 2-4x=1; x 2-2x-2=02.公式法x =(注意在找abc 时须先把方程化为一般形式)【例题】例5若一元二次方程x 2+2x+a=0的有实数解;则a 的取值范围是( ) A .a <1B .a≤4C .a≤1D .a≥1例6 已知一元二次方程2x 2-5x+3=0;则该方程根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根 例7 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根;求实数a 的取值范围; (2)当该方程的一个根为1时;求a 的值及方程的另一根.3.分解因式法 把方程的一边变成0;另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”) 【例题】例8 一元二次方程x 2-2x=0的解是( ) A .0 B .2 C .0;-2 D .0;2例9 方程3(x-5)2=2(x-5)的根是例10 x 2-3x+2=0; x 2+2x=3; (x-1)2+2x (x-1)=0知识点三:一元二次方程的根与系数的关系1.根与系数的关系:如果一元二次方程20ax bx c ++=的两根分别为x1、x2;则有:1212,b c x x x x aa+=-⋅=. 2.一元二次方程的根与系数的关系的作用: (1)已知方程的一根;求另一根;(2)不解方程;求二次方程的根x1、x2的对称式的值. (3)对比记忆以下公式:①222121212()2x x x x x x +=+- ②12121211x x x x x x ++=③22121212()()4x x x x x x -=+-④12||x x - ⑤2212121212(||||)()22||x x x x x x x x +=+-+⑥33312121212()3()x x x x x x x x +=+-+ ⑦其他能用12x x +或12x x 表达的代数式.(3)已知方程的两根x1、x2;可以构造一元二次方程:12212()0x x x x x x -++=(4)已知两数x1、x2的和与积;求此两数的问题;可以转化为求一元二次方程12212()0x x x x x x -++=的根 【例题】 例11 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根;求实数a 的取值范围;(2)当该方程的一个根为1时;求a 的值及方程的另一根.例12 已知关于x 的一元二次方程x 2-4x+m=0.(1)若方程有实数根;求实数m 的取值范围; (2)若方程两实数根为x 1;x 2;且满足5x 1+2x 2=2;求实数m 的值.知识点四:应用一元一次方程在利用方程来解应用题时;主要分为两步:①设未知数(在设未知数时;大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑); ②寻找等量关系(一般地;题目中会含有一表述等量关系的句子;只须找到此句话即可根据其列出方程). 【例题】例13 某校准备修建一个面积为180平方米的矩形活动场地;它的长比宽多11米;设场地的宽为x 米;则可列方程为( ) A .x (x-11)=180B .2x+2(x-11)=180C .x (x+11)=180D .2x+2(x+11)=180例14 某商品现在的售价为每件60元;每星期可卖出300件.市场调查反映:每降价1元;每星期可多卖出20件.已知商品的进价为每件40元;在顾客得实惠的前提下;商家还想获得6080元的利润;应将销售单价定位多少元?经典习题练题平台:(请认真审题;我一定行!) 一、填空题:1.已知两个数的差等于4;积等于45.则这两个数为 和 .2.当m 时;方程(m 2-1)x 2-mx+5=0不是一元二次方程.当当m 时;上述方程是一元二次方程.3.用配方法解方程x 2-4x-6=0;则x 2-4x+ =6+ .所以x 1= ;x 2= .4.如果x 2-2(m+1)x+4是一个完全平方式;则m= .5.当 ≥0时;一元二次方程ax 2+bx+c=0的求根公式为 .6.如果x 1、x 2是方程2x 2-3x-6=0.那么x 1+x 2= ;x 1x 2= .7.若方程x 2-3x+m=0有两个相等的实数根.则m= ;两根分别为 .8.若方程kx 2-9x+8=0的一个根为1;则k= ;另一个根为 .9.以-3和7为根且二次项系数为1的一元二次方程是 .10.关于x 的一元二次方程mx 2+x+m 2+3m=0有一个根为零;则m 的值等于 . 二、选择题:1.下列方程中;一元二次方程是( )(A ).(B ) ax 2+bx (C )(x-1)(x+3)=1 (D )3x 2-2xy-5y 2=02.方程(2x+3)(x-1)=1的解的情况是( )(A )有两个不相等实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根 3.如果一元二次方程x 2+(m+1)x+m=0的两个根是互为相反数;那么有( ) (A )m=0 (B) m=-1 (C ) m=1 (D)以上结论都不对212x x +4.已知x 1;x 2是方程x 2=2x+1的两个根;则 的值为( )(A ) (B )2 (C )-2 (D )5.不解方程2x 2+3x-1=0的两根的符号为( )(A ) 同号 (B ) 异号 (C )两根都为正 (D )不能确定 6.已知一元二次方程mx 2+n=0 (m ≠0);若方程有解;则必须( ) (A )n=0 (B )mn 同号 (C )n 是m 的整数倍 (D )mn 异号 7.若a 为方程x 2+x-5=0的解;则a 2+a+1的值为( ) (A )12 (B ) 6 (C )9 (D )168.某超市一月份的营业额为200万元;三月份的营业额为288万元;如果每月比上月增长的百分数相等;则平均每月增长率为( )(A )10% (B )15% (C )20% (D )25%解 三、解下列方程1. x 2-5x+1=0 (用配方法解)2. 3(x-2)2=x (x-2)3. 2x 2-22x-5=04. (y+2)2 = (3y-1)2四、当m 为何值时;一元二次方程x 2+(2m-3)x+(m 2-3)=0有两个不相等的实数根?五、不解方程;求作一个新的一元二次方程;使它的两个根分别是方程x 2-7x=2的两根的 2倍.六、已知方程x 2+2(k-2)x+k 2+4=0有两个实数根;且这两个实数根的平方和比两根的积大21; 求k 的值.七、解答题1. 将进货单价40元的商品按50元出售;能卖出500个;已知这种商品每涨价1元;就会少销售10个.为了赚的8000元利润;售价应定为多少?这时应进货多少个? 2111x x +21-212. 如图在ΔABC 中;∠B=90º;点P 从A 开始沿边AB 向点B 以的速度移动;与此同时;点Q 从点B 开始沿边BC 向点C 以的速度移动.如果P 、Q 分别从A 、B 同时出发;经过几秒;ΔBPQ 的面积等于8cm 2?(AB=6cm ;BC=8cm )scm 1scm2。

北师大版九年级数学上册和下册定理知识点汇总

北师大版九年级数学上册和下册定理知识点汇总

北师大版初中九 (上)数学学问点总结第一章 证明(二)※等腰三角形的“三线合一〞:顶角平分线、底边上的中线、底边上的高相互重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必定等于斜边的一半。

※有一个角等于60º的等腰三角形是等边三角形。

※假如知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222c b a =+〔留意区分斜边及直角边〕②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半〔此定理将在第三章出现〕 ※垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。

〔留意着重号的意义〕 <直线及射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点间隔 相等。

※线段垂直平分线逆定理:到一条线段两端点间隔 相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的间隔 相等。

〔如图1所示,〕※角平分线上的点到角两边的间隔 相等。

※角平分线逆定理:在角内部的,假如一点到角两边的间隔 相等,那么它在该角的平分线上。

角平分线是到角的两边间隔 相等的全部点的集合。

※三角形三条角平分线交于一点,并且交点到三边间隔 相等,交点即为三角形的内心。

(如图2所示,)第二章 一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax 〔a 、b 、c 为 常数,a ≠0〕的形式,这样的方程叫一元二次方程......。

※把02=++c bx ax 〔a 、b 、c 为常数,a ≠0〕称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。

※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式>②公式法 aac b b x 242-±-= 〔留意在找时须先把方程化为一般形式〕 ③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,-a的相反数是a。

5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。

如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。

如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。

9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。

10.开平方:求一个数a的平方根的运算,叫做开平方。

11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。

12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。

数学初三下北师大版2.5公式法求二次函数的顶点坐标导学案+练习

数学初三下北师大版2.5公式法求二次函数的顶点坐标导学案+练习

数学初三下北师大版2.5公式法求二次函数的顶点坐标导学案+练习主备人:姜良站审核人:钟付强【学习目标】1、体会建立二次函数对称轴和顶点坐标公式的必要性、2、能够利用二次函数的对称轴和顶点坐标公式解决问题【学习重点】运用二次函数的对称轴和顶点坐标公式解决实际问题、【学习难点】二次函数的对称轴和顶点坐标公式的推导【课前自学】1、函数2232+-=x y 的图象开口方向,对称轴是,顶点坐标是 2、函数22(3)13y x =-++的图象开口方向,对称轴是,顶点坐标是 3、将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =〔〕A 、向左平移4个单位,再向上平移1个单位B 、向左平移4个单位,再向下平移1个单位C 、向右平移4个单位,再向上平移1个单位D 、向右平移4个单位,再向下平移1个单位4、把函数1842++-=x x y 配成2()y a x h k =-+的形式。

并写出顶点坐标和对称轴。

【新课学习】例:用配方法求二次函数y =ax 2+bx+c 的对称轴和顶点坐标、归纳:对称轴是,顶点坐标为〔,〕作为二次函数y =ax 2+bx+c 的顶点坐标公式。

【巩固练习】1、用配方法将二次函数2342y x x =--写成形如2()y a x h k =++的形式,那么m ,n 的值分别是〔〕 A、23m =,103n = B、23m =-,103n =- C、2m =,6n = D、2m =,2n =-2、二次函数的图象的顶点是〔1,-3〕,那么那个二次函数是。

3、确定以下抛物线的对称轴与顶点坐标、〔1〕2241y x x =--〔2〕2362y x x =-+〔3〕3(3)(9)y x x =-++4、有心理学家研究发明,学生对某类概念的同意能力y 与提出概念所用的时间x(min)之间满足函数关系:20.1 2.643(030)y x x x =-++≤≤,y 值越大,表示同意能力越强,依照这一结论回答以下问题:〔1〕x 在什么范围内,学生的同意能力逐渐增强?x 在什么范围内,学生的同意能力逐渐降低?〔2〕通过多长时间,学生的同意能力最强?【作业布置】同步P1041-5〔A 组〕1-7〔B 组〕2-5公式法求二次函数的顶点坐标〔当堂训练〕1、将2231y x x =+-化成()y a x h k 2=-+的形式为〔〕A 、2325416y x ⎛⎫=+- ⎪⎝⎭ B 、2317248y x ⎛⎫=-- ⎪⎝⎭ C 、2317248y x ⎛⎫=+- ⎪⎝⎭ D 、231748y x ⎛⎫=++ ⎪⎝⎭2、依照公式确定以下二次函数图像的对称轴与顶点坐标、〔1〕236y x x =-+〔2〕2580319y x x =-+-3、当一枚火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系能够用公式 h=1015052++-t t 表示,通过多长时间,火箭到达它的最高点?最高点的高度是多少?。

九年级数学花边有多宽、配方法、公式法北师大版知识精讲

九年级数学花边有多宽、配方法、公式法北师大版知识精讲

初三数学花边有多宽、配方法、公式法北师大版【本讲教育信息】一. 教学内容: 1. 花边有多宽 2. 配方法 3. 公式法二. 教学目标1、了解一元二次方程及其相关概念,会用配方法、公式法解简单的一元二次方程。

2、能够利用一元二次方程解简单的实际问题,初步体会方程是刻画现实世界中数量关系的一个有效的数学模型,并从中体会方程的模型思想。

三、重点及难点重点:1、一元二次方程的概念及其一般形式。

2、掌握配方法、公式法解一元二次方程的步骤。

难点:1、如何利用未知数取值法确定未知数的取值X 围。

2、解一元二次方程的过程。

四、课堂教学 [知识要点]1、整式方程:方程两边都是关于未知数的整式,这样的方程叫整式方程。

2、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

3、一元二次方程的一般形式:把20ax bx c ++=(,,a b c 为常数,0a ≠)称为一元二次方程。

4、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接 开平方法 。

例如:()264x += 解: 62x +=± ∴124,8x x =-=-5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法叫做配方法。

例如:2240x x --= 解:移项得:224x x -=两边都加上一次项系数一半的平方:22141x x -+=+即:()215x -=∴1x -=∴1211x x ==6、公式法:利用求根公式解一元二次方程的方法叫做公式法。

7、求根公式:对于一元二次方程20ax bx c ++=(,,a b c 为常数,0a ≠),当240b ac -≥时,它的根是2b x a-±=,即12b x a -+=,22b x a-=注意:当240b ac -=时,应把方程的根写成122bx x a==-的形式,说明一元二次方程有两个相等的根,而不是一个根。

北师大版数学九年级上册2.3《公式法》教案

北师大版数学九年级上册2.3《公式法》教案

北师大版数学九年级上册2.3《公式法》教案一. 教材分析《北师大版数学九年级上册2.3《公式法》》这一节主要讲述了一元二次方程的解法——公式法。

通过前面的学习,学生已经掌握了一元二次方程的概念和性质,以及配方法解一元二次方程。

本节课通过公式法解一元二次方程,使学生能够更加深入地理解一元二次方程的解法,为后续的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念和性质,以及配方法解一元二次方程。

但部分学生对于公式的理解和运用还不够熟练,需要通过本节课的学习,加强学生对公式法的理解和运用。

三. 教学目标1.让学生掌握一元二次方程的公式法解法。

2.培养学生运用公式法解决实际问题的能力。

3.培养学生合作学习、积极探究的学习态度。

四. 教学重难点1.掌握一元二次方程的公式法解法。

2.运用公式法解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握一元二次方程的公式法解法。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过复习一元二次方程的配方法解法,引导学生思考:是否有一元二次方程的通用解法?从而引出本节课的内容——公式法。

2.呈现(10分钟)呈现一元二次方程的公式法解法,引导学生理解公式法的原理。

公式法解一元二次方程的步骤:(1)确定方程的系数a、b、c;(2)计算判别式Δ=b²-4ac;(3)根据公式x=(-b±√Δ)/(2a),求出方程的解。

3.操练(10分钟)让学生分组讨论,运用公式法解一元二次方程。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成练习题,巩固公式法解一元二次方程的方法。

5.拓展(10分钟)引导学生思考:公式法解一元二次方程的应用场景。

让学生举例说明,培养学生的应用能力。

6.小结(5分钟)教师引导学生总结本节课的学习内容,使学生对公式法解一元二次方程有一个清晰的认识。

北师大版九年级数学下册全套课件

北师大版九年级数学下册全套课件

学习目标
掌握二次函数、一元 二次方程、相似三角 形等核心概念和性质 。
了解数学在日常生活 和科技领域中的应用 ,提高数学素养。
学会运用数学知识解 决实际问题,培养数 学思维和解决问题的 能力。
02
第一章:二次函数
二次函数的基本概念
二次函数定义
一般形式为$y=ax^2+bx+c$,其中 $a$、$b$、$c$为常数,且$a neq 0$。
北师大版九年级数学下册全 套课件
汇报人: 202X-12-30
目 录
• 引言 • 第一章:二次函数 • 第二章:相似图形 • 第三章:解直角三角形 • 第四章:概率初步知识 • 第五章:投影与视图
01
引言
课程简介
课程名称:北师大版九年级数学下册
适用对象:九年级学生
课程目标:通过学习本册内容,学生将掌握初中数学的核心知识和技能,为进一步 学习高中数学打下基础。
THANKS
感谢观看
03
如一次函数、反比例函数等,可以结合图像进行比较和性质分
析。
03
第二章:相似图形
相似图形的概念和性质
01
02
03
相似图形的定义
两个图形如果形状相同, 大小可以不同,则称这两 个图形相似。
相似图形的性质
相似图形对应边的长度成 比例,对应角的大小相等 。
相似图形的分类
根据相似比的大小,相似 图形可分为相似多边形、 相似三角形等。
航海问题
在航海中,需要利用解直 角三角形的方法来确定船 只的位置和航向。
工程问题
在桥梁、建筑等工程领域 ,解直角三角形可以帮助 设计师进行精确的计算和 设计。
05
第四章:概率初步知识

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计

2024北师大版数学九年级下册2.5.2《二次函数与一元二次方程》教学设计一. 教材分析《二次函数与一元二次方程》是北师大版数学九年级下册第2.5.2节的内容。

本节课的内容包括:了解二次函数与一元二次方程的关系,掌握一元二次方程的解法,以及运用二次函数的性质解决实际问题。

教材通过实例引导学生探究二次函数与一元二次方程之间的联系,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图象与性质,以及一元二次方程的基本知识。

但部分学生对于如何运用二次函数的性质解决实际问题还不够熟练。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们通过自主学习、合作探讨,提高解决问题的能力。

三. 教学目标1.知识与技能:理解二次函数与一元二次方程的关系,掌握一元二次方程的解法,能运用二次函数的性质解决实际问题。

2.过程与方法:通过探究、合作、交流,培养学生的抽象思维能力和问题解决能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 教学重难点1.重点:二次函数与一元二次方程的关系,一元二次方程的解法。

2.难点:如何运用二次函数的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引入,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究,发现规律。

3.合作学习法:鼓励学生相互讨论,共同解决问题。

4.实践教学法:让学生在实际问题中运用所学知识,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示二次函数与一元二次方程的关系及解法。

2.实例:准备一些实际问题,用于引导学生运用二次函数的性质解决实际问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一个实际问题:某商场举行打折活动,某商品原价为800元,打八折后售价为多少?引导学生思考如何用数学知识解决这个问题。

2.呈现(10分钟)展示商品打折问题,引导学生列出相应的二次函数和一元二次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.会用求根公式解一元二次方程
(二)能力训练要求
1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力.
2.会用公式法解简单的数字系数的一元二次方程.
(三)情感与价值观要求
1.通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯.
教学重点
一元二次方程的求根公式.
教学难点
求根公式的条件:b2-4ac≥0
[师]那为什么呢?
[生齐声]因为把方程x2+ax=1配方变形为(x+ )2= ,右边 就是一个正数,所以就不必加条件了.
[师]好,从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的.因此,如果能用配方法解一般的一元二次方程ax2+bx+c=0(a≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多.
(2)应用求根公式解一元二次方程,通常应把方程写成一般形式,并写出a、b、c的数值以及计算b2-4ac的值,当熟练掌握求根公式后,可以简化求解过程.
Ⅴ.课后作业
(一)课本P58习题2.6 1、2
(二)1.预习内容;P59~P61
2.预习提纲
(1)如何利用因式分解法解一元二次方程
Ⅵ.活动与探究
1.阅读材料,解答问题:
1.用配方法解下列关于x的方程:
(1)x2+](1)解x2+ax=1,
配方得x2+ax+( )2=1+( )2,
(x+ )2= .
两边都开平方,得
x+ =± ,
即x+ = ,x+ =- .
∴x1= , x2=
[生丙](2)解x2-2bx+4ac=0,
移项,得x2+2bx=-4ac.
大家来想一想,讨论讨论:
± =± 吗?
……
[师]当b2-4ac≥0时,
x+ =± =±
因为式子前面有双重符号“±”,所以无论a>0还是a<0,都不影响最终的结果:±
所以x+ =± ,
x=- ±
=
好,我们来看小亮的推导过程.(出示投影片§2.3 C)
ax2+bx+c=0(a≠0)
x2+ =0
x2+
x=
北师大版九年级数学下公式法
课时安排
1课时
从容说课
公式法是解一元二次方程的通法,是配方法的延续,即它实际上是配方法的一般化和程式化.利用它可以更为简捷地解一元二次方程.
本节课的重、难点是利用求根公式来解一元二次方程.
公式法的意义在于:对于任意的一元二次方程,只要将方程化为一般形式,然后确定a、b、c的值,在b2-4ac≥0的前提条件下,将a、b、c的值代入求根公式即可求出解.
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.
注:(1)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.
这样,我们就得到一元二次方程ax2+bx+c=0(a≠0)的求根公式:
x= (b2-4ac≥0),
即(出示投影片§2.3 D)
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2-4ac≥0时,它的根是
x=
[师]用求根公式解一元二次方程的方法称为公式法.(Solving by formular)
阅读材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将(x2-1)视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程化为y2-5y+4=0. ①
解得y1=4,y2=1.
当y1=4时,x2-1=4,
∴x2=5,∴x=± .
当y=1时,x2-1=1,
∴x2=2,∴x=± .
∴原方程的解为x1= ,x2=- ,
1.用配方法解方程2x2-7x+3=0.
[生甲]解:2x2-7x+3=0,
两边都除以2,得x2 -x+ =0.
移项,得;x2- x=- .
配方,得x2- x+(- )2=- +(- )2.
两边分别开平方,得
x- =±
即x- = 或x- =- .
∴x1=3,x2= .
[师]同学们做得很好,接下来大家来试着做一做下面的练习.(出示投影片§2.3 B)试一试,肯定行:
因为直角三角形的边长为正数,所以x1=0应舍去.因此,这个直角三角形的三条边长分别为6,8,10.
(二)看课本P56~P57,然后小结.
Ⅳ.课时小结
这节课我们探讨了一元二次方程的另一种解法——公式法.
(1)求根公式的推导,实际上是“配方”与“开平方”的综合应用.对于a≠0,b2-4ac≥0。以及由a≠0,知4a2>0等条件在推导过程中的应用,也要弄清其中的道理.
[师]噢,同学们来想一想,讨论讨论,戊同学说得有道理吗?
[生齐声]戊同学说得正确.因为负数没
有平方根,所以,解方程x2+2bx+4ac=0
时,必须有条件:b2-4ac≥0,才有丁同学求
出的解.否则,这个方程就没有实数解.
[师]同学们理解得很正确,那解方程x2+ax=1时用不用加条件呢?
[生齐声]不用.
(2)把方程化为一般形式后,在确定a、
b、c时,需注意符号.
接下来,我们来看一例题.(出示投影片§2.3 E)
[例题]解方程x2-7x-18=0.
分析:要求方程x2-7x-18=0的解,需先确定a、b、c的值.注意a、b、c带有符号.
解:这里a=1,b=-7,c=-18.
∵b2-4ac=(-7)2-4×1×(-18)
(2)这里a=9,b=6,c=1.
∵b2-4ac=62-4×9×1=0,
∴x=
即x1=x2=- ,
2.一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.
解:设中间的数为x,则另外两数为
x-2,x+2.根据题意,得
(x+2)2=(x-2)2+x2.
整理,得x2-8x=0.
解这个方程,得
x1=0,x2=8.
∴x1=3,x2= .
二、求根公式的推导
三、课堂练习
四、课时小结
五、课后作业
教学方法
讲练相结合
教具准备
投影片五张
第一张:复习练习(记作投影片§2.3 A)
第二张:试一试(记作投影片§2.3B)
第三张:小亮的推导过程(记作投影片§2.3 C)
第四张:求根公式(记作投影片§2.3 D)
第五张:例题(记作投影片§2.3 E)
教学过程
Ⅰ.巧设现实情景,引入课题
[师]我们利用三节课的时间学习了一元二次方程的解法.下面来做一练习以巩固其解法.(出示投影片§2.3 A)
x2+ =0.
[生乙]因为这里的二次项系数不为0,所以,方程ax2+bx+c=0(a≠0)的两边都除以a时,需要说明a≠0.
[师]对,以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax2+bx+c=0(a≠0)的两边都除以a时,必须说明a≠0.
好,接下来该如何呢?
配方,得x2-2bx+b2=-4ac+b2,
(x+b)2=b2-4ac.
两边同时开平方,得
x+b=± ,
即 x+b= ,x+b=-
∴x1=-b+ ,x2=-b-
[生丁]老师,我觉得丁同学做错了,他通过配方得到(x+b)2=b2-4ac.根据平方根
的性质知道:只有正数和零才有平方根,即只有在b2-4ac≥0时,才可以用开平方法解出x来.所以,在这里应该加一个条件:b2-4ac≥0.
x3= ,x4=- .
解答问题:
(1)填空:
在由原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想.
(2)解方程x4-x2-6=0.
[过程]通过对本题的阅读,让学生在获取知识的同时,来提高学生的阅读理解和解
决问题的能力.
[结果]
解:(1)换元 转化
(2)设x2=y,则x4=y2,
原方程可以化为y2-y-6=0.
[生丙]移项,得x2+
配方,得x2+ ,
(x+ .
[师]这时,可以直接开平方求解吗?
[生丁]不,还需要讨论.
因为a≠0,所以4a2>0.当b2-4ac≥0时,就可以开平方.
[师]对,在进行开方运算时,被开方数必须是非负数,即要求 ≥0.因为4a2>0恒成立,所以只需b2-4ac是非负数即可.
因此,方程(x+ )2= 的两边同时开方,得x+ =± .
这节课我们就来探讨一元二次方程的求根公式.
Ⅱ.讲授新课
[师]刚才我们已经利用配方法求解了四个一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
大家可参照解方程2x2-7x+3=0的步骤进行.
[生甲]因为方程的二次项系数不为1,所以首先应把方程的二次项系数变为1,即方程两边都除以二次项系数a,得
[师]接下来我们通过练习来巩固用公式法求解一元二次方程的方法.
Ⅲ.课堂练习
(一)课本P57随堂练习 1、2
1.用公式法解下列方程:
相关文档
最新文档