时间序列分析第三章平稳时间序列分析
《时间序列分析》讲义 第三章 平稳时间序列分析

k
1 k1 2 k2,k
2
自相关系数
自相关系数的定义
k
k 0
平稳AR(p)模型的自相关系数递推公式
k 1k 1 2 k 2 p k p
常用AR模型自相关系数递推公式
AR(1)模型 k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
自回归系数多项式
(B) 11B 2B2 pBp
特征方程
中心化AR(p)模型
xt 1 xt1 2 xt2 p xt p t
可以看成p阶常系数非齐次线性差分方程
xt 1 xt1 2 xt2 p xt p t
它对应的齐次方程的特征方程为
p 1 p1 p1 p 0
1 12
协方差函数
在平稳AR(p)模型两边同乘xt-k,再求期望
E(xt xtk ) 1E(xt1xtk ) p E(xt p xtk ) E(t xtk )
根据
E( t xtk ) 0 ,k 1
得协方差函数的递推公式
k 1 k1 2 k 2 p k p
例题
例3.3 求平稳AR(1)模型的协方差
12
2 2
,
0,
k 0 k 1
k 2 k 3
偏自相关系数
滞后k偏自相关系数由Yule-Walker方程 确定
zt a1 zt1 a2 zt2 a p zt p h(t)
齐次线性差分方程
zt a1 zt1 a2 zt2 a p zt p 0
齐次线性差分方程的解
特征方程
p a1p1 a2p2 ap 0
特征方程的根称为特征根,记作1,2,…,p
《时间序列分析》课程教学大纲

《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。
备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。
6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。
通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。
利用Eviews软件进行本课程的实验教学。
二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。
【教学重点】时间序列的相关概念。
【教学难点】随机过程、系统自相关性。
【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。
【教学重点】平稳时间序列的定义及统计性质。
【教学难点】时间序列的相关统计量。
【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。
2、掌握平稳序列建模方法。
3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。
时间序列平稳性分析(课件)

时间序列平稳性分析(课件)时间序列平稳性分析文章结构•时间序列的概念•平稳性检验•纯随机性检验•spss的具体操作1.1时间序列分析的概念•时间序列是一个按时间的次序排列起来的随机数据集合。
而时间序列分析是概率论与数理统计学科的一个重要分支,它以概率统计学为理论基础来分析随机数据序列(或称为动态数据序列)并对其建立相应的数学模型,即对模型定阶,进行参数估计,进一步将用于预测。
在对时间序列进行分析的时候我们的前提任务是如何进行的呢?2.1平稳性检验•••••特征统计量平稳时间序列的定义平稳时间序列的统计性质平稳时间序列的意义平稳性检验概率分布•概率分布的意义随机变量族的统计性质完全由它们的联合分布函数或联合密度函数决定•时间序列概率分布族的定义{ }Ft1,t2,...,tm(x1,x2,...,xm)m(1,2,...,m),t1,2,...,T•实际应用局限性概率分布•概率分布的意义随机变量族的统计性质完全由它们的联合分布函数或联合密度函数决定•时间序列概率分布族的定义{ }Ft1,t2,...,tm(x1,x2,...,xm)m(1,2,...,m),t1,2,...,T•实际应用局限性特征统计量•均值t EXt•方差Var(Xt)E(Xt t)xdFt(x)2(x t)dFt(x)•协方差•自相关系数(t,s)E(Xt t)(XS)S(t,s)(t,s)DXt DXs平稳时间序列的定义•严平稳严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随时间的推移而发生变化时,该序列才能被认为平稳•宽平稳宽平稳是使用序列的特征统计量来定义的一种平稳性。
它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
•满足如下条件的序列称为严平稳序列正整数m,t1,t1,...,tm T,正整数t,有Ft1,t2,...,tm(x1,x2,...,xm)Ft1t,t2t,...,•满足如下条件的序列称为宽平稳序列1)EXt,t T2)EXt,为常数,t T2tmt(x1,x2,...,x3)(t,s)(k,k s t),t,s,k且k s t T•常数性质•自协方差函数和自相关函数只依赖于时间的平移长度而与时间的起止点无关1)延迟k自协方差函数(k)(t,t k),k为整数2)延迟k自相关系数k(k)(0)自相关系数的性质••••规范性对称性非负定性非唯一性平稳性的检验•时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应、无明显该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征•自相关图检验平稳序列通常具有短期相关性。
时序预测中的时间序列平稳性检验方法详解(Ⅲ)

时序预测中的时间序列平稳性检验方法详解时间序列分析在各个领域都有着广泛的应用,如经济学、气象学、医学等。
而时间序列平稳性检验是时间序列分析中的重要一环,它可以帮助我们确认时间序列数据是否稳定,从而选择合适的模型进行预测。
本文将详细介绍时间序列平稳性检验的方法和原理。
一、平稳性的定义在进行时间序列分析时,我们通常假设时间序列是平稳的。
平稳性是指时间序列在统计特性上的稳定性,即均值和方差在时间上都是恒定的。
如果时间序列不满足平稳性的要求,将会导致预测结果不准确。
因此,平稳性检验在时间序列分析中至关重要。
二、时间序列平稳性的检验方法1. 直观法直观法是最简单的一种检验方法,它通过观察时间序列的均值和方差是否随时间变化而确定序列的平稳性。
如果均值和方差不随时间变化,则可以初步认定序列是平稳的。
然而,直观法往往不够准确,因为很难只通过肉眼观察就确定序列的平稳性。
2. 统计方法在统计方法中,有许多用于时间序列平稳性检验的经典方法,如ADF检验、PP检验、KPSS检验等。
这些方法都是通过建立统计模型,对序列的均值和方差进行检验,从而判断序列的平稳性。
ADF检验(Augmented Dickey-Fuller Test)是最常用的一种检验方法,它的原假设是时间序列具有单位根(非平稳),备择假设是时间序列是平稳的。
通过对序列进行单位根检验,ADF检验可以判断序列的平稳性。
如果p值小于显著性水平(通常为),则拒绝原假设,认为序列是平稳的。
PP检验(Phillips-Perron Test)是另一种常用的单位根检验方法,它与ADF检验类似,也是通过检验序列的单位根来判断序列的平稳性。
与ADF检验的区别在于PP检验对序列的自相关结构和序列长度的敏感性较低。
KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin Test)则是一种反向的检验方法,它的原假设是序列是平稳的,备择假设是序列具有单位根。
平稳时间序列分析

0
varX t
(1
2 1
2 q
)
2
1
cov( X t , X t1 )
(1
1 2
2 3
q
1
q
)
2
q 1
cov( X t ,
X t q1 )
( q1
1
q
)
2
q
cov( X t , X tq )
q
2
当滞后期不小于q时,Xt旳自协方差系数为0。
所以:有限阶移动平均模型总是平稳旳。
3、ARMA(p,q)模型旳平稳性
• 有时,虽然能估计出一种较为满意旳因果关系回归方程, 但因为对某些解释变量将来值旳预测本身就非常困难,甚 至比预测被解释变量旳将来值更困难,这时因果关系旳回 归模型及其预测技术就不合用了。
在这些情况下,我们采用另一条预测途径:经过时间 序列旳历史数据,得出有关其过去行为旳有关结论,进而 对时间序列将来行为进行推断。
0
2 X
2
12
在稳定条件下,该方差是一非负旳常数,从而有 ||<1。
而AR(1)旳特征方程
(z) 1 z 0
旳根为
z=1/
AR(1)稳定,即 || <1,意味着特征根不小于1。
例 AR(2)模型旳平稳性。 对AR(2)模型
X t 1 X t1 2 X t2 t
方程两边同乘以Xt,再取期望得:
所使用旳工具主要是时间序列旳自有关函数 (autocorrelation function,ACF)及偏自有关函 数(partial autocorrelation function, PACF )。
1、AR(p)过程
(1)自有关函数ACF 1阶自回归模型AR(1)
计量经济学:平稳时间序列分析-差分方程与延迟算子

f (t)
11 0
f (t1)
11
1
f (1)
11 t 1
t
, , 给出初值y-1, y-2,…,y-p以及 0 1
t 的值,即可得到yt。
定理:矩阵F的特征根满足的特征方程为
p 1 p1 2 p2 p1 p 0
1、具有相异特征根的p阶差分方程的通解
如果矩阵F的特征根是相异的,那么存在一个非奇异矩阵
1
0
0
F 0 1 0
0 0 0
p1 p
0
0
0 0 ,
1 0
t
0
Vt
0
0
则原p阶差分方程变为一阶向量差分方程
t Ft1 Vt
参照一阶向量差分方程的递归解法有
t
F
t
1 1
F tV0
F t1V1
F t2V2
FVt1 Vt
即
yt
yt 1
y1
y2
0
0
t 21
1
2 1 2 3
1 p 2 p
t p1
1
p 1 p 2
p p1
将此结果代入 ci t1iti1 即得
ci
p
p1 i
k1(i k )
k i
如果从t期开始迭代,则有
yt j
f ( j1)
11
yt 1
f y ( j1)
12
t2
f y ( j1)
11 0
f (t1)
11
1
f (1)
11 t 1
t
其中
f ( j)
11
c11j
c22j
cppj
《平稳时间序列》课件

欢迎来到《平稳时间序列》PPT课件!在这个课程中,我们将深入研究平稳 时间序列的定义、检验和应用,以及常见的模型和实操演练。
定义
平稳性
均值、方差和协方差都不随时间变化而变化。
检验
1 观察法
通过观察时间序列的趋势和波动性来判断是否平稳。
2 自相关Leabharlann 与偏自相关图通过绘制自相关图和偏自相关图来辅助平稳性检验。
常见模型
AR模型
自回归模型,使用过去的观测值来预测未来值。
MA模型
移动平均模型,使用过去滞后项的线性组合来预测 未来值。
ARMA模型
自回归移动平均模型,结合AR和MA模型的特点, 用于拟合时间序列。
ARIMA模型
差分自回归移动平均模型,用于拟合非平稳时间序 列。
实操演练
1
Python实现平稳性检验
3 单位根检验
使用单位根检验方法(如ADF检验)来检验时间序列的平稳性。
应用
时间序列预测
利用平稳时间序列的特性,进 行未来数值的预测和预测不确 定性的评估。
时间序列建模
根据平稳时间序列的规律性, 构建数学模型来解释和预测时 间序列的行为。
数据挖掘
利用时间序列的历史数据,发 现其中的规律和趋势,为决策 提供依据。
使用Python中的统计库,通过ADF检验方法来检验时间序列的平稳性。
2
R实现时间序列预测
利用R语言中的时间序列分析包,对平稳时间序列进行预测和评估。
3
MATLAB实现时间序列建模
利用MATLAB中的时间序列工具箱,构建平稳时间序列的数学模型。
第三章平稳时间序列分析

t Pp t tt t t x B x x B x Bxx ===---221第3章第三章平稳时间序列分析一个序列通过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着有关信息的平稳序列。
3.1 方法性工具 3.1.1 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x以此类推:记t p x ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x 二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇3.1.2 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。
记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }与{t y },有11)(--±=±t t t t y x y x B4.n t t n x x B -=5.)!(!!,)1()1(0i n i n C B C B i n i i n ni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分t p t p x B x )1(-=∇ 2、k 步差分t k k t t t k x B x x x )1(-=-=∇-3.2 ARMA 模型的性质 3.2.1 AR 模型定义 具有如下结构的模型称之p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε (3.4)AR(p)模型有三个限制条件:条件一:0≠p φ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。
所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。
目前对平稳序列最常用的预测方法是线性最小方差预测。
线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。
在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。
二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。
根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。
如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。
样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。
我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。
纯随机性检验见下图:(图c)图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。
(2)如果序列平稳且非白躁声,选择适当模型拟合该序列的发展。
模型识别如下图(图d)图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。
建模的基本步骤如下:1:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。
2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。
3:估计模型中未知参数的值。
4:检验模型有效性。
如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。
5:模型优化。
如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。
6:利用拟合模型,预测序列的将来走势。
最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,0)模型,既AR(1)模型。
它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质。
自相关系数是按负指数单调收敛到零;利用拟合模型,预测该城市未来5年的降雪量.由(2)可以知道该模型是AR(1)模型;预测结果如下图(图e)由图得未来5(64-68年)的降雪量分别为、、、、。
18. 某地区连续74年的谷物产量(单位:千吨)data example18_1;input x@@;time=_n_;cards;;proc gplot data=example18_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example18_1;identify var=x nlag=18minic p= (0:5) q=(0:5);run;estimate q=1;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图f)图f时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。
根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。
如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。
由时序图显示过去74年中每年谷物产量数据围绕早千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图g)图g样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。
我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。
纯随机性检验见下图:(图h)图h根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。
选择适当模型拟合该序列的发展。
如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图(图i)图i假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。
建模的基本步骤如下:A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。
B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。
C:估计模型中未知参数的值。
D:检验模型有效性。
如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。
E:模型优化。
如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。
F:利用拟合模型,预测序列的将来走势。
最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,0)模型,既AR(1)模型。
它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质。
自相关系数是按负指数单调收敛到零;利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图(图j)由(2)可知,该模型为AR(1)模型;图j未来5年的谷物产量一次为,,,。
19. 现有201个连续的生产记录data example19_1;input x@@;time=_n_;cards;由时序图显示过去201个连续的生产记录数据围绕早84附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图l)图l时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。
根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。
如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。
样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。
我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。
纯随机性检验见下图:(图m)根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。
(2)如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图(图n)某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。
建模的基本步骤如下:1、求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。
2、根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。
3、估计模型中未知参数的值。
4、检验模型有效性。
如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。
5、模型优化。
如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。
6、利用拟合模型,预测序列的将来走势。
最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(0,1)模型,即MA(1)模型。
利用拟合模型,预测该城市下一时刻95%的置信区间。
由(2)可得,该模型为MA(1)模型;下一时刻95%的置信区间[,]。
实验小结:给定一个序列,我们首先应该判断平稳性,如果平稳,再检查是否是纯随机序列,如果序列平稳且非白躁声,选折适当模型拟合序列的发展,选择AR,MA,或ARMA模型,然后可以对该序列进21。