2020最新高考数学复习专题 数列
2020年高考数学专题复习指数型数列不等式放缩

1 3n 1
11 16
3 4
1
3n 1
1 9 3n2
1
8 3n2
1 3n2
1
1 8 3n2
n2
1 3n 1
(3n
3n1 1 1)(3n 1
1)
(3n
3n1 1)(3n 1
1)
3 2 3n 2 (3n 1)(3n1 1)
3 2
(
1 3n
1
3n
1
1
) 1
1 31 1
1 32 1
1 3n 1
1 2
3 2
(
1 32 1
1 33
1
1 33
1
1 34 1
1 3n
1
1 3n1
) 1
1 3 11 2 16 16
引例
求证: 1 31
1
1 32
1
1 3n
1
11 16
1
3n1 1 1
3n 1 3n1 1
3n 3n1
1 3
3n 1
1 31
1
1 32
1
1 3n
1
1
1
1
1
n 1
3n 1
1 2
2 32
2 3n
1
2
1
1
n-1
9 3
2
1 1
3
11 5
23 6
引例
求证: 1 31 1
1 32 1
1 3n 1
3 4
1 3n 1
2 3n
于是, 1 31
1
1 32
1
1 3n
1
2 31
2020版高考数学大一轮复习第六章数列微专题七放缩法在证明中的应用课件

微专题七 放缩法在证明中的应用
[解题策略] 放缩法是不等式证明的重要方法,其中的放缩技巧既有模式可循但更有
创意之变,如何灵活运用有:
(1)n12的放缩: n12<nn1-1=n-1 1-n1(n≥2), n12>nn1+1=n1-n+1 1, n12<n2-1 14=n-1 12-n+1 12;
例1
n
设 n∈N*,求证:
1 61 i2<36.
i=1
nn+1 n
n+12
例 2 设 n∈N*,求证: 2 < kk+1< 2 .
k=1
例3
80
求证:16<
1 k<17.
k=1
(4)真分式ba的放缩: 若 a>b>0,m>0,则ba<ab++mm.
另外,利用重要不等式放缩、导数应用中有关ln x型的放缩(如:ln(1+x)<x, x>0)等也是常见的放缩方式. 利用放缩法证明不等式的难点是放缩的“度”不好把握,放大了或放小了都 得不出所证不等式,这样需要回头调整,留一项或几项不放缩逐步试验向所 证结论靠扰,下面举例说明.
(2)n1!的放缩: n1!=1·2·31·…·n<n·n1-1 =n-1 1-1n(n≥2), n1!=1·2·31·…·n<1·2·21·…·2 =2n1-1(n≥2);
(3) 1n的放缩:
1n=2 2 n>
2
=2(
n+ n+1
n+1- n),
1n=2 2 n<
2
=2(
n+ n-1
n-
n-1);
2020届高考数学二轮复习专题《与数列奇偶项有关的问题》

(2k-1)·2k 2
+
(2k-2)(2k+3) 2
=4k2-3=
n2+64n-3,
特别地,当n=1时,P1=1也符合上式;
③当n=4k-1(k∈N*)时,Pn=S2k-1+B2k=(2k-21)2k+2k(22k+5) =4k2+4k=n2+64n+5.
14n2+32n,n=2k, 综上,Pn=n2+64n-3,n=4k-3,k∈N*,
②当n=2m-1,m∈N*时,Tn=T2m-1=T2m-(-1)2m-1a2ma2m+1=-
1 9
(8m2+12m)+
1 9
(16m2+16m+3)=19(8m2+4m+3)=19(2n2+6n+7).
所以Tn=19-(219n(22+n26+n+6n7),),nn为为偶奇数数,.
要使Tn≥tn2对n∈N*恒成立,只要使-
n2+64n+5,n=4k-1.
数列{an}的前n项和Sn=n(n2+1),数列{bn}的前n项和Bn=n(n2+5),
①当n=2k(k∈N*)时,Pn=Sk+Bk=
k(k+1) 2
+
k(k+5) 2
=k2+3k=
n 2
2+3×n2
=
1 4
n2+
3 2
n;
②当n=4k-3(k∈N*)时,Pn=S2k-1+B2k-2=
Sn=n2;
设数列{an}的公差为d.因为2a5-a3=13,S4=16, 所以42a(a1+1+64dd=)-16(,a1+2d)=13, 解得da=1=21,, 所以an=2n-1,Sn=n2.
n
(2)设Tn= (-1)i·ai,若对一切正整数n,不等式λTn<[an+1+(-1)n+1an]·2n-1恒成
2020高考数学《数列》

数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03. 数列知识要点1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )① 注①:i. acb =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0φac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1φx )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件. ③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;②若等差数列的项数为2()+∈Nn n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n Λ③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n Λ[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m m m mm m mr r ar x r r x r a x r x r x r x r a5. 数列常见的几种形式:⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1(Λ r r P a P n n +++⋅+=--Pr 211Λ.③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0πd 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:一是求使0,01π+≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。
专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 0213.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.【真题体验】4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.305.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n .【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n .考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.【训练3】已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=-1.(1)分别求数列{a n},{b n}的通项公式;(2)求数列{a n·b n}的前n项和T n.考点四数列的综合应用【例4】某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【规律方法】数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n项和T n.【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.82.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-4003.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A.9B.99C.10D.1004.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为() A.1 026 B.1 025 C.1 024 D.1 0235.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________.8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0).10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -112.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n}中,a1=1,且a2,a5,a14成等比数列,{a n}的前n项和为S n,b n=(-1)n S n,则a n=________,数列{b n}的前n项和T n=________.。
高考数学总复习考点知识专题讲解29---数列求和

(2)记2na+n 1的前n项和为Sn. 由(1)知2na+n 1=2n+122n-1=2n1-1-2n1+1. 则Sn=11-13+13-15+…+2n1-1-2n1+1=2n2+n 1.
因为an>0,所以an+1-an-2=0,即an+1-an=2. 又因为当n=1时,2 a1=a1+1,所以( a1-1)2=0, 所以a1=1,所以数列{an}的通项公式为an=2n-1.
(2)因为bn=
1 2n-1+
2n+1=
2n+1- 2
2n-1,
所以b1+b2+…+bn=
1 2
[(
3 -1)+(
(2)由题意,得cn=an+bn=3n+(2n+1), Sn=c1+c2+…+cn =(3+5+7+…+2n+1)+(3+32+…+3n) =n3+22n+1+311--33n=3n2+1+n2+2n-32.
[拓展探究] 若本例(2)中的“cn=an+bn”改为“cn=an +(-1)nbn”,其他条件不变,结果如何求?
(2)2n-112n+1=122n1-1-2n1+1.
(3)
1 n+
n+1=
n+1-
n.
2.两个注意点 (1)应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项. (2)应用错位相减法时,应注意相减后符号的变化和所 构成的等比数列的项数.
1.判断下列结论的正误.(正确的打“√”,错误的打 “×”)
(2)令bn=
n+1 n+22a2n
,数列{bn}的前n项和为Tn.证明:
2020版新高考复习理科数学教学案:数列含答案 (2)

6.[20xx·惠州调研]已知各项均为正数的等比数列{an}中.a1=1,2a3.a5,3a4成等差数列.则数列{an}的前n项和Sn=( )
A.2n-1B.2n-1-1
C.2n-1D.2n
解析:通解:设{an}的公比为q(q>0).由题意知2a5=2a3+3a4.∴2a3q2=2a3+3a3q.∴2q2=2+3q.∴q=2或q=- (舍去).所以an=2n-1.
■备考工具——————————————
1.求数列的前n项和的方法
(1)公式法
①等差数列的前n项和公式
Sn= =na1+ .
②等比数列的前n项和公式
a.当q=1时.Sn=na1;
b.当q≠1时.Sn= = .
(2)分组求和:把一个数列分成几个可以直接求和的数列.
(3)裂项相消:把一个数列的通项分成两项差的形式.相加过程中消去中间项.只剩有限项再求和.
通项公式的推广
an=a1qn-1
(揭示首末两项的关系)
an=amqn-m
(揭示任意两项之间的关系)
(2)前n项和公式
Sn= 或Sn=
7.等比数列的性质
若{an}为等比数列.则
(1){a }. .{c·an}(c≠0)都是等比数列.
(2)各项及公比都不为0.
8.等比数列项的运算性质
若m+n=p+q(m.n.p.q∈N*).则am·an=ap·aq.
令n=101.则S101+a101=2×101-6+ .所以S101+(S101-S100)=196+ .得2S101-S100=196+ ②.
将①代入②得S100=2× -196- =396+ -196- =200.选B.
答Байду номын сангаас:B
2020届高考数学总复习第六章数列6_3等比数列及其前n项和课件文新人教A版

A.1盏
B.3盏
C.5盏
D.9盏
(2)(2019·广州测试)在各项都为正数的等比数列{an}中,已知
a1=2,a2n+2+4a2n=4a2n+1,则数列{an}的通项公式 an=__________.
(3)(2019·洛阳统考)设等比数列{an}的前 n 项和为 Sn,若 a1
+8a4=0,则SS43=(
0 的根,则a1aa917的值为(
)
A.2 2
B.4
C.-2 2或 2 2
D.-4 或 4
(2)(2019·武汉华师附中调研)数列{an}的通项公式为 an=2n-1,
则使不等式 a21+a22+…+a2n<5×2n+1 成立的 n 的最大值为( )
A.2
B.3
C.4
D.5
【解析】 (1)因为 a3,a15 是方程 x2-6x+8=0 的根, 所以 a3a15=8,a3+a15=6, 易知 a3,a15 均为正,由等比数列的性质知,a1a17=a29=a3a15 =8, 所以 a9=2 2,a1aa917=2 2,故选 A. (2)因为 an=2n-1,a2n=4n-1,
【例4】 等比数列{an}中,已知a1+a3=8,a5+a7=4,
则a9+a11+a13+a15的值为( )
A.1
B.2
C.3
D.5
【解析】 法一:因为{an}为等比数列, 所以 a5+a7 是 a1+a3 与 a9+a11 的等比中项, 所以(a5+a7)2=(a1+a3)·(a9+a11), 故 a9+a11=(aa51++aa73)2=482=2. 同理,a9+a11 是 a5+a7 与 a13+a15 的等比中项, 所以(a9+a11)2=(a5+a7)(a13+a15), 故 a13+a15=(aa95++aa117)2=242=1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020最新高考数学复习数列一、高考预测数列是历年高考的重点与难点,以等差数列与等比数列为基础考查数列的性质及前n项和的问题是数列中的中低档难度问题,一般只要熟悉等差数列与等比数列及其前n项和的性质即可正确得出结果.等差数列与等比数列是高中阶段学习的两种最基本的数列,也是高考中经常考查并且重点考查的内容之一,这类问题多从数列的本质入手,考查这两种基本数列的概念、基本性质、简单运算、通项公式、求和公式等.本讲内容在高考中多以选择题和填空题的形式出现,属于中低档题.解题时应从基础处着笔,首先要熟练掌握这两种基本数列的相关性质及公式,然后要熟悉它们的变形使用,善用技巧,减少运算量,既准又快地解决问题.除此以外,数列与其他知识的综合考查也是高考中常考的内容,数列是一种特殊的函数,它能与很多知识进行综合,如方程、函数、不等式、极限,数学归纳法(理)等为主要综合对象,概率、向量、解析几何等为点缀.数列与其他知识的综合问题在高考中大多属于中高档难度问题.数列是新课程的必修内容,从课程定位上说,其考查难度不应该太大,数列试题倾向考查基础是基本方向.从课标区的高考试题看,试卷中的数列试题最多是一道选择题或者填空题,一道解答题.由此我们可以预测2012年的高考中,数列试题会以考查基本问题为主,在数列的解答题中可能会出现与不等式的综合、与函数导数的综合等,但难度会得到控制.二、知识导学要点1:有关等差数列的基本问题1.涉及等差数列的有关问题往往用等差数列的通项公式和求和公式“知三求二”解决问题;要点向3:等差、等比数列综合问题1.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
2.数列求通项的常见类型与方法:公式法、由递推公式求通项,由n S 求通项,累加法、累乘法等3.数列求和的常用方法:公式法、裂项相消法、错位相减法、分组法、倒序相加法等。
4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.要点4:可转化为等差、等比数列的求和问题 某些递推数列可转化为等差、等比数列解决,其转化途径有: 1.凑配、消项变换——如将递推公式1n n a pa q +=+(p q 、为常数,q ≠0,p ≠1)。
通过凑配变成1()11n n q qa p a p p ++=+--;或消常数转化为11()n n n n a a p a a +--=- 2.取倒数法—如将递推公式)(11b a k ma a n n n +=--递推式,考虑函数倒数关系有)11(11m a k a n n+=-⇒m k a k a n n+⋅=-111令n n a b 1=则{}n b 可归为q pa a n n +=+1型。
3.对数变换——如将递推公式1pn n a ca +=(0,0,0,1)n a c p p >>>≠取对数得1lg lg lg n n a c p a +=+4.换元变换——nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq (或1nn n a pa rq +=+,其中p ,q, r 均为常数)。
一般地,要先在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q ++=⋅+引入辅助数列{}n b (其中nn n q a b =),得:q b q p b n n 11+=+则转化为1n n b Aa B +=+的形式。
要点5:数列求和的常用方法: 1、直接由等差、等比数列的求和公式求和,注意对公比1≠q 的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广). 三、易错点点睛命题角度1 数列的概念1.已知数列{a n }满足a 1=1,a n =a 1+2a 2+3a 3+…+(n-1)a n-1,(n ≥2),则{a n }的通项a n =_________.[考场错解] ∵a n =a 1+2a 2+3a 3+…+(n-1)a n-1,∴a n-1=a 1+2a 2+3a 3+…+(n-2)a n-2,两式相减得a n -a n-1=(n-1)a n-1,∴a n =na n-1.由此类推: a n-1=(n-1)a n-2,…a 2=2a 1,由叠乘法可得a n =2!n[专家把脉] 在求数列的通项公式时向前递推一项时应考虑n 的范围.当n=1时,a 1=21与已知a 1=1,矛盾.3.已知数列{a n }满足a 1=1,a n =3n-1+a n-1(n ≥2) (1)求a 2,a 3; (2)求通项a n 的表达式.[考场错解] (1)∵a 1=1,∴a 2=3+1=4,a 3=32+4=13. (2)由已知a n =3n-1+a n-1,即a n -a n-1=3n-1 即a n 成等差数列,公差d=3n-1.故a n =1+(n-1)·3n-1.[专家把脉] (2)问中a n -a n-1=3n-1,3n-1不是常数,它是一个变量,故不符合等差数列的定义.[对症下药] (1)∵a 1=1,∴a 2=4,a 3=32+4=13.(2)由已知a n -a n-1=3n-1,故a n =(a n -a n-1)+(a n-1-a n-2)+…+ (a 2-a 1)+a 1=3n-1+3n-2+…+3+1=213 n .4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于 ( )A.160 B .180 C. 200 D .220[考场错解] 由通项公式a n =a 1+(n+1)d.将a 2,a 3,a 18,a 19,a 20都表示成a 1和d.求a 1、d ,再利用等差数列求和,选C .[专家把脉] 此方法同样可求得解.但解法大繁,花费时间多,计算量大故而出错,应运用数列的性质求解就简易得多. [对症下药] B 由公式m+n=2P ⇒a m +a n =2ap?(只适用等差数列)即可求解.由a 1+a 2+a 3=-24,可得:3a 2=-24 由a 18+a 19+a 20=78,可得:3a 19=78 即 a 2=-8,a 19=26又∵S 20=2)(20201a a +=10(a 2+a 19)=1802.若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 ( )A.4005 B .4006 C.4007 D.4008[考场错解] ∵a 2004+a 2003>0,即2a 1+2002d+2003d>0,(a 1+2002d)(a 1+2003d)<0,要使S n >0.即使na 1+2)1(-n n d >0.这样很难求出a 1,d.从而求出最大的自然数 n.故而判断a 2003>0,a 2004<0,所以前2003项为正,从第2004项起为负,由等差数列的n 项和的对称性使S n >0.故而取n=4005使S n >0.[专家把脉] 此题运用等差数列前n 项的性质及图象中应注意.a 2003>0,a 2004<0. 且忽视了这两项的大小. [对症下药] B ∵a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且{a n }为等差数列 ∴{a n }表示首项为正数,公差为负数的单调递减等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最大的负数(第一个负数),且|a 2003|>|a 2004|∴在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,S 4006=2)(400640061a a +>0 ∴使S n >0成立的最大自然数n 是4006.3.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项a 1=23,公差d=1,求满足S k2=(S k )2的正整数k; (Ⅱ)求所有的无穷等差数列{a n };使得对于一切正整数中k 都有S k2=(S k )2成立.[考场错解] (1)当a 1=23,d=1时,S n =21n 2+n ,由S k2=(S k )2得21k 4+k 2=2221⎪⎭⎫ ⎝⎛+k k ,即k=0或k=4. ∴k ≠0.故k=4.(Ⅱ)由对一切正整数k 都有S k2=(S k )2成立. 即k 2a 1+2)1(22-k k d=(ka 1+d k k 2)1(-)2即(a 1-21a )k 2-adk 2(k-1)+2d k 2(k 2-1)-42d k 2(k-1)2=0对—切正整数k 恒成立故⎪⎪⎩⎪⎪⎨⎧===-0,0,01211d d a a a 求得a 1=0或1,d=0 ∴等差数列a n ={0,0,0,…},或a n ={1,1,1,…}.[专家把脉] (Ⅱ)中解法定对一切正整数k 都成立.而不是一切实数.故而考虑取k 的特值也均成立. [对症下药] (Ⅰ)当a 1=23,d=1时,S n =na 1+.212)1(232)1(2n n n n n d n n +=-+=-由Sk 2=(S k )2,得21k 4+k 2=(21k 2+k)2,即k 3)141(-k =0.又k ≠0,所以k=4.(Ⅱ)设数列{a n }的公差为d ,则在S k2=(S k )2中分别取k=1,2,得⎪⎩⎪⎨⎧⨯+=⨯⨯=⎪⎩⎪⎨⎧==)2.()2122(2344)1(,.)(,)(211211224211d a d a a a S S S S 即由(1)得a 1=0或a 1=1. 当a 1=0时,代入(2)得d=0或d=6.若a 1=0,d=0,则a n =0,s n =0,从而S k2=(S k )2成立;若a 1=0,d=6,则a n =6(n-1),由S 3=18,(S 3)2=324,S 9=216知S 9≠(S 3)2,故所得数列不符合题意.当a 1=1时,代入(2)得 4+6b=(2+d)2解得d=0或d=2.若a 1=1,d=0,则a n =1,S n =n,从而S k2=(S k )2成立;若a 1=1,d=2,则a n =2n-1,S n =1+3+…+(2n-1)=n 2,从而S k2=(S k )2成立.综上,共有3个满足条件的无穷等差数列:①{a n }:a n =0,即0,0,0,…;②{a n }:a n =1,即1,1,1,…;③{a n }:a n =2n-1,即1,3,5,….4.已知数列{a n }的各项都是正数,且满足:a 0=1,a n+1=21a n ·(4-a n ),n ∈N.(1)证明a n <a n+1<2,n ∈N.(2)求数列{a n }的通项公式a n .21×2(4-2),也即当x=k+1时 a k <a k+1<2成立,所以对一切n ∈N,有a k <a k+1<2(2)下面来求数列的通项:a n+1=21a n (4-a n )=21[-(a n -2)2+4],所以2(a n+1-2)=-(a n -2)2令b n =a n -2,则b n =-2121-n b =-21(-2122-n b )2=-21·(21)2221-n b …=-(21)1+2+…+2n-1b 2n ,又b n =-1,所以b n =-(21)2n-1,即a n =2+b n =2-(21)2n-1 专家会诊1.要善于运用等差数列的性质:“若m+n=p+q,则a m +a n =a p +a q ”;等差数列前n 项和符合二次函数特征.借助二次函数性质进行数形结合法解等差数列问题.2.会运用一般与特殊的逻辑思维,利用满足条件的特值求相关参数的值,学会分析问题和解决问题. 命题角度3 等比数列1.数列{a n }的前n 项和记为S n ,已知a 1=1,a a+1=n S nn 2+(n=1,2,3…).证明:(Ⅰ)数列{nSn }是等比数列;(Ⅱ)S n+1=4a n .[考场错解] (Ⅰ)已知a 1=1,a n+1=n S nn 2+,∴a 2=3S 1=3,∴S 2=4a 3=24·S 2=2×4=8.∴S 3=1+3+8=12. 即43,22,11321===SS S .故{nSn }是公比为2的等比数列.(Ⅱ)由(Ⅰ)知11++n S n =4·,11--n S n 于是S n+1=4(n+1)·,11--n S n =4a n .又a 2=3.S 2=a 1+a 2=4,因此对于任意正整数n ≥1,都有S n+1=4a n .[专家把脉] (Ⅰ)中利用有限项判断数列类型是运用不完全归纳法,应给予证明. (Ⅱ)中运用前推一项必须使 n ≥2. [对症下药] (Ⅰ) ∵a n+1=S n+1-S n ,a n+1=nn 2+S n ,∴(n+2)S n =n(S n+1-S n ),整理得nS n+1=2(n+1)=S n ,所以11++n S n =2nSn 故{nSn }是以2为公比的等比数列.(Ⅱ)由(Ⅰ)知11++n S n =4·,11--n S n (n2).于是S n+1=4(n+1)·,11--n S n =4a n (n ≥2).又a 2=3S 1=3, 故S 1=a 1+a 2=4.因此对于任意整数n ≥1,都有S n+1=4a n .2.已知数列{a n }的前n 项和为S n ,S n =31(a n -1)(n ∈N *).(Ⅰ) 求a 1,a 2;(Ⅱ)求证数列{a n }是等比数列.[考场错解] (Ⅰ)S 1=31(a 1-1),得a 1=-21,S 2=31(a 2-1),即a 1+a 2=31(a 2-1),得a 2=41.(Ⅱ)a n =S n -S n-1=31(a n -1)-31(a n-1-1),得211-=-n n a a ,所以{a n }是首项为-21,公比为-21的等比数列.[专家把脉] 在利用a n =S n -S n-1公式时,应考虑n ≥2时才能成立.[对症下药] (Ⅰ)由S 1=31(a 1-1), 得a 1=31(a 1-1),∴a 1=-21.又S 2=31(a 2-1),即a 1+a 2=31(a 2-1),得a 2=41. (Ⅱ)当 n >1时,a n =S n S n-1=31(a n -1)-31(a n-1-1),得1-n n a a =-21,所以{a n }是首项为-21,公比为-21的等比数列.3.等比数列的四个数之和为16,中间两个数之和为5,则该数列的公比q 的取值为 ( ) A. 41 或4 B. 41或833415- C. 4或-841533+ D. 4或41或833415-或841533+[考场错解] 设这四个数为qa q a ,3,aq,aq 3.由题意得⎪⎩⎪⎨⎧=+=),2(5),1(164 aq qaa 由①得a=±21,代入②得q=±21或q 2=±2.q 2=41或q 2=4,故所求的公比为41或4.故应选A.[专家把脉] 上述解答设等比数列的公比为q 2是不合理的.这相当于增加了四个数同号这个条件,而题设中的四个数不一定同号.因此,产生了漏解现象.[对症下药]设这四个数为a,aq,aq 2,aq 3,则833415414,5,16232-=⎪⎩⎪⎨⎧=+=∙∙∙或或解之得q aq aq aq aq qa a 或-841533+.因此,应选D. 4.设数列{a n }的首项a 1=a ≠41,且a n+1=,3,2,1,41,412112=-=⎪⎪⎩⎪⎪⎨⎧+-n a b n a n a n n n n 记为奇数为偶数(Ⅰ)求a 2,a 3;(Ⅱ)判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)求∞→n lim(b 1+b 2+b 3+…+b n ).[考场错解] (Ⅰ)a 2=a 1+41=a+41,a 3=21a 2=21a 81; (Ⅱ)b n+1=a 2n+1-4141.412221241121==-=---++n n n n nn a a a ab b .(Ⅲ)求∞→n lim (b 1+b 2+b 3+…+b n )=∞→n lim 411)411(1--nb =3134)41(34411414111-=-=--=-a a a b .[专家把脉]在求证b n 是等比数列是时,222-n na a 式子中,an中n 为偶数时,211=+n n a a 是连续两项,并不能得出412=+n n a a .[对症下药] (Ⅰ)a 2=a 1+41=a+41,a 3=21a 2=21a+81; (Ⅱ)∵a 4=a 3+41=21a+83,所以a 5=21a 4=41a+163,所以b 1=a 1-41=a-41,b 2=a 3-41=21(a-41),b 3=a 5-41=41(a-41),猜想:{b n }是公比为21的等比数列.证明如下:因为b n+1=a 2n+1-41=21a 2n -41=21(a 2n-1-41)=21b n ,(n ∈N *)所以{b n }是首项为a-41,公比为21的等比数列.(Ⅲ)求∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim).41(2211211)211(11-=-=--a b b n专家会诊1.证明等比数列时应运用定义证nn a a 1+为非0常数,而不能1-n n a a (此时n ≥2).2.等比数列中q 可以取负值.不能设公比为q 2.3.会运用等比数列性质,“若m+n=p+k,则a m ·a n =a p ·a k ”.命题角度 4 等差与等比数列的综合1.(典型例题)已知数列{a n }的前n 项和S n =a[2-(21)n-1]-b[2-(n+1)(21)n-1](n=1,2,…),其中a,b 是非零常数,则存在数列{x n }、{y n }使得( )A.a n =x n +y n ,其中{x n }为等差数列,{y n }为等比数列 B .a n =x n +y n ,其中{x n }和{y n }都为等差数列。