2022高三数学文人教B版一轮:第2章 第1节函数及其表示

合集下载

2022届高考数学一轮复习(新高考版) 第2章 函数的概念及其表示

2022届高考数学一轮复习(新高考版) 第2章 函数的概念及其表示

解析 ∵f(x)-2f 1x=2x,

以1x代替①中的 x,得 f 1x-2f(x)=2x,

①+②×2 得-3f(x)=2x+4x,
∴f(x)=-23x-34x.
题型三 分段函数
命题点1 求分段函数的函数值
例 2 已知 f(x)=cfoxs-π1x,+x1≤,1x,>1, 则 f 43+f -43的值为
ZHUGANSHULI JICHULUOSHI
知识梳理
1.函数的概念 一般地,设A,B是非空的 数集 ,如果按照某种确定的对应关系f,使对于集合 A中的任意一个数x在集合B中都有 唯一确定 的数f(x)和它对应,那么就称f: A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的定义域、值域 (1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的 定义域 ; 与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的 值域 . (2)如果两个函数的 定义域 相同,并且 对应关系 完全一致,我们就称这两个函 数相等.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是 四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB 于点Q,设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD) 的面积为y,则函数y=f(x)的大致图象是
(2)设函数 f(x)=x2+x,1x,>0x,≤0, 则满足 f(x)+f x-12>1 的 x 的取值范围 是__-__14_,__+__∞__ .
解析

x>12时,2x+2

2022届高考数学统考一轮复习第2章函数第1节函数及其表示教师用书教案理新人教版

2022届高考数学统考一轮复习第2章函数第1节函数及其表示教师用书教案理新人教版

学习资料2022届高考数学统考一轮复习第2章函数第1节函数及其表示教师用书教案理新人教版班级:科目:函数全国卷五年考情图解高考命题规律把握1.考查形式本章在高考中一般为1~3个客观题。

2。

考查内容高考对本章内容的考查主要涉及指数、对数的运算,指数函数、对数函数的图象与性质,分段函数的求值,函数奇偶性的判断,函数奇偶性、单调性及周期性的综合应用,函数的零点等内容.函数及其表示[考试要求] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2。

在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).1.函数与映射的概念函数映射2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x∈[0,2]与函数f(x)=|x|,x∈[-2,0].3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.错误!常见函数定义域的求法类型x满足的条件错误!(n∈N*)f(x)≥0 2n+1f(x)(n∈N*)f(x)有意义错误!与[f(x)]0f(x)≠0 log a f(x)(a>0且a≠1)f(x)>0 a f(x)(a>0且a≠1)f(x)有意义tan[f(x)]f(x)≠错误!+kπ,k∈Z四则运算组成的函数各个函数定义域的交集实际问题使实际问题有意义一、易错易误辨析(正确的打“√”,错误的打“×")(1)对于函数f:A→B,其值域是集合B.()(2)函数y=1与y=x0是同一个函数.()(3)函数f(x)=x2-2x与g(t)=t2-2t是同一个函数.() (4)函数f(x)的图象与直线x=1最多有一个交点.() (5)已知f(x)=m(x∈R),则f(m3)=m3。

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。

新高考数学人教版一轮课件第二章第一节函数及其表示

新高考数学人教版一轮课件第二章第一节函数及其表示

2.设函数f(x)= ________.
2x,x<2, x+2x3,x≥2,
答案:(0,2)∪(3,+∞)
若f(x0)>1,则x0的取值范围是
课时作业 · 巩固提升
点击进入word....
题型三 分段函数 多维探究
高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般 较小.常见的命题角度有:(1)分段函数的函数求值问题;(2)分段函数 的自变量求值问题;(3)分段函数与不等式问题.
考法(一) 分段函数求值问题
[例1] (1)已知函数f(x)=floxg+2x,3,x≥x<6,6, 则f(-1)的值为(
[例1] (多选题)(2021·深圳模拟)在平面直角坐标系中,横坐标、纵坐标
均为整数的点称为整点,若函数f(x)的图象恰好经过n(n∈N*)个整点,则
称函数f(x)为n阶整点函数.给出下列函数:
其中是一阶整点函数的是( AD )
A.f(x)=sin 2x
B.g(x)=x3
C.h(x)=13x
D.φ(x)=ln x.
x+1,-1<x<0, 2x,x≥0,
若实数
a满足f(a)=f(a-1),则f1a=( A.2
) B.4
C.6
D.8
(2)设函数f(x)= ________.
x2-1,x≥2, log2x,0<x<2,
若f(m)=3,则实数m的值为
[解析] (1)由题意得a≥0且-1<a-1<0, 即0<a<1,由f(a)=f(a-1),即2a= a,解得a=14,则f1a=f(4)=8. (2)当m≥2时,由m2-1=3,得m2=4,解得m=2;当0<m<2时,由 log2m=3,解得m=23=8(舍去).综上所述,m=2.

2022高考数学一轮复习第2章函数与基本初等函数第1讲函数及其表示课件新人教B版

2022高考数学一轮复习第2章函数与基本初等函数第1讲函数及其表示课件新人教B版

2.(2019·郑州调研)函数f(x)=ln x-x 1+x12 的定义域为(
)
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(0,1)∪(1,+∞)
解析 要使函数f(x)有意义,应满足x-x 1>0,解得x>1,故函数f(x)=ln x≥0,
x-x 1+x12 的定义域为(1,+∞).故选B.
解析
第二十一页,编辑于星期六:五(1)若已知函数f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等 式a≤g(x)≤b求出. (2)若已知函数f[g(x)]的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b] 上的值域.
第二十二页,编辑于星期六:五点 十九分。
解析
第二十三页,编辑于星期六:五点 十九分。
4.(2020·重庆模拟)已知函数f(x)=ln 义域为___-__1_,__-__12_ _.
(-x-x2),则函数f(2x+1)的定
解析 由题意知,-x-x2>0, ∴-1<x<0,即f(x)的定义域为(-1,0). ∴-1<2x+1<0,则-1<x<-12.
第五页,编辑于星期六:五点 十九分。
1.函数问题允许多对一,但不允许一对多.与x轴垂直的直线和一个 函数的图象至多有1个交点.
2.若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B 的映射共有nm个.
3.分段函数的定义域等于各段函数的定义域的并集,其值域等于各 段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函 数.
解析 答案
第七页,编辑于星期六:五点 十九分。
2.(2019·山东临沂三模)已知函数f(x)=

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.

新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件

新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件
[0,1) 解析:因为 y=f(x)的定义域为[0,2], 所以,要使 g(x)有意义应满足0x-≤12≠x≤02,, 解得 0≤x<1.所以 g(x)的定义域是[0,1).
常见函数类型的定义域 (1)分式中,分母不为 0. (2)偶次方根中,被开方数非负. (3)对于 y=x0,要求 x≠0,负指数的底数不为 0. (4)抽象函数定义域要注意对应法则下的取值范围. (5)对数式中,真数大于 0.
考向 1 分段函数求值 x2-4,x>2,
(1)(2021·浙江卷)已知 a∈R,函数 f(x)=|x-3|+a,x≤2. 若 f(f( 6))=3,则 a=__________.
x2+2x+2,x≤0, (2)设函数 f(x)=-x2,x>0. 若 f(f(a))=2,则 a=________.
AC 解析:对于 A,f(x)=x2-2x-1 的定义域为 R,g(s)=s2- 2s-1 的定义域为 R,定义域相同,对应关系也相同,是同一函数; 对于 B,f(x)= -x3=-x -x的定义域为{x|x≤0},g(x)=x -x的 定义域为{x|x≤0},对应关系不同,不是同一函数;对于 C,f(x)=xx= 1 的定义域为{x|x≠0},g(x)=x10=1 的定义域为{x|x≠0},定义域相同, 对应关系也相同,是同一函数;对于 D,f(x)=x 的定义域为 R,g(x) = x2=|x|的定义域为 R,对应关系不同,不是同一函数.故选 AC.
(√)
(5)函数 y=f(x)的图象可以是一条封闭的曲线.
(×)
2.(2021·安阳模拟)设集合 M={x|0≤x≤2},N={y|0≤y≤2}.下 面的 4 个图形中,能表示从集合 M 到集合 N 的函数关系的有( )

2022年高考数学一轮复习-第一节函数及其表示课件-新人教版2

2022年高考数学一轮复习-第一节函数及其表示课件-新人教版2
第八页第,八编辑页于,星期编一:辑十于五点星二期十六四分:。 二十一点 三十一分。
2.函数的相关概念 (1)函数的三要素是 定义、域
(2)相等函数 如果两个函数的 定义域和
个函数相等.
值和域
对应. 关系
对应关完系全一致,则这两
第九页第,九编辑页于,星期编一:辑十于五点星二期十六四分:。 二十一点 三十一分。
第三第十七三页十,七编辑页于,星编期一辑:于十星五点期二四十:六二分。十一点 三十一 分。
[自主体验]
已知符号函数sgnx=
解集为
.
则不等式(x+1)sgnx>2的
第三第十八三页十,八编辑页于,星编期一辑:于十星五点期二四十:六二分。十一点 三十一 分。
解析:当x>0时,sgnx=1. 由(x+1)sgnx>2得x>1. 当x=0时,sgnx=0. 不等式(x+1)sgnx>2解集为∅. 当x<0时,sgn=-1, 由不等式(x+1)sgnx>2得x<-3. 综上可知不等式(x+1)sgnx>2的解集为{x|x<-3或x>1}. 答案:{x|x<-3或x>1}
3.下列各组函数是同一函数的是 ( )
A. y = 与y=1
B. y =
与y=
C. y =
与y=2x-1
D. y =
与y=x
第十第六页十,六编页辑于,星编期辑一:于十星五期点四二十:六二分十。一点 三十一分。
解析:∵y= y=
y=
答案:D
排除A; 排除B;
排除C.
第十第七十页七,页编,辑编于辑星于期星一期:四十:五二点十二一点十六三分十。一分。
[课堂笔记] 法一:若x≤0,f(x)=x2+bx+c. ∵f(-4)=f(0),f(-2)=-2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考总复习 ·数学(文科)
第二章 函数的概念与基本初等 函数(Ⅰ)
第一节 函数及其表示
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)

课 前 ·基 础 巩 固 1


课 堂 ·考 点 突 破 2

3 课 时 ·跟 踪 检 测
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
三、易错自纠
4.已知 f(x)=2-x-x2+2,3,x≥x<0,0,若 f(a)=2,则 a 的值为(
)
A.2
பைடு நூலகம்
B.-1 或 2
C.±1 或 2
D.1 或 2
解析:选 B 当 a≥0 时,2a-2=2,解得 a=2; 当 a<0 时,-a2+3=2,解得 a=-1. 综上,a 的值为-1 或 2.故选 B.
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
4.分段函数 (1)若函数在其定义域的不同子集上,因 16 _对__应__关__系__不同而分别用几个不同的式子 来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的 17 __并__集_____,其值域等于各段函数 的值域的 18 ___并__集____,分段函数虽由几个部分组成,但它表示的是一个函数.
B 的一个函数
B 的一个映射
函数 y=f(x),x∈A
映射:f:A→B
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
2.函数的定义域、值域 (1)在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 叫做函数的 9 __定__义__域___; 与 x 的值相对应的 y 值叫做函数值,函数值的 10 _集__合__{_f_(x_)_|x_∈__A__}_____叫做函数的 11 __值__域_____. (2)如果两个函数的 12 _定__义__域____相同,并且 13 _对__应__关__系__完全一致,则这两个函数 为相等函数. 3.函数的表示法 表示函数的常用方法有 14 __解__析__法___、图象法和 15 _列__表__法____.
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
‖常用结论‖ 1.函数是特殊的映射,是定义在非空数集上的映射. 2.直线 x=a(a 是常数)与函数 y=f(x)的图象有 0 个或 1 个交点. 3.分段函数无论分成几段,都是一个函数,必须用分类讨论的思想解决分段函数问 题.
答案:(1)× (2)× (3)× (4)×
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
二、走进教材 2.(必修 1P74A 组 T7(2)改编)函数 f(x)= x+3+log2(6-x)的定义域是________. 答案:[-3,6)
第二章 函数的概念与基本初等函数(Ⅰ)
f:A→B 个 数 x , 在 集 合 B 中 都 有 4 个 元 素 x , 在 集 合 B 中 都 有 6
唯__一__确__定___的数 f(x)和它对应
唯__一__确__定___的元素 y 与之对应
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
名称 记法
函数
映射
称 7 _f_:__A_→__B__为从集合 A 到集合 称 8 _f_:__A_→__B__为从集合 A 到集合
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
5.已知函数 f(x)=x|x|,若 f(x0)=4,则 x0 的值为____________________. 解析:当 x≥0 时,f(x)=x2,由 f(x0)=4, 即 x20=4,得 x0=2; 当 x<0 时,f(x)=-x2,由 f(x0)=4,即-x20=4,无解, 所以 x0=2. 答案:2
返回导航
高考总复习 ·数学(文科)
3.(必修 1P25B 组 T1改编)函数 y=f(x)的图象如图所示,那么 f(x)的定义域是________; 值域是________,其中只有唯一的 x 值与之对应的 y 值的范围是________.
答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]
[最新考纲]
[考情分析]
[核心素养]
1.了解构成函数的要素,会求一些
简单函数的定义域和值域,了解
以基本初等函数为载体,考
映射的概念.
查函数的表示法、定义域;分段
2.在实际情境中,会根据不同的需 函数以及函数与其他知识的综合 1.数学运算
要选择恰当的方法(如图象法、列 是高考热点,题型既有选择题、 2.逻辑推理
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
解析:(1)错误.函数 y=1 的定义域为 R,而 y=x0 的定义域为{x|x≠0},其定义域 不同,故不是同一函数.
(2)错误.值域 C⊆B,不一定有 C=B. (3)错误.f(x)= x-3+ 2-x中 x 不存在. (4)错误.若两个函数的定义域、对应法则、值域均对应相同时,才是相等函数.
表法、解析法)表示函数.
填空题,又有解答题,中等偏上
3.了解简单的分段函数,并能简单 难度.
应用.
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
1
课 前 ·基 础 巩 固
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
‖知识梳理‖
1.函数与映射的概念
函数
映射
两个集合 A,B
设 A,B 是两个 1 _非__空__数__集__
设 A,B 是两个 2 _非__空__集__合__
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
函数
映射
如果按照某种确定的对应关系 f, 如果按某一个确定的对应关系 f,
对应关系 使对于集合 A 中的 3 ___任__意____一 使对于集合 A 中的 5 ___任__意____一
第二章 函数的概念与基本初等函数(Ⅰ)
返回导航
高考总复习 ·数学(文科)
‖基础自测‖ 一、疑误辨析 1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)函数 y=1 或 y=x0 是同一个函数.( ) (2)对于函数 f:A→B,其值域是集合 B.( ) (3)f(x)= x-3+ 2-x是一个函数.( ) (4)若两个函数的定义域与值域相同,则这两个函数相等.( )
相关文档
最新文档