浙教版初中数学教案八年级下第四章

合集下载

八年级数学浙教版下册优质教案

八年级数学浙教版下册优质教案

八年级数学浙教版下册优质教案一、教学内容本节课我们将要学习浙教版八年级数学下册第四章《一次函数》4.1节《一次函数图像》。

具体内容包括一次函数定义、图像及其性质。

通过本节课学习,学生将掌握一次函数图像特点及其在坐标平面上表示方法。

二、教学目标1. 知识目标:使学生理解并掌握一次函数定义,能够准确地绘制一次函数图像,并解其性质。

2. 能力目标:培养学生观察、分析、解决问题能力,提高学生动手操作能力和空间想象能力。

3. 情感目标:激发学生学习数学兴趣,培养学生合作交流意识。

三、教学难点与重点教学难点:一次函数图像绘制及性质理解。

教学重点:一次函数定义掌握,图像绘制及性质应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入利用多媒体课件展示一些生活中直线现象,如斜坡、电梯轨道等,引导学生观察并思考这些现象与一次函数之间关系。

2. 知识讲解(1)通过课件展示,引导学生回顾已学正比例函数定义及图像。

(2)讲解一次函数定义,并引导学生发现一次函数与正比例函数联系与区别。

3. 例题讲解(1)绘制y=3x2图像,并分析其性质。

(2)根据图像判断一次函数增减性。

4. 随堂练习(1)绘制y=x+4图像,并分析其性质。

(2)已知一次函数图像,求解析式。

5. 小组讨论(1)一次函数图像性质及其应用。

(2)如何根据图像判断一次函数增减性。

6. 课堂小结六、板书设计1. 定义:一次函数y=kx+b(k≠0,k、b为常数)。

2. 图像:直线,可分为上升和下降两种情况。

3. 性质:一次函数图像具有单调性、斜率性、截距性。

七、作业设计1. 作业题目:(1)绘制y=4x3图像,并分析其性质。

(2)已知一次函数图像,求出其解析式。

2. 答案:(1)图像为一条斜率为4,截距为3直线,具有上升性质。

(2)根据图像可得解析式,如y=2x+1。

(3)y=5x+2为增函数,y=3x+4为减函数。

2024年八年级数学浙教版下册教案

2024年八年级数学浙教版下册教案

2024年八年级数学浙教版下册教案一、教学内容本节课选自2024年八年级数学浙教版下册教材第四章《几何图形的相似》,具体包括4.1节“相似图形的定义和性质”以及4.2节“相似多边形的判定与性质”。

详细内容涉及相似图形的基本概念、相似多边形的判定方法、相似多边形的性质及其应用。

二、教学目标1. 理解并掌握相似图形的定义,能识别日常生活中的相似图形;2. 掌握相似多边形的判定方法,能够判断两个多边形是否相似;3. 掌握相似多边形的性质,能够运用性质解决相关问题。

三、教学难点与重点重点:相似图形的定义与性质,相似多边形的判定方法;难点:相似多边形性质的应用,解决实际问题时相似关系的建立。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型;2. 学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入(5分钟)利用多媒体课件展示生活中常见的相似图形,引导学生观察并思考相似图形的特点。

2. 知识讲解(15分钟)(1)讲解相似图形的定义,通过例题使学生理解并掌握;(2)介绍相似多边形的判定方法,结合例题进行分析;(3)阐述相似多边形的性质,通过例题讲解使学生掌握。

3. 随堂练习(10分钟)设计23道练习题,让学生运用相似图形的定义和性质进行解答。

4. 例题讲解(15分钟)选择2道典型例题,分别涉及相似图形的判定和性质的应用,进行详细讲解。

5. 小组讨论与分享(10分钟)学生分小组讨论相似图形在实际生活中的应用,并分享讨论成果。

六、板书设计1. 第四章几何图形的相似4.1 相似图形的定义和性质4.2 相似多边形的判定与性质2. 定义、性质、判定方法等关键内容用不同颜色的粉笔标出,突出重点。

七、作业设计1. 作业题目:(1)判断下列图形是否相似,并说明理由;(2)已知两个相似多边形的对应边长,求另一个相似多边形的对应边长;(3)运用相似多边形的性质解决实际问题。

2. 答案:见课后附录。

八、课后反思及拓展延伸1. 反思:针对本节课的教学内容,反思教学方法是否得当,学生对相似图形的理解程度如何,及时调整教学策略;2. 拓展延伸:引导学生关注相似图形在实际生活中的应用,鼓励学生探索相似图形在其他学科领域的应用。

浙教版初中数学八年级下册教案

浙教版初中数学八年级下册教案

浙教版初中数学八年级下册教案教案:浙教版初中数学八年级下册一、教学内容本节课的教学内容来自于浙教版初中数学八年级下册第四章《二次根式》中的第1节《二次根式的概念与性质》。

本节主要讲述二次根式的定义、性质以及二次根式的运算。

二、教学目标1. 理解二次根式的概念,掌握二次根式的性质。

2. 学会进行二次根式的运算,包括加减乘除以及乘方。

3. 能够应用二次根式的知识解决实际问题。

三、教学难点与重点1. 难点:二次根式的混合运算。

2. 重点:二次根式的概念理解以及性质的掌握。

四、教具与学具准备1. 教具:黑板、粉笔、投影仪。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:讲解一个实际问题,例如“一个正方形的对角线长为8cm,求这个正方形的面积。

”2. 讲解二次根式的概念:通过对实际问题的解答,引入二次根式的概念,讲解二次根式的定义。

3. 讲解二次根式的性质:通过示例,讲解二次根式的性质,如:二次根式具有非负性、平方根的性质等。

4. 二次根式的运算:讲解二次根式的加减乘除以及乘方运算规则,并通过例题进行讲解。

5. 随堂练习:布置几道练习题,让学生现场进行解答,以巩固所学知识。

6. 作业布置:布置几道有关二次根式的练习题,让学生课后进行练习。

六、板书设计板书设计如下:二次根式的概念与性质1. 概念:二次根式是指形如√a的根式,其中a是一个非负实数。

2. 性质:a) 非负性:二次根式 always nonnegativeb) 平方根的性质:如果一个数x的平方等于a,那么x是a的平方根。

七、作业设计1. 作业题目:(1)计算下列二次根式的值:a) √9 + √16b) √(49) √(2516)(2)判断下列说法是否正确:a) √25 = 5b) √(525) = 5√52. 作业答案:(1)a) √9 + √16 = 3 + 4 = 7b) √(49) √(2516) = 2√3 5√2 = 2√3 5√2(2)a) √25 = 5 正确b) √(525) = 5√5 错误,√(525) = 5√5八、课后反思及拓展延伸课后反思:本节课通过实际问题的引入,使学生能够直观地理解二次根式的概念和性质,并通过例题讲解和随堂练习,让学生掌握了二次根式的运算方法。

2024年八年级下册数学浙教版精彩教案精彩课件精彩教案

2024年八年级下册数学浙教版精彩教案精彩课件精彩教案

2024年八年级下册数学浙教版精彩教案精彩课件精彩教案一、教学内容本节课选自2024年八年级下册数学浙教版第四章《几何图形的相似与证明》中的4.1节《相似图形的认识》。

具体内容包括:相似图形的定义、性质、判定方法以及实际应用。

二、教学目标1. 理解并掌握相似图形的定义,能识别生活中常见的相似图形。

2. 掌握相似图形的性质,能运用性质解决相关问题。

3. 学会使用判定方法判断两个图形是否相似,并运用相似知识解决实际问题。

三、教学难点与重点重点:相似图形的定义、性质、判定方法。

难点:相似性质的推导和应用。

四、教具与学具准备1. 教具:多媒体课件、几何画板、实物模型。

2. 学具:三角板、圆规、直尺、量角器。

五、教学过程1. 实践情景引入利用多媒体课件展示生活中常见的相似图形,如建筑、艺术作品等,引导学生观察并发现相似图形的特点。

2. 知识讲解(1)相似图形的定义:通过比较两个图形的形状和大小,引导学生理解相似图形的概念。

(3)相似图形的判定方法:讲解AA、SAS、SSS等判定方法,并举例说明。

3. 例题讲解结合教材例题,讲解相似图形的判定和性质应用。

4. 随堂练习布置一些判断相似图形、运用性质解决问题的题目,让学生独立完成。

5. 课堂小结归纳本节课所学内容,强调相似图形的定义、性质和判定方法。

六、板书设计1. 相似图形的定义2. 相似图形的性质3. 相似图形的判定方法4. 例题及解答七、作业设计1. 作业题目:(2)已知两个相似三角形的对应边长,求它们的相似比。

(3)运用相似知识解决实际问题。

2. 答案:(1)图形①和图形②相似,因为它们对应角相等,对应边成比例。

(2)相似比为3:2。

(3)答案见教材课后习题。

八、课后反思及拓展延伸1. 反思:本节课学生掌握相似图形的定义、性质和判定方法情况,及时调整教学方法,提高教学效果。

2. 拓展延伸:(1)研究相似图形在生活中的应用,提高学生的几何审美能力。

(2)学习相似图形的证明方法,为后续学习打下基础。

数学浙教版八年级下册第4章平行四边形 教案

数学浙教版八年级下册第4章平行四边形 教案

4.1 多边形教学目标知识与技能1.了解多边形的概念.2.掌握多边形的外角和及内角和公式.3.通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法.过程与方法1.让学生经历猜想、探索、推理、归纳等过程发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法.2.通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.情感、态度与价值观通过学生间交重点探索多边形的内角和公式及外角和.难点如何把多边形转化成三角形,用分割多边形方法推导多边形的外角和与内角和.教学设计一、复习1.三角形的定义.2.三角形的内角和与外角和.学生回忆后思考回答.二、探究1.多边形的有关概念(1)我们已经知道三角形的定义,那么能否模仿三角形的定义来给四边形、五边形下定义?学生思考、讨论、交流,得出答案.教师活动:鼓励、点评.(2)教师引导、归纳得出:一般地,由n条(n≥3)不在同一直线上的线段首尾顺次相接形成的图形称为n边形,又称多边形.(3)活动:根据多边形的定义,自画一些多边形,同桌相互识别,判断是几边形.学生画图,同桌互相交流.注意:—般以顺时针或逆时针方向按顺序确定顶点字母.(4)多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角.多边形每一个内角的顶点叫做多边形的顶点.连接多边形不相邻两个顶点的线段叫做多边形的对角线.(5)四边形的定理:四边形的内角和等于360°.(6)课堂讨论,完成下表.学生思考填表,讨论交流.例1 如课本,四边形风筝的四个内角∠A,∠B,∠C,∠D的度数之比为1:1:0.6:1.求它的四个内角的度数.2.多边形的内角和与外角和.(1)问题导引:三角形的内角和随三角形的形状大小而变化吗?(2)类比猜想:四边形的内角和随四边形的形状大小而变化吗?怎样把四边形转化为三角形来计算呢?(3)思考:通过作对角线可以把四边形转化为三角形吗?(4)类比的办法观察,过多边形的一个顶点能作多少条对角线?多边形的边数 3 4 5 6 7 …n分成三角形的个数 1 2 …多边形的内角和…归纳得出:n边形的内角和为(n-2)·180°.(5)多边形的每一个外角与它相邻的内角之间是什么关系?学生思考后回答.(6)同三角形一样,多边形的几个外角与相对应的内角之和为多少?学生分组讨论交流.学生代表口答.教师点评并总结:任何多边形的外角和为360°.例2 一个六边形如图,已知AB∥DE,BC∥EF,CD∥AF.求∠A+∠C+∠E的度数.三、小结1.多边形的有关概念.2.多边形的内角和公式:(n-2)·180°.3.任何多边形的外角和为360°.4.类比、化归的数学思想方法.学生回忆、思考、归纳.四、布置作业教材P80作业题第1,2题.4.2 平行四边形及其性质教学目标知识与技能1.掌握平行四边形的定义及对边相等、对角相等和对角线互相平分的性质.2.了解平行线间的距离的概念及性质.过程与方法1.会证明平行四边形的性质.2.进一步学习有条理地思考与表达,培养学生的探索能力和合作交流的习惯.尝试从不同角度寻求解决问题的多种方法,提高解决问题的能力.情感、态度与价值观定义边及内角外角对角线三角形四边形多感受数学学习的乐趣,增加学习数学的兴趣和自信心.教学重点平行四边形的性质.教学难点探索平行四边形的性质.教学设计一、创设情境,导入新课展示图片(可用本章章前图),引导学生去阅读此内容.从这段文字中,我们知道,平行四边形是我们生活中常见的一种图形,它有十分和谐的对称美,这就告诉我们平行四边形就在我们身边,与我们生活息息相关.二、新知探究探究1:平行四边形的定义(1)让学生交流生活中见到的平行四边形,教师可投影部分平行四边形的图片.(2)概括并板书:两组对边分别平行的四边形是平行四边形.如果四边形ABCD是平行四边形,那么记作□ABCD.思考:(1)要识别一个图形是平行四边形,目前的方法有几个?(2)平行四边形应该有几组对边平行?说明:定义既是性质也是判定方法,现在判定一个四边形是平行四边形的方法只有一个,就是利用定义判定.平行四边形应该有2组对边平行.探究2:平行四边形的性质用两块相同的三角板拼一个平行四边形.讨论下面的问题:(1)怎样能拼出一个平行四边形?你能拼出多少个形状不同的平行四边形?(2)怎样证明你拼出的四边形是平行四边形?(3)通过上述活动,你发现平行四边形有哪些性质?你能证明这些性质吗?思考:请说出平行四边形的边、角之间的位置关系和数量关系.在学生操作、讨论、交流、猜想出结论后,最后概括:平行四边形的对边相等,对角相等.思考:这个结论正确吗?你能用推理的方法证明吗?教师引导学生画出图形,写出已知、求证,并让学生思考证明线段相等、角相等的方法,从而得出用全等三角形证明得到的结论.证明后得到平行四边形的性质:性质定理1:平行四边形的对边相等.性质定理2:平行四边形的对角相等.例1如图,E,F分别是□ABCD的边AD,BC上的点,且AF∥CE.求证:DE=BF,∠BAF=∠DCE.探究3:平行线之间的距离知识拓展(1)想一想:在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?(2)试一试,准备一张方格纸,按下面步骤,完成如下作图,并按要求回答问题:步骤1:在方格纸上画两条平行线:AB与CD;步骤2:在直线AB上取点M,N,P,Q,…;步骤3:分别作MM'丄CD,NN'丄CD,PP'丄CD,QQ'丄CD,…;步骤4:用刻度尺测量MM',NN',PP',QQ'…的长度.问题1:经过测量你发现MM',NN',PP',QQ'…有何关系?问题2:如果在直线AB上取M,N,P,Q,在直线CD上取M',N',P',Q'分别作MM'∥NN'∥PP'∥QQ',用刻度尺测量MM',NN',PP',QQ'…的长度,它们有什么关系?从上述的操作中,我们可发现:这些平行线之间的垂直线段的长度相等且平行线间的平行线也相等.两条直线平行,其中一条直线的任一点到另一条直线的距离叫做这两条平行线之间的距离.概括:平行线之间的距离处处相等.例2 如图,放在墙角的立柜的上、下底面是一个等腰直角三角形,腰长为1.4 m.现要将这个立柜搬过宽为1.2 m的通道,能通过吗?探究4:平形四边形的对角线互相平分任意画一个平形四边形,连结它的两条对角线.你发现了什么?你能证明你发现的结论吗?平行四边形还有如下性质:平行四边形的对角线互相平分.例3 已知:如图,□ABCD的对角线AC,BD相交于点O.过点O作直线EF,分别交AB,CD于点E,F.求证:OE=OF.三、课时小结1.两组对边分别平行的四边形是平行四边形.如果四边形ABCD是平行四边形,那么记作□ABCD.2.平行线的性质:(1)夹在平行线间的平行线段相等;(2)夹在两条平行线间的垂直线段相等;(3)平行线之间的距离处处相等.3.平行四边形的性质:性质定理1:平行四边形的对边相等.性质定理2:平行四边形的对角相等.性质定理3:平行四边形的对角线互相平分.4.3 中心对称教学目标知识与技能1.知道中心对称与中心对称图形的意义.2.知道成中心对称的两个图形的性质,会判断两个图形是否成中心对称,会画一个图形关于一个点成中心对称的图形.过程与方法经历观察发现探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.情感、态度与价值观培养审美能力,增强对图形的审美意识.重点难点重点:中心对称图形的概念及基本性质.难点:中心对称图形的判定.教学设计设置情境,引入课题教师展示投影1:教师提问:1.这三种图形有何共同特征?2.这三种图形的不同点在哪里?教师归纳:图上的3种图形,都是绕着一个中心点,旋转一定角度后能与自身重合的图形,所以这3个图形都是旋转对称图形,其不同点在于旋转的角度不一样,第一图旋转的角度为120°或240°,第二个图旋转的角度为90°或180°,第三个图旋转的角度为72°或144°或216°或288°.今天我们就要研究中间这个特殊的旋转对称图形,我们把一个图形绕着某中心旋转180°后能与自身重合的图形称为中心对称图形,这个中心点叫做对称中心.也就是说中心对称图形是旋转角为180°的旋转对称图形.上面是对一个图形来说的.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,我们就说这两个图形成中心对称,这个点叫对称中心.这里是对两个图形说的.大家一定要区分清楚.这两个图形中的对应点,叫做关于中心的对称点.展示投影,提出问题投影2:教师提问:1.这个图形是中心对称图形吗?2.△ABC与△ADE成中心对称吗?在同学交流、评判的过程中,老师进一步阐述中心对称图形与成中心对称的两个图形的区别.在此基础上让学生回答:△ABC与△ADE是成中心对称的两个三角形,点A是对称中心,点B关于对称中心A的对称点为______,点C关于对称中心A的对称点是______,点A关于对称中心A的对称点为______,B,A,D在______上,AD=______,C,A,E在______上,AC=______,ED=______.展示投影3:教师提问:1.△A′B′C′与△ABC关于点O成中心对称吗?2.你能从图中找到哪些等量关系?3.找出图中平行的线段.学生形成共识后让学生填空.△A′B′C′与△ABC关于点O成中心对称.在同一直线上的三点分别的________,_______,________.AO=_______,BO=_______,CO=_______,AB=_______,AC=_______,BC=_______.得到AB∥_______,AC∥_______,BC∥_______.归纳总结,提高认识在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于这一点成中心对称.范例分析,加深理解例1 如图,已知△ABC和点O,作△A′B′C′与△ABC关于点O成中心对称.例2 求证:在平面直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称.课堂小结1.通过本节课的学习,我们知道了中心对称图形和中心对称的基本性质.2.利用中心对称的基本性质,我们可以进行一些简单的作图.本课作业教材P91作业题第1,2,3,4题.4.4 平行四边形的判定定理教学目标知识与技能探索并掌握平行四边形的三个判定定理.过程与方法1.经历平行四边形判定条件的探索过程,使学生逐步掌握说理的基本方法,并在与他人交流的过程中,能合理清晰地表述自己的思维过程.2.在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识.情感、态度与价值观1.让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣.2.通过探索式证明学习,开拓学生的思路,发展学生的思维能力.3.在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神.教学重点平行四边形的判定定理.教学难点平行四边形的判定定理的运用.教学设计—、课前导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理,分别用命题形式叙述出来.(如果……,那么……)根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形的性质定理的逆命题是否成立?二、自主探究活动1:你知道平行四边形的判定方法吗?如何用几何语言表示?(定义法):两组对边分别平行的四边形是平行四边形.几何语言表述定义法:∵AB//CD,AD//BC,∴四边形ABCD是平行四边形.结论:一个四边形只要其两组对边分别平行,就可判定这个四边形是一个平行四边形.活动2:设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?课堂探究,用准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若两纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的吗?(让学生找出题设、结论,然后写出已知、求证及证明过程)小结:用几何语言表述定义法和刚才的证明方法证明一个四边形是平行四边形的方法为:判定定理1:一组对边平行并且相等的四边形是平行四边形.用几何语言表述为:∵AB=CD且AB∥CD,∴四边形ABCD是平行四边形.例1 已知:如图,在□ABCD中,E,F分别是AB,CD的中点.求证:EF∥AD.活动3:用做好的纸条拼成一个四边形,其中强调两组对边分别相等.你得到什么结论?方法二:两组对边分别相等的四边形是平行四边形.设问:这个命题的条件和结论是什么?已知:在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.分析:判定平行四边形的依据目前只有定义,也就是要证明两组对边分别平行,当然是借助第三条直线证明角相等.连结BD,易证三角形全等.板书证明过程.小结:用几何语言表述定义法和刚才证明的方法证明一个四边形是平行四边形的方法为:判定定理2:两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.活动4:设问:“对角线互相平分的四边形是平行四边形.”这一命题的前提是什么?结论又是什么?活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形.判定定理3:对角线互相平分的四边形是平行四边形.这个定理的前提是什么?结论又是什么?已知:如图,在四边形ABCD中,AC,BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.AC分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行.板书证明过程.小结:由刚才证明可得,只要对角线互相平分,就可判定这个四边形是平行四边形.几何语言表述:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.例2 已知:如图,在□ABCD中,E,F分别是BD上的两点,且∠BAE=∠DCF.求证:四边形AECF是平行四边形.三、本课小结今天我们主要研究了利用边和角的关系来判定平行四边形,注意满足的条件.O两组对边分别平行两组对边分别相等的四边形是平行四边形一组对边平行且相等对角线互相平分注意:若一组对边平行,另一组对边相等,是否可以判断为平行四边形,它可能是梯形.四、布置作业教材P97作业题第2,3题.4.5 三角形的中位线教学目标1、了解三角形的中位线的定义.2、理解并掌握三角形的中位线的性质.3、能运用三角形的中位线的性质解决相关的几何问题.教学重难点重点:三角形的中位线的性质.难点:三角形的中位线的性质的运用.教学过程一、课前游戏(猜一猜)打一数学名词:齐头并进(平行);风筝跑了(线段).二、合作学习1、猜一猜怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?2、合作学习剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片.a.如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?b.要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?三、获取新知1、归纳定义:连结三角形两边中点的线段叫三角形的中位线.几何语言描述:因为D,E分别为AB,AC的中点,所以DE为△ABC的中位线,同理DF,EF 也为△ABC的中位线.总结:三角形有三条中位线.2、三角形的中位线和三角形的中线的区别.3、探索三角形的中位线的性质(1)猜想结论:已知:如图,D,E分别是△ABC的边AB,AC的中点.求证:DE∥BC,DE=21BC.引导学生用不同的方法去得出结论(三角形的中位线平行于第三边,并且等于第三边的一半)(2)应用.“五一”放假的时候,小明去乡下老家玩,发现村头有一大水塘,于是小明拿一根皮尺去测量这水塘两端点AB之间的距离.可当他将皮尺的一端系在A处时发现皮尺短了,拉不到B 处,怎样才能既测出AB间的距离又快捷方便呢?小明没辙了,聪明的你有办法解小明的难题吗?利用所学知识解决实际生活中的问题.(3)例已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.四、练习如图,已知△ABC,D,E,F分别是AB,AC,BC边上的中点.(1)若∠ADE=60°,则∠B=________°,为什么?(口答)(2)若BC=8 cm,则DE=_______cm,为什么?(口答)(3)若△ABC的周长为18 cm,它的三条中位线围成的△DEF的周长是______,图中有____个平行四边形.AB CD EF五、小结定义:连结三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于第三边,并且等于第三边的一半.应用:①证明平行问题.②证明一条线段是另一条线段的2倍或21. 4.6 反证法教学目标1、了解反证法的含义.2、了解反证法的基本步骤.3、会利用反证法证明简单命题.4、了解定理“在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交”“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.教学重难点本节教学的重点是反证法的含义和运用.课本“合作学习”要求用两种方法完成平行线的传递性的证明,有较高难度,是本节教学的难点.教学过程一、情境导入故事引入“反证法”:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李.”小伙伴摘取一个尝了一下,果然是苦李.王戎是怎样知道李子是苦的?他运用了怎样的推理方法?我们不得不佩服王戎,小小年纪就具备了反证法的思维.反证法是数学中常用的一种方法.人们在探求某一问题的解决方法而正面求解又比较困难时,常常采用从反面考虑的策略,往往能达到柳暗花明又一村的境界.那么什么叫反证法呢?(板书课题)二、探究新知(一)整体感知证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、公理、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确.这种证明方法叫做反证法.用反证法证明命题实际上是这样一个思维过程:我们假定“结论不成立”,结论一不成立就会出毛病,这个毛病是通过与已知条件矛盾,与公理或定理矛盾的方法暴露出来的.这个毛病是怎么造成的呢?推理没有错误,已知条件、公理或定理没有错误,这样一来,唯一有错误的地方就是一开始的假定.既然“结论不成立”有错误,就肯定结论必然成立了.你能说出下列结论的反面吗?1.a⊥b.2.d是正数.3.a≥0.4.a∥b.(二)师生互动1、求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.把本题改编成填空题:已知:直线l1,l2,l3在同一平面内,且l1∥l2,l3与l1相交于点P.求证: l3与l2相交.证明: 假设____________即_________.∵_________(已知),∴过直线l2外一点P有两条直线和l2平行,这与“____________________________________”矛盾.∴假设不成立,即求证的命题正确.∴l3与l2相交.教师简单引导学生小结:证明两直线相交的又一判定方法.2、根据上述填空,请同学们归纳一下用反证法证题的步骤.(教师板书步骤)生:①假定结论不成立(即结论的反面成立);②从假设出发,结合已知条件,经过推理论证,推出与已知条件或定义、定理、公理相矛盾;③由矛盾判定假设不正确;④肯定命题的结论成立.明确用反证法证题的基本思路及步骤.(三)学以致用,完善新知1、课内练习在运用反证法的过程中,往往要仔细分析结论的反面,特别要注意语句的转换及表达.2、合作学习求证:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.(1)你首选的是哪一种方法?(2)如果你选择反证法,先怎样假设?结果和什么产生矛盾?(3)能不用反证法吗?你准备怎样证明?教师在例后要引导学生体会反证法的优点:当正面证明比较繁杂或较难证明时,用反证法证明是一种证明的思路,并指出本题的结论是判定两直线平行的又一判定定理.三、实践应用,知识迁移链接生活反证法的思想也时常体现在人们的日常交流中,下面是有关的一个例子:妈妈:小华,听说邻居小芳全家这几天在外出旅游.小华:不可能,我上午还在学校碰到了她和她妈妈呢!在上述对话中,小华要告诉妈妈的命题是什么?(小芳全家没外出旅游.)他是如何推断该命题的正确性的?在你的日常生活中也有类似的例子吗?请举一至两个例子.议一议:甲、乙、丙、丁、戊五人在运动会上获一百米、二百米、跳高、跳远和铅球冠军,有四个人猜测比赛结果:A说:乙获铅球冠军,丁获跳高冠军;B说:甲获百米冠军,戊获跳远冠军;C说:丙获跳远冠军,丁获二百米冠军;D说:乙获跳高冠军,戊获铅球冠军.其中每个人都只说对一句,说错一句.你知道五人分别获哪项冠军吗?四、学习小结同学们,学了这节课,你们有何收获与体会?(1)引导学生作知识总结,学习了反证法证题的思路与步骤.(2)教师扩展:在直接法无法证明或很难证明的情况下选用反证法.五、课后作业1.教材P102作业题.2.课外活动:收集反证法在生活中应用的例子,在班上交流.。

八年级数学下册 第4章 平行四边形 4.3 中心对称教案 (新版)浙教版-(新版)浙教版初中八年级下

八年级数学下册 第4章 平行四边形 4.3 中心对称教案 (新版)浙教版-(新版)浙教版初中八年级下

4.3 中心对称教学目标知识与技能1.知道中心对称与中心对称图形的意义.2.知道成中心对称的两个图形的性质,会判断两个图形是否成中心对称,会画一个图形关于一个点成中心对称的图形.过程与方法经历观察发现探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.情感、态度与价值观培养审美能力,增强对图形的审美意识.重点难点重点:中心对称图形的概念及基本性质.难点:中心对称图形的判定.教学设计设置情境,引入课题教师展示投影1:教师提问:1.这三种图形有何共同特征?2.这三种图形的不同点在哪里?教师归纳:图上的3种图形,都是绕着一个中心点,旋转一定角度后能与自身重合的图形,所以这3个图形都是旋转对称图形,其不同点在于旋转的角度不一样,第一图旋转的角度为120°或240°,第二个图旋转的角度为90°或180°,第三个图旋转的角度为72°或144°或216°或288°.今天我们就要研究中间这个特殊的旋转对称图形,我们把一个图形绕着某中心旋转180°后能与自身重合的图形称为中心对称图形,这个中心点叫做对称中心.也就是说中心对称图形是旋转角为180°的旋转对称图形.上面是对一个图形来说的.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,我们就说这两个图形成中心对称,这个点叫对称中心.这里是对两个图形说的.大家一定要区分清楚.这两个图形中的对应点,叫做关于中心的对称点.展示投影,提出问题投影2:教师提问:1.这个图形是中心对称图形吗?2.△ABC与△ADE成中心对称吗?在同学交流、评判的过程中,老师进一步阐述中心对称图形与成中心对称的两个图形的区别.在此基础上让学生回答:△ABC与△ADE是成中心对称的两个三角形,点A是对称中心,点B关于对称中心A的对称点为______,点C关于对称中心A的对称点是______,点A关于对称中心A的对称点为______,B,A,D在______上,AD=______,C,A,E在______上,AC=______,ED=______.展示投影3:教师提问:1.△A′B′C′与△ABC关于点O成中心对称吗?2.你能从图中找到哪些等量关系?3.找出图中平行的线段.学生形成共识后让学生填空.△A′B′C′与△ABC关于点O成中心对称.在同一直线上的三点分别的________,_______,________.AO=_______,BO=_______,CO=_______,AB=_______,AC=_______,BC=_______.得到AB∥_______,AC∥_______,BC∥_______.归纳总结,提高认识在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于这一点成中心对称.X例分析,加深理解例1 如图,已知△ABC和点O,作△A′B′C′与△ABC关于点O成中心对称.例2 求证:在平面直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称.课堂小结1.通过本节课的学习,我们知道了中心对称图形和中心对称的基本性质.2.利用中心对称的基本性质,我们可以进行一些简单的作图.本课作业教材P91作业题第1,2,3,4题.。

八年级数学下册 第4章 平行四边形 4.6 反证法教案 (新版)浙教版

4.6 反证法教学目标1、了解反证法的含义.2、了解反证法的基本步骤.3、会利用反证法证明简单命题.4、了解定理“在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交”“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.教学重难点本节教学的重点是反证法的含义和运用.课本“合作学习”要求用两种方法完成平行线的传递性的证明,有较高难度,是本节教学的难点.教学过程一、情境导入故事引入“反证法”:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李.”小伙伴摘取一个尝了一下,果然是苦李.王戎是怎样知道李子是苦的?他运用了怎样的推理方法?我们不得不佩服王戎,小小年纪就具备了反证法的思维.反证法是数学中常用的一种方法.人们在探求某一问题的解决方法而正面求解又比较困难时,常常采用从反面考虑的策略,往往能达到柳暗花明又一村的境界.那么什么叫反证法呢?(板书课题)二、探究新知(一)整体感知证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、公理、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确.这种证明方法叫做反证法.用反证法证明命题实际上是这样一个思维过程:我们假定“结论不成立”,结论一不成立就会出毛病,这个毛病是通过与已知条件矛盾,与公理或定理矛盾的方法暴露出来的.这个毛病是怎么造成的呢?推理没有错误,已知条件、公理或定理没有错误,这样一来,唯一有错误的地方就是一开始的假定.既然“结论不成立”有错误,就肯定结论必然成立了.你能说出下列结论的反面吗?1.a⊥b.2.d是正数.3.a≥0.4.a∥b.(二)师生互动1、求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.把本题改编成填空题:已知:直线l1,l2,l3在同一平面内,且l1∥l2,l3与l1相交于点P.求证: l3与l2相交.证明: 假设____________即_________.∵_________(已知),∴过直线l2外一点P有两条直线和l2平行,这与“____________________________________”矛盾.∴假设不成立,即求证的命题正确.∴l3与l2相交.教师简单引导学生小结:证明两直线相交的又一判定方法.2、根据上述填空,请同学们归纳一下用反证法证题的步骤.(教师板书步骤)生:①假定结论不成立(即结论的反面成立);②从假设出发,结合已知条件,经过推理论证,推出与已知条件或定义、定理、公理相矛盾;③由矛盾判定假设不正确;④肯定命题的结论成立.明确用反证法证题的基本思路及步骤.(三)学以致用,完善新知1、课内练习在运用反证法的过程中,往往要仔细分析结论的反面,特别要注意语句的转换及表达.2、合作学习求证:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.(1)你首选的是哪一种方法?(2)如果你选择反证法,先怎样假设?结果和什么产生矛盾?(3)能不用反证法吗?你准备怎样证明?教师在例后要引导学生体会反证法的优点:当正面证明比较繁杂或较难证明时,用反证法证明是一种证明的思路,并指出本题的结论是判定两直线平行的又一判定定理.三、实践应用,知识迁移链接生活反证法的思想也时常体现在人们的日常交流中,下面是有关的一个例子:妈妈:小华,听说邻居小芳全家这几天在外出旅游.小华:不可能,我上午还在学校碰到了她和她妈妈呢!在上述对话中,小华要告诉妈妈的命题是什么?(小芳全家没外出旅游.)他是如何推断该命题的正确性的?在你的日常生活中也有类似的例子吗?请举一至两个例子.议一议:甲、乙、丙、丁、戊五人在运动会上获一百米、二百米、跳高、跳远和铅球冠军,有四个人猜测比赛结果:A说:乙获铅球冠军,丁获跳高冠军;B说:甲获百米冠军,戊获跳远冠军;C说:丙获跳远冠军,丁获二百米冠军;D说:乙获跳高冠军,戊获铅球冠军.其中每个人都只说对一句,说错一句.你知道五人分别获哪项冠军吗?四、学习小结同学们,学了这节课,你们有何收获与体会?(1)引导学生作知识总结,学习了反证法证题的思路与步骤.(2)教师扩展:在直接法无法证明或很难证明的情况下选用反证法.五、课后作业1.教材P102作业题.2.课外活动:收集反证法在生活中应用的例子,在班上交流.。

浙教版八下第四章命题与证明教案

第4章命题与证明目录4.1定义与命题(1) (2)4.1 定义与命题(2) (5)4.2证明(1) (6)4.2证明(2) (7)4.2证明(3) (9)4.3反例与证明 (12)19.1 命题与证明教学目标:1、理解并掌握定义、命题、公理、定理的概念及它们间的区别与联系2、能判断命题的真假性,能把命题改写成“如果……那么……”的形式,说出命题的题设和结论教学重点:识别命题的真假性,把命题改写成“如果……那么……”的形式教学难点:把命题改写成“如果……那么……”的形式教学方法:讲练结合教学过程:感悟新知定义:能明确指出概念的含义或特征的句子称为定义。

定义必须是严密的命题:(1)可以判断它是正确的或是错误的句子叫命题。

(2)正确的命题称为真命题;错误的命题称为假命题。

(3)命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

命题一般都可写成“如果……那么……”的形式,用“如果”开始的部分就是题设,用“那么”开始的部分是结论。

公理:作为判断其他命题真假的原始依据的真命题叫公理定理:从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理。

把下列命题改写成“如果……那么……”的形式,并指出它的题设和结论,判断命题的真假性,若是假命题请举出反例。

两直线平行,内错角相等三个角对应相等的两个三角形全等全等三角形的面积相等对顶角相等角平分线上的点到角两边的距离相等练习:第65页练习1、2第66页练习1、2根据下列命题,画出图形,写出“已知”“求证”(不必证明)直角三角形的两个锐角互余两条边及其中一边上的中线分别对应相等的两个三角形全等小结交流课后作业第66页习题1、2、34.1定义与命题(1)【教学目标】1.了解定义的含义.2.了解命题的含义.3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.【教学重点、难点】重点:命题的概念.难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…”形式学生会感到困难,是本节课的难点.【教学过程】一、创设情景,导入新课(1)阅读新华社酒泉2005年10月11日这篇报导:神舟六号载人飞船将于10月12日上午发射,……神舟六号飞船搭乘两名航天员,执行多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°、近地点高度为200千米、远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报导,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度).二、合作交流,探求新知1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.象问题(1)中的轨道倾角、近地点高度、远地点高度、变轨的含义必须有明确的规定,即需要给出定义.完成做一做请说出下列名词的定义:(1)无理数;(2)直角三角形;(3)一次函数;(4)频率;(5)压强.2.命题概念的教学 教师提出问题:判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断? (1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗? (5)鸟是动物; (6)若42=a ,求a 的值; (7)若22b a =,则b a =.答案:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中 (1)(3)(5)判断是正确的,(7)判断是错误的.在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.说明:讲解定义、命题的含义时,要突出语句的作用.句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系. 3.命题的结构的教学告诉学生现阶段我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行, 同位角相等”可以改写成“如果两条直线平行,那么同位角相等”. 三、师生互动 运用新知下面通过书本中的范例介绍如何找出一个命题的条件和结论,并改写成“如果……那么……”的形式.例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式: (1)三条边对应相等的两个三角形全等; (2)在同一个三角形中,等角对等边; (3)对顶角相等; (4)同角的余角相等;(5)三角形的内角和等于180°; (6)角平分线上的点到角的两边距离相等.分析:找出命题的条件和结论是本节课的难点,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去. (1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)学生可能会说条件是“在同一个三角形中”,结论是“等角对等边”.教学时可作这样引导:“等角对等边含义”是指有两个角相等所对的两条边相等,`然后提问学生,一个三角形满足什么条件时,有两条边相等?这个命题的条件是什么?结论是什么?值得注意的是,命题中包含了一个前提条件:“在一个三角形中”,在改写时不能遗漏. (3)可作如下启发:对顶角指两个角的关系,相等指两个角相等.把“两个角”添补上去,写成“是对顶角的两个角相等”,这样学生不难得出这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”. (4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(5)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.这个命题可以改写如果“三个角是一个三角形的三个内角,那么这三个角的和等于180°”; (6) 如果“一个点在一个角的平分线上,那么这个点到这个角的两边距离相等”. 例2 下列语句中,哪些是命题,哪些不是命题? (1)若a<b ,则a b -<-; (2)三角形的三条高交于一点;(3)在ΔABC 中,若AB>AC ,则∠C>∠B 吗? (4)两点之间线段最短; (5)解方程0322=--x x ; (6)1+2≠3.答案:(1)(2)(4)(6)是命题,(3)(5)不是命题. 例3(1) 请给下列图形命名,,并给出名称的定义:① ②答案:略(2)观察下列这些数,找出它们的共同特征,给以名称,并作出定义: -52,-2,0,2,8,14,20,… 答案:能被2整除的整数是偶数. 四、应用新知 体验成功课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.五、总结回顾,反思内化学生自由发言,这节课学了什么?教师做补充.三个内容:⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一 六、布置作业 巩固新知 课本P72作业题.4.1 定义与命题(2)【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。

八年级下册数学浙教版教案完整版课件

八年级下册数学浙教版教案完整版课件一、教学内容本节课我们将学习浙教版八年级下册数学教材第四章《几何图形的相似与证明》中的4.1节“相似图形的认识”以及4.2节“相似图形的性质和判定”。

具体内容包括:1. 了解相似图形的定义,掌握相似图形的判定方法;2. 掌握相似图形的性质,并能运用性质解决实际问题;3. 熟练运用相似图形的判定和性质进行几何证明。

二、教学目标1. 知识目标:使学生理解并掌握相似图形的定义、性质和判定方法;2. 能力目标:培养学生运用相似图形知识解决实际问题的能力;3. 情感目标:激发学生对几何图形的兴趣,提高学生的空间想象力和逻辑思维能力。

三、教学难点与重点1. 教学难点:相似图形的判定方法及性质的应用;2. 教学重点:相似图形的定义、性质和判定方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器、三角板。

五、教学过程1. 导入:(1)通过展示生活中相似的物体,引导学生观察、思考相似图形的特点;(2)提出问题:“相似图形有哪些特点?如何判断两个图形相似?”2. 新课:(1)讲解相似图形的定义,引导学生理解并掌握;(2)介绍相似图形的判定方法,并通过例题讲解、随堂练习巩固;(3)讲解相似图形的性质,结合实际例子进行分析;(4)布置课堂作业,检验学生对相似图形知识的掌握。

3. 课堂练习:(1)让学生运用相似图形的性质和判定方法解决实际问题;(2)针对学生的解答,进行点评、讲解,纠正错误。

六、板书设计1. 相似图形的认识与性质2. 内容:(1)相似图形的定义(2)相似图形的判定方法(3)相似图形的性质(4)例题及解答七、作业设计1. 作业题目:(2)已知两个相似图形,求证它们的对应角度相等,对应边成比例;(3)运用相似图形的性质,解决实际问题。

2. 答案:(1)相似,因为它们的对应角度相等,对应边成比例;(2)证明:设两个相似图形为△ABC和△DEF,已知∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=BC/EF=AC/DF,根据相似图形的性质,得证;(3)解答:根据相似图形的性质,已知图形的对应边成比例,求出未知长度。

浙教版八年级下第四章平行四边形教案

PINGXINGSIBIANXING第4章平行四边形目录5.1 多边形(1) (1)5.1 多边形 (2) (3)5.1 多边形(3) (5)5.2 平行四边形 (7)5.4 中心对称 (12)5.5 平行四边形的判定(1) (14)5.5 平行四边形的判定(2) (16)5.6 三角形的中位线 (19)5.7 逆命题和逆定理(1) (22)5.7 逆命题和逆定理(2) (24)5.1多边形(1)【教学目标】1.使学生理解四边形的有关概念2.使学生掌握四边形内角和定理及外角和定理的证明及简单应用3.体验把四边形问题转化为三角形问题来解决的化归思想【教学重点、难点】重点:四边形内角和定理.难点:四边形内角和定理的证明思路.【教学过程】1.复习引入目前,整个社会的经济有了很大发展,许多家庭的地面都铺上了地砖、木板,不知同学们有没有仔细看过这些地砖的图形是如何构造,它们有什么特征。

这一章我们将学习多边形的有关性质。

在小学已经对四边形的知识有所了解,今天我们将更系统的学习它的性质,并运用性质解决一些新问题。

2.讲解新课(1)四边形的有关概念。

PINGXINGSIBIANXING 结合图形讲解四边形、四边形的边、顶点、角。

强调四边形的表示方法,一定要按顶点顺序书写。

如图,可表示为四边形ABCD或四边形ADCB(2)四边形内角和定理让学生在一张纸上任意画一个四边形,剪下它的四个角,把它们拼在一起(四个角的顶点重合)。

通过实验、观察、猜想得到:四边形的内角和为3600 。

让学生根据猜想得到的命题,画图、写出已知、求证。

已知:四边形ABCD求证:∠A+∠B+∠C+∠D=360°证明:连结BD∵∠A+∠ABD+∠ADB=180°∠C+∠CBD+∠CDB=180°(理由)∴∠A+∠ABD+∠ADB+∠C+∠CBD+∠CDB=180°+180°即:∠A+∠ABC+∠C+∠CDA=360°对这个命题的证明可作如下启发:①我们已经知道哪一种图形的内角和?内角和为多少?②能否把问题化归为三角形来解决?证明过程由学生来完成,教师板书得四边形内角和定理:四边形的内角和等于360°(板书)练习:如图(1)、(2),分别求∠a、∠1的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1定义与命题(1)【教学目标】1.了解定义的含义. 2.了解命题的含义.3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.【教学重点、难点】重点:命题的概念.难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…” 形式学生会感到困难,是本节课的难点.【教学过程】一、创设情景,导入新课(1)阅读新华社酒泉2005年10月11日这篇报导:神舟六号载人飞船将于10月12日上午发射,……神舟六号飞船搭乘两名航天员,执行多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°、近地点高度为200千米、远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报导,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度). 二、合作交流,探求新知 1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.象问题(1)中的轨道倾角、近地点高度、远地点高度、变轨的含义必须有明确的规定,即需要给出定义. 完成做一做请说出下列名词的定义:(1)无理数;(2)直角三角形;(3)一次函数;(4)频率;(5)压强. 2.命题概念的教学 教师提出问题:判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断? (1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗? (5)鸟是动物; (6)若42=a ,求a 的值; (7)若22b a =,则b a =.答案:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中(1)(3)(5)判断是正确的,(7)判断是错误的.在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.说明:讲解定义、命题的含义时,要突出语句的作用.句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.3.命题的结构的教学告诉学生现阶段我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”可以改写成“如果两条直线平行,那么同位角相等”.三、师生互动运用新知下面通过书本中的范例介绍如何找出一个命题的条件和结论,并改写成“如果……那么……”的形式.例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;(5)三角形的内角和等于180°;(6)角平分线上的点到角的两边距离相等.分析:找出命题的条件和结论是本节课的难点,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去.(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)学生可能会说条件是“在同一个三角形中”,结论是“等角对等边”.教学时可作这样引导:“等角对等边含义”是指有两个角相等所对的两条边相等,`然后提问学生,一个三角形满足什么条件时,有两条边相等?这个命题的条件是什么?结论是什么?值得注意的是,命题中包含了一个前提条件:“在一个三角形中”,在改写时不能遗漏.(3)可作如下启发:对顶角指两个角的关系,相等指两个角相等.把“两个角”添补上去,写成“是对顶角的两个角相等”,这样学生不难得出这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”.(4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(5)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.这个命题可以改写如果“三个角是一个三角形的三个内角,那么这三个角的和等于180°”; (6) 如果“一个点在一个角的平分线上,那么这个点到这个角的两边距离相等”. 例2 下列语句中,哪些是命题,哪些不是命题? (1)若a<b ,则a b -<-; (2)三角形的三条高交于一点;(3)在ΔABC 中,若AB>AC ,则∠C>∠B 吗? (4)两点之间线段最短; (5)解方程0322=--x x ; (6)1+2≠3.答案:(1)(2)(4)(6)是命题,(3)(5)不是命题. 例3(1) 请给下列图形命名,,并给出名称的定义:①② 答案:略(2)观察下列这些数,找出它们的共同特征,给以名称,并作出定义: -52,-2,0,2,8,14,20,… 答案:能被2整除的整数是偶数. 四、应用新知 体验成功课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.五、总结回顾,反思内化学生自由发言,这节课学了什么?教师做补充.三个内容:⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一六、布置作业 巩固新知 课本P72作业题.4.1 定义与命题(2)【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。

情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法。

【教学重点、难点】重点:判断一个命题的真假是本节的重点。

难点:公理、命题和定义的区别。

【教学过程】(一):合作学习:1:复习命题的概念,思考下列命题的条件是什么?结论是什么?(1)边长为a(a>0)的等边三角形的面积为√3/4a2.(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(3)对于任何实数x,x2<0.提问:上述命题中,哪些正确?哪些不正确?2:得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。

3:把学生分成两组,一组负责说命题,然后指定第二组中某一个人来回答是真命题还是假命题(二):举例:判断下列命题是真命题还是假命题(1)x=1是方程x2-2x-3=0 的解。

(2)x=2是方程(x2 –4)/(x2 -3x+2)=0的解。

(3)如图,若∠1=∠2,则∠3=∠4。

(4)一个图形经过旋转变化,像和原图形全等。

(三)讲述公理和定义1:公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。

这样公认为正确的命题叫做公理。

例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”,然后提问学生:你所学过的还有那些公理2:定理:用推理的方法判断为正确的命题叫做定理。

定理也可以作为判断其他命题真假的依据。

3:举例请用学过的公理或定理说明下面这个命题的正确性:“等腰三角形底边上的高线、顶角的角平分线互相重合“(四):课内练习:见书本作业题(五):作业:见作业本【教学目标】1.了解证明的含义。

2.体验、理解证明的必要性。

3.了解证明的表达格式,会按规定格式证明简单命题。

【教学重点、难点】重点:本节教学的重点是证明的含义和表述格式。

难点:本节教学的难点是按规定格式表述证明的过程。

【教学过程】一、新课引入教师借助多媒体设备向学生演示课内节前图:比较线段AB和线段CD的长度。

通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性二、新课教学1、合作学习参考教科书P74:一组直线a、b、c、d、是否不平行(互相相交),请通过观察、先猜想结论,并动手验证2、证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论。

教师对具体的说理过程予以详细的板书。

小结归纳得出证明的含义,让学生体会证明的初步格式。

(2)通过例2的教学理解证明的含义,体会证明的格式和要求例2、证明命题“如果一个角的两边分别平行于另一个角的两边,且方向相同,那么这两个角相等”是真命题。

分析:根据需要画出图形,用几何语言描述题中的已知条件、以及要证明的结论(求证)。

证明过程的具体表述(略)小结:证明几何命题的表述格式(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。

(3)练习:P76课内练习2三、例题教学例2、已知:如图,AC与BD相交于点O,AO=CO,BO=DO。

求证: AB∥CD (证明略)四、练习巩固P76 课内练习3五、小结(1)证明的含义(2)真命题证明的步骤和格式(3)思考、探索:假命题的判断如何说理、证明?六、作业布置OAB CD【教学目标】1.进一步体会证明的含义;2.探索并理解三角形内角和定理的几何证明; 3.进一步熟练证明的方法和表述;4.让学生体验从实验几何向推理几何的过渡.【教学重点、难点】重点:探索三角形内角和定理的证明,进一步掌握证明的方法和表述.难点:例1是由较复杂的题设条件得出若干结论,用到多个定理,是本节的难点.【教学过程】一、复习证明的一般格式和表述,导入新课.通过一个简单的命题的求证过程,让学生自己回顾证明一个命题的一般格式,并用自己的语言进行表述.(1)求证:线段垂直平分线上的点到线段两个端点的距离相等. 设问:①如何写出已知、求证,并画出图形②如何进行证明(可由学生口述)(2)根据上述题目结合学生的回答引导学生归纳出证明一个命题的一般格式: ①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程. 二、合作交流,探究新知(一)通过一个简单的例子向学生简介把一个由实验得到的几何命题经过推理的方法加以论证,让学生体验实验几何向推理几何的简单过渡。

相关文档
最新文档