(完整word)八年级下册平行四边形专题.doc
人教版八年级数学下册 特殊平行四边形 解答题训练(word版含解析)

人教版八年级数学下册《18-2特殊平行四边形》解答题优生辅导训练(附答案)1.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,菱形BNDM的面积为120,求菱形BNDM的周长.2.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.(1)求证:四边形AECD是菱形;(2)过点E作EF⊥CD于点F,若AB=3,BC=5,求EF的长.3.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AD=10,EC=4,求AC的长度.4.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NED≌△MEA.(2)当AM的值为何值时,四边形AMDN是矩形?并说明理由.5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G为EF 中点,连接BD、DG.(1)试判断△ECF的形状,并说明理由;(2)求∠BDG的度数.6.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.7.如图,在正方形ABCD中,E,F分别在边AB,BC上,△DEF是等边三角形,连接BD交EF于点G.(1)求证:BE=BF;(2)若DE=2,求BD的长.8.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF,过点D作DG⊥CF于点G.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(3)在(2)的条件下,若AB=6,BC=10,求DG的长.9.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.10.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想线段CG与EF的关系并说明理由;(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长.11.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠CAD+∠BED=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,若∠ACB=90°,BC=2AC,点G、H分别是AD、AC边中点,连接CG、EG、EH,不添加字母和辅助线,直接写出图中与△CEH所有的全等的三角形.12.如图,四边形ABCD为正方形,E为AD上一点,连接BE,∠AEB=60°,M为BE的中点,过点M的直线交AB、CD于P、Q.(1)如图1,当PQ⊥BE时,求证:BP=2AP;(2)如图2,若∠APQ为锐角,且PQ=BE,延长BE、CD交于点N,请你猜想QM与QN的数量关系,并说明理由.13.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.14.如图,在正方形ABCD中,点E是BC上一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:AE=AF;(2)已知∠AEB=75°,若点P是EF的中点,连接CP,DP,求∠CPD的度数.15.如图,点O为矩形ABCD对角线的交点,过点D作DE⊥AC于点E,过点B作BF∥AC,交DE的延长线于F,在BF的延长线上取FG=OD,连接AG,OF.(1)求证:四边形AOFG为菱形;(2)若AD=5,DF=8,求BG的长.16.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.17.如图,▱ABCD,BE⊥AD于E,交AC于M,DF⊥BC于F,交AC于N,连接DM、BN.(1)求证:△ABM≌△CDN;(2)当▱ABCD是菱形时,判断四边形MBND的形状,并说明理由.18.如图,矩形ABCD中,对角线AC、BD相交于点O,BD的垂直平分线分别交边AD、BC于点E、F,连接BE、DF.(1)求证:四边形BEDF是菱形;(2)若∠BOC=120°,AB=6,求FC的长.19.如图,在△ABC中,∠ABC=90°,点O是斜边AC的中点,过点O作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD、DE.(1)求证:四边形ABCD是矩形;(2)若BC=3,∠BAC=30°,求DE的长.20.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.参考答案1.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵菱形BNDM的面积为120=×BD×MN,∴MN=10,∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.2.证明:(1)∵∠BAC=90°,E是BC的中点,∴AE=BC=CE,又∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∴四边形AECD是菱形.(2)过点A作AG⊥BC于点G,∵AB=3,BC=5,∴AC=,∵,∴,∴AG=,又∵S菱形AECD=CD•EF=CE•AG,∵CD=CE,∴EF=AG=.3.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=,在Rt△AEC中,AC=.4.(1)证明:∵四边形ABCD为菱形,∴CD∥AB,∴∠DNE=∠AME,∵E为AD的中点,∴DE=AE,在△NED和△MEA中,∴△NDE≌△MAE(AAS);(2)当AM=2时,四边形AMDN是矩形.理由如下:由(1)知△NED≌△MEA,∴NE=ME,又∵DE=AE,∴四边形AMDN是平行四边形,∵菱形ABCD,AB=4,E为AD中点,∴AE=2=AM,又∵∠DAB=60°,∴△MEA为等边三角形,∴AE=ME,∴AD=MN,∴平行四边形AMDN为矩形.5.(1)解:△ECF是等腰直角三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴∠CEF=45°,AB=BE,∴∠F=90°﹣45°=45°,∴EC=FC,又∵∠ECF=90°,∴△ECF是等腰直角三角形;(2)∵四边形ABCD是矩形,∴AB=CD,∵AB=BE,∴BE=CD,∵EC=FC,∠ECF=90°,∴CG=EF=EG,∠ECG=∠ECF=45°,∴∠DCG=90°+45°=135°,∵∠BEG=180°﹣45°=135°,∴∠DCG=∠BEG,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS),∴DG=BG,∠DGC=∠BGE,∴∠BGD=∠EGC=90°,又∵DG=BG,∴∠BDG=45°.6.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=8,∴OA=OC,BD⊥AC,OB=OD=BD=4,∴∠AOB=90°,∴OA===2,∴AC=2OA=4,∴菱形ABCD的面积=AC×BD=×4×8=16,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=6CE=16,∴CE=.7.(1)证明:∵四边形ABCD为正方形,∴AD=CD=AB=BC,∠A=∠C=90°,∵△DEF为等边三角形,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴AE=CF.又∵AB=BC,∴AB﹣AE=BC﹣CF,∴BE=BF;(2)解:由(1)可知BE=BF,∴△BEF为等腰直角三角形,∵四边形ABCD为正方形,∴BD平分∠ABC,∴点G为EF的中点,BD⊥EF,∵△DEF为等边三角形,DE=2,∴EF=DE=2,BG=EG=1,在Rt△EDG中,由勾股定理得,DG===,∴BD=BG+DG=1+.8.证明:(1)∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形;(3)∵△ABC是直角三角形,AB=6,BC=10,BD=DC,∴AD=DC=5,AC=,∵四边形ADCF是菱形,∴AC⊥DF,∴DE=,∴,即,解得:DG=.9.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD=DC,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DC=DE,DA=DE,∴∠DEC=∠DCE=×(180°﹣20°)=80°,∠DAE=∠DEA=×(180°﹣70°)=55°,∴∠AEC=∠AED+∠DEC=80°+55°=135°,故答案为:135°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).10.证明:(1)①∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,AD=DC,在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠DAH=∠DCH;②结论:EF=2CG,理由如下:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DF A+∠DAF=90°,∠DF A=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∵∠GCE+∠GCF=90°,∠CFG+∠E=90°,∴∠GCE=∠GCF,∴CG=GE,∴EF=2CG;(2)①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=8,在Rt△DCE中,CE===2,∴BE=BC+CE=6+2;②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE=2,∴BE=BC﹣CE=6﹣2综上所述,BE的长为6+2或6﹣2.11.(1)证明:∵AD∥BC,∴∠ADC=∠BCD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠ADE=∠DEB,∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,∴∠DEC=∠DAC,∴∠ADE+∠DAC=180°,∴DE∥AC,∴四边形ACED是菱形;(2)解:∵∠ACB=90°,∴菱形ACED是正方形,∴∠D=∠CAG=∠DEC=90°,AC=AD=CE,∵G是AD的中点,H是AC边中点,∴AG=DG=CE,∴△EDG≌△CAG≌△ECH(SAS),∵BC=2AC,∴BE=CE=AD,∵AD∥BE,∴∠B=∠DAF,∵∠AFE=∠BFE,∴△BFE≌△AFD(AAS),∵AD=CE=BE,∴△BEF≌△ECH,∴图中与△CEH全等的三角形有△ADF,△EDG,△CAG,△EBF.12.(1)证明:连接PE,如图1,∵点M是BE的中点,PQ⊥BE,∴PQ垂直平分BE,∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°﹣∠APE=90°﹣60°=30°,∵∠A=90°,∴BP=EP=2AP;(2)解:NQ=2MQ或NQ=MQ.理由如下:分两种情况:如图3所示,过点Q作QF⊥AB于点F,交BN于点G,则FQ=CB,∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,,∴Rt△ABE≌Rt△FQP(HL),∴∠FQP=∠ABE=30°,又∵∠MGQ=∠BGF=∠AEB=60°,∴∠GMQ=90°,∵CD∥AB.∴∠N=∠ABE=30°,∴NQ=2MQ;如图2所示,过点Q作QF⊥AB于点F,则QF=CB,同理可证:△ABE≌△FQP,此时∠FPQ=∠AEB=60°,又∵∠FPQ=∠ABE+∠PMB=60°,∠N=∠ABE=30°,∴∠EMQ=∠PMB=30°,∴∠N=∠EMQ,∴NQ=MQ.13.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.14.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,∴△ABE≌△ADF(SAS);∴AE=AF,(2)连接AP,∵△ABE≌△ADF,∴∠BAE=∠DAF,∠F AE=90°,在Rt△EAF和Rt△ECF中,P是EF中点,∴P A=PC=PE=PF=EF,又∵AE=AF,∠AEB=75°,∴∠AEP=45°,∠CEP=∠ECP=60°,∴∠DCP=30°,在△APD和△CPD中,∴△APD≌△CPD(SSS),∴∠CDP=45°,∴∠CPD=180°﹣30°﹣45°=105°.15.证明:(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵DE⊥AC,BF∥AC,∴OF=OD=OA,∵FG=OD,∴FG=OA,∵FG∥OA,∴四边形AOFG为菱形;(2)∵AD=5,DF=8,∴DE=EF=4,AE=3,在Rt△DEO中,设OE=x,由勾股定理得:(x+3)2﹣42=x2,解得:x=,∴OD=,OE=,∴BF=2OE=,FG=OD=,∴BG=GF+BF=.16.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);(2)解:当AB=AC时,四边形ADCF是正方形,理由:由(1)知,△AEF≌△DEB,∴AF=DB,∵D是BC的中点,∴DB=DC,∴AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形,∵AB=AC,D是BC的中点,∴AD⊥BC,∴四边形ADCF是正方形.17.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠DAB=∠DCB,∴∠BAC=∠DCA,∵BE⊥AD,DF⊥BC,∴∠DAB+∠ABM=90°,∠DCB+∠CDN=90°,又∵∠DAB=∠DCB,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(ASA);(2)解:四边形MBND是菱形,理由如下:∵BE⊥AD,DF⊥BC,AD∥BC,∴BE∥DF,由(1)知△ABM≌△CDN,∴BM=DN,∴四边形MBND是平行四边形,连接BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,即MN⊥BD,∴平行四边形MBND是菱形.18.(1)证明:∵EF垂直平分BD,∴EB=ED,FB=FD,BO=DO,∵四边形ABCD是矩形,∴∠OBF=∠ODE,∵∠DOE=∠BOF,∴△EOD≌△FOB(AAS),∴DE=BF,∴EB=ED=FB=FD,∴四边形BEDF是菱形;(2)解:∵四边形ABCD是矩形,∴OB=OC,CD=AB=6,∴∠OBC=∠OCB,∵∠BOC=120°,∴∠OBC=∠OCB=30°,∵四边形EBFD为菱形,∴FB=FD,∴∠FBD=∠FDB=30°,∴∠DFC=60°,∴∠FDC=30°,设CF=x,则FD=2x,根据勾股定理得:(2x)2﹣x2=62,解得:x=2,∴FC的长为2.19.(1)证明:∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(AAS),∴AD=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∵∠ABC=90°,∠BAC=30°,∴AC=2BC=6,∴OA=3,∵OE⊥AC,∴∠AOE=90°,∵∠BAC=30°,∴OE=OA=,∴AE=2OE=2,∴DE===.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.。
完整word平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质:1()两组对边分别平行;??DC)两组对边分别相等;(2??O是平行四边形?四边形ABCD)两组对角分别相等;(3??()对角线互相平分;4?AB?.)邻角互补(5?2.平行四边形的判定:DCOAB . 矩形的性质:3.1;()具有平行四边形的所有通性?CDCD??ABCD因为四边形是矩形;()四个角都是直角2??O (3)对角线相等.?ABAB是轴对称图形,它有两条对称轴. (4) 矩形的判定:4 有一个角是直角的平行四边形;(1) (2)有三个角是直角的四边形;对角线相等的平行四边形;(3)是矩形. ?四边形ABCD(4)对角线相等且互相平分的四边形.两对角线相交成60°时得等边三角形。
5. 菱形的性质:D1有通性;()具有平行四边形的所??是菱形ABCD?因为)四个边都相等;2(?OCA?(角.3)对角线垂直且平分对?6. 菱形的判定:BD?一组邻边等?(1)平行四边形??四边形ABCD是菱形.)四个边都相等2(?O?CA边形3)对角线垂直的平行四(?菱形中有一个角等于60°时,较短对角线等于边长;菱形中,若较短对角线等于边长,则有等边三角形;B菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。
菱形的面积等于两对角线长积的一半。
正方形的性质:7.CDCD1)具有平行四边形的所有通性;(???四边形ABCD是正方形O角都是直角;2)四个边都相等,四个(??(.3)对角线相等垂直且平分对角?BABA正方形的判定:8.一个直角?1()平行四边形?一组邻边等??一个直角?(2)菱形??对角线相等)菱形?(3?. ABCD是正方形?四边形?一组邻边等矩形?(4)??对角线互相垂直?(5)矩形?.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三9. 1 遍的一半。
直角三角形斜边上的中线等于由矩形的性质得到直角三角形的一个性质:2.斜边的一半。
(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。
2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (74)

浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段AB2.(2分)如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP 的中点.•当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定3.(2分)用两块全等的有一个角是30°的直角三角板,能拼成不同的平行四边形有()A.2个B.3个C.4个D.无数个4.(2分)□ABCD的四个内角度数的比∠A:∠B:∠C:∠D可以是()A.2:3:3:2 B.2:3:2:3 C.1:2:3:4 D.2:2:1:15.(2分)如图,在□ABCD中,∠B=100°,延长AD至点F,延长CD至点E,连结EF,则∠E+∠F等于()A.100°B.80°C.50°D.40°6.(2分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1 B.2 C.3 D.47.(2分)用两个全等的三角形拼成四边形,可拼成平行四边形的个数是()A.2个B.3个C.4个D.5个8.(2分)下列性质平行四边形具有而一般四边形不具有的是()A.灵活性 B.内角和等于360° C.对角相等 D.有两条对角线9.(2分)如图所示,在口ABCD中,EF∥BC,GH∥AB,EF,GH相交于点0,则图中平行四边形共有()A.7个B.8个C.9个D.l0个10.(2分)从n(n>3)边形的一个顶点出发作对角线,把这个多边形分成三角形的个数为()A.n+1 B.n C.n-1 D.n-211.(2分)在四边形中,直角最多可以有()A.1个B.2个C.3个D.4个12.(2分)成中心对称的图形的对称中心是()A.一条线段的中点B.连结图形上任意两点的线段中点C.连结两对称点的线段的中点D.以上答案都不对评卷人得分二、填空题13.(3分)如图,四边形ABCD的对角线AC,BD交于点O,EF过点O,若OA=OC,OB=OD,则图中全等的三角形有_ _ _对.14.(3分)如图,在ABC△中,M N,分别是AB AC,的中点,且120A B∠+∠=o,则______ANM∠=o.15.(3分)如图,在平面直角坐标系中,O(0,0),A(0,3),B(4,4),C(1,4),•则四边形OABC是.16.(3分)按要求写出一个图形的名称.(1)是轴对称但不是中心对称的图形;(2)是中心对称但不是轴对称的图形;(3)既是轴对称又是中心对称的图形.17.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式.OEFB CM NA18.(3分)如图,为测量一个池塘的宽AB,在池塘一侧的平地上选一点C,再分别找出线段AC,BC的中点D,E.现量得DE=18m,则池塘的宽AB= m.19.(3分)如图所示,古埃及人用带结的绳子可以拉出直角来,是根据.20.(3分)命题“关于x的一元二次方程20-=,则这个方程有ax bx cb ac++=(a≠0),若240两个相等的实数根.”的逆命题是:,这个命题是命题.(填“真”或“假”) 21.(3分)如图所示,AD是△ABC的中线,延长AD到点E,使DE=AD,连结EB,EC,则四边形ABEC是平行四边形.这是根据.22.(3分)一个多边形的每一个内角都等于l40°,则它是边形.23.(3分)如图所示,∠A+∠B+∠C+∠D十∠E+∠F+∠G的度数为.24.(3分)已知四边形的三个内角的度数如图所示,则图中∠α= .评卷人得分三、解答题25.(6分)如图,在四边形ABCD 中,AD∥BC,BE⊥AC,DF⊥AC,E,F分别为垂足,且∠CDF=∠ABE,试说明四边形BEDF是平行四边形.26.(6分)如图,在□ABCD 中,E、F是 AC 上的两点.且AE=CF .求证:ED∥BF .27.(6分)已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,求证:O是BD的中点.28.(6分)如图所示,把一个等腰直角三角形ABC沿斜边上的高BD剪下,与剩下部分能拼成一个平行四边形BCED(见示意图①).(1)想一想:判断四边形BCED是平行四边形的依据是.(2)做一做:按上述方法,请你拼一个与图①位置或形状不同的平行四边形,并在图②中画出示意图.29.(6分)如图所示,已知平行四边形ABCD中,E是CD边的中点,连结BE并延长与AD的延长线交于点F.求证:BC=DF.30.(6分)如图,□ABCD中,已知BC=AB=2 cm,O是对角线AC,BD的交点,则△AOB的周长比△BOC的周长短多少?【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.B5.B6.B7.B8.C9.C10.D11.D12.C二、填空题13.614.60°15.平行四边形16.等腰三角形,平行四边形,正方形17.a 2-b 2=(a +b )(a -b )18.36m19.勾股定理的逆定理20.若关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个相等的实数根,则240b ac -=,真21.对角线互相平分的四边形是平行四边形22.九23.540°24.91°三、解答题25.方法不唯一,如:先证四边形ABCD 为□,再证 //DF BE26.提示:由△ADE ≌△CBF ,得∠AED =∠CFB ,则∠DEF =∠BFE ,∴DE ∥BF .27.提示:△DOF ≌△BOE .28.(1)两组对边分别相等的四边形是平行四边形;(2)略29.证△DEF ≌△CEB(AAS)即可。
人教数学八年级下册山东省邹平县实验中学复习题:18.2特殊的平行四边形(1).docx

初中数学试卷马鸣风萧萧【知识要点:】1.矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
2.矩形的性质:矩形具有平行四边形的所有性质。
(1)角:四个角都是直角。
(2)对角线:互相平分且相等。
3.矩形的判定:(1)有一个角是直角的平行四边形。
(2)对角线相等的平行四边形。
(3)有三个角是直角的四边形。
4.矩形的对称性:矩形是中心对称图形,对角线的交点是它的对称中心;矩形是轴对称图形,对称轴有2条,是经过对角线的交点且垂直于矩形一边的直线。
5.矩形的周长和面积:矩形的周长=)(2b a + 矩形的面积=长⨯宽=ab (b a ,为矩形的长与宽) ★注意:(1)矩形被两条对角线分成的四个小三角形都是等腰三角形且面积相等。
(2)矩形是轴对称图形,两组对边的中垂线是它的对称轴。
例1、如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE=2,矩形ABCD 的周长为16,且CE=EF ,求AE 的长.例2、已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。
例3、已知:如图所示,矩形ABCD 中,E 是BC 上的一点, 且AE=BC ,︒=∠15EDC .求证:AD=2AB .ABECDPH DCBA例4、已知:如图,四边形ABCD 是由两个全等的正三角形ABD 和BCD 组成的,M 、N •分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.例5、如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.例6、 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.1.判断一个四边形是矩形,下列条件正确的是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线互相垂直且相等。
八年级数学下册 19.1平行四边形 在变化中寻找不变素材

在变化中寻找不变作为最特殊的四边形—正方形,其特殊性质的应用一直是中考的重点内容.同时,由于正方形的特殊性,许多情况下当图形的位置发生变化时,存在着不变的结论.下面举几个2005年中考与正方形有关的动中不变的题型与大家共赏.一、运动中的面积不变性:例1.如图1,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点 E.则四边形AECF的面积是.解析:Q直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点 E.∴∠EAB+∠BAF=∠DAF+∠∠BAF,即∠EAB=∠DAF在△EAB和△FAD中,所以四边形AECF的面积是正方形ABCD的面积.即4×4=16.点评:在此运动过程中四边形AECF的面积保持了不变.二、运动中的两线段关系的不变性:如图2,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A 作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图3,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.解析:由于AM⊥BE,则说明∠AME=∠BME=90︒.∠MAE是Rt△AME和Rt△AOF的公共角,则另一锐角也相等,而OA=OB所以考虑证明Rt△BOE≌ Rt△AOF.当点E在AC的延长线上时,也可这样考虑.【解】(1)证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90︒.OB=OA又∵AM⊥BE,∴∠MEA+∠MAE=90︒=∠AFO+∠MAE∴∠MEA=∠AFO∴Rt△BOE≌ Rt△AOF∴OE=OF.(2)OE=OF成立证明:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90︒.OB=OA图1FMOCBAE图2图2FMOCDBAE图3图1ABCDEF又∵AM ⊥BE ,∴∠F+∠MBF =90︒=∠B+∠OBE 又∵∠MBF =∠OBE ∴∠F =∠E∴Rt△BOE≌ Rt△AOF ∴OE=OF点评:此题反映了一点沿着正方形的对角线运动时,两线段的关系不变的性质.例3.如图4,图5,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .⑴ 如图4,当点E 在AB 边的中点位置时:① 通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ; ② 连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ; ③请证明你的上述两猜想.⑵ 如图5,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系.解析:(1)经过测量和观察可以猜想出DE=EF ,NE=BF 再用三角形全等可证明猜想的结论.(2)以EB 为基准,进行截取也可得到DE=EF【解】⑴ ①DE=EF; ②NE=BF.③证明:∵四边形ABCD 是正方形,N ,E 分别为AD ,AB 的中点, ∴DN=EB∵BF 平分∠CBM,AN=AE ,∴∠DNE=∠EBF=90°+45°=135° ∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF ∴△DNE≌△EBF ∴ DE=EF,NE=BF⑵在DA 边上截取DN=EB (或截取AN=AE ),连结NE ,点N 就使得NE=BF 成立(图略) 此时,DE=EF点评:此题反映了在“面”动的情况下两线段关系不变的性质.图4图5。
八年级数学下册《平行四边形》专题复习测试试卷及答案解析(精品)

专题18.1 平行四边形一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2019·厦门市湖里中学初二月考)一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°2.(2020·全国初二课时练习)下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等3.(2019·贵州初二期末)如图,EF为△ABC的中位线,若AB=6,则EF的长为()A.2B.3C.4D.54.(2019·福建师范大学附属中学初中部初三月考)将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能的是()A.B.C.D.5.(2020·陕西西北工业大学附属中学初三月考)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A .6B .12C .18D .246.(2020·全国初二课时练习)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .3种B .4种C .5种D .6种7.(2017·湖北初二期末)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.(2020·广东初三期末)如图,EF 过平行四边形ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB=4,BC=6,OE=3,那么四边形EFCD 的周长是( )A .16B .13C .11D .109.(2019·河南初二期中)在ABCD 中,已知76A C ∠+∠=︒,则下列正确的是( )A .28A ∠=︒B .142B ∠=︒C .48C ∠=︒D .152D ∠=︒10.(2019·河北初二期末)如图,在▱ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,且CF =1,则AB 的长是( )A .2B .1C D11.(2019·曲阜师范大学附属实验学校初二月考)如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为().A.7cm2B.8cm2C.9cm2D.10cm212.(2019·浙江初二期末)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁13.(2019·河北金华中学初三开学考试)数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试了一种辅助线,如图1,图2所示,其中辅助线做法能够用来证明三角形中位线定理的是()A.小丽和小亮的辅助线做法都可以B.小丽和小亮的辅助线做法都不可以C.小丽的辅助线做法可以,小亮的不可以D.小亮的辅助线做法可以,小丽的不可以14.(2020·山东省东营市河口区义和镇中心学校初二期末)如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为l cm,AB=2cm,∠B=60°,则拉开部分的面积(即阴影面积)是()A .1cm 2B .2cm 2C 2D .2二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2019·民勤县新河乡中学初二月考)已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.16.(2019·厦门市湖里中学初二月考)如图,在▱ABCD 中,∠DAB 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,则BC 的长为______17.(2019·福建初三)如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为____.18.(2020·全国初二课时练习)如图,在四边形ABCD 中,AD ∥BC ,AD=4,BC=12,点E 是BC 的中点.点P 、Q 分别是边AD 、BC 上的两点,其中点P 以每秒个1单位长度的速度从点A 运动到点D 后再返回点A ,同时点Q 以每秒2个单位长度的速度从点C 出发向点B 运动.当其中一点到达终点时停止运动.当运动时间t 为_____秒时,以点A 、P ,Q ,E 为顶点的四边形是平行四边形.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初二课时练习)已知E 、F 分别是平行四边形ABCD 中BD 上的点,且BE =DF ,试说明,四边形AECF是平行四边形。
八年级数学下册6.1平行四边形及其性质平行四边形的性质的应用素材(新版)青岛版.doc

平行四边形的性质的应用一、求平行四边形的周长【例1】如图所示,在□ABCD中,AB=18cm,PC=6cm,AP是∠DAB的平分线,求□ABCD的周长.【思考与分析1】欲求□ABCD的周长,已知AB=18cm,PC=6cm,只需求出AD、BC的长.我们可以过点P作P Q∥BC交AB于Q,构造△AQP与△ADP全等.方法1:过点P 作PQ∥BC交AB于Q,由平行四边形的定义可知四边形ADPQ,BCPQ也是平行四边形.∴AQ=D P,QB=PC.∴AQ=AB-PC=18cm-6cm=12cm.∵AP是∠DAB的平分线,∴∠1=∠2.又∵∠D =∠AQP,AP=AP,∴△ADP≌△AQP.∴AD=AQ=12c.m∴□ABCD的周长为:2(AB+AD)=60cm.【思考与分析2】欲求□ABCD的周长,我们可以延长A P交BC的延长线于Q,构造等腰三角形ABQ.方法2:延长A P交BC的延长线于Q.在□ABCD中,AD∥BC,AB∥CD,∴∠1=∠Q,∠2=∠3.又∵∠1=∠2,∴∠Q=∠2=∠3.∴AB=BQ,P=C C Q.∴BC=BQ-C Q=AB-PC=18cm-6cm=12cm.∴□ABCD的周长为:2(AB+BC)=60cm.【小结】求平行四边形的周长时往往只需要求出平行四边形的相邻两边长,在求解过程中可以构造特殊的三角形,如等腰三角形、全等三角形等等.二、等分面积【例2】如图,ABCD是王老六家的一块平行四边形田地,P 为水井,现要把这块田平均分给两个儿子, 为了方便用水,要求两个儿子分到的地都与水井相邻,请你来设计一下,并说明你的理由.【思考与分析】我们说只要满足所分的两块地面积相等,且都与水井相邻就可以. 那么可以考虑利用平行四边形的性质(平行四边形的对角线互相平分)来解题. 找到两条对角线的交点,则交点和水井所在的直线将田地分成面积相等的两块.解:设对角线AC,BD交于O,如下图,过O、P 作直线交BC,AD于E、F,则线段EF分割的这两块田地符合要求. 理由如下:易证OE=OF,BE=DF,AF=CE(把证线段相等转化为证三角形全等),四边形ABEF绕点O旋转180°,就与四边形CDFE重合,这两部分面积相等, 又点P(井)在EF上,符合水井和两块地相邻的要求,故此种分法符合要求.【反思】实际生活中有很多需要直接或间接用平行四边形的性质来解决的问题,我们要牢牢把握住性质以便可以灵活地运用它来解题.三、探究相等的线段【例3】如图,在平行四边形ABCD中,点E、F 在对角线AC上,且AE=CF,请你以 F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并说明它和图象中已有的某2一条线段相等(只需说明一组线段相等即可).(1)连接.(2)猜想:=___________.(3)理由:.【思考与分析】本题立足于一个常见的基本图形,把传统的几何题,改造成一个发现猜想、说明理由的几何题,对平面几何的学习有着重要的意义.解:答案1:(1)连接BF.(2)猜想:BF=DE.(3)理由1:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC.∴∠DAE=∠BCF.在△BCF与△DAE中,∴△BCF≌△DAE. ∴BF=DE.理由2:如图,连接DB、D F,设D B、CA交于点O.∵四边形ABCD是平行四边形,∴AO=OC,DO=OB.∵AE=FC,∴AO-AE=OC-FC.即EO=OF.∴四边形EBFD为平行四边形.∴BF=DE.答案2:(1)连接DF.(2)猜想:DF=BE.(3)理由:略.【小结】理由 1 中把线段相等问题转化为求三角形全等问题;理由 2 中把线段相等问题转化为平行四边形判定的问题. 通过解转化后的问题,线段相等成为明显的事实.四、证明角相等【例4】如图,已知点M、N分别是□ABCD的边A B、DC的中点,试说明:∠DAN=∠BCM.【思考与分析】先找这两个角的位置,但没有什么联系.题中给出点M、N分别是平行四边形ABCD的边A B、DC的中点,很容易想到连接MN,得到三个四边形AMC、N AMND、BCNM是平行四边形,推出∠DAN=∠ANM,∠BCM=∠CMN,而只要能推出∠ANM∠=CMN,题中结论即可证明.解:连接MN.∵M、N分别是平行四边形ABCD的边A B、DC的中点,∴AM、CN平行且相等.∴四边形AMCN是平行四边形.同理,四边形AMND、四边形BCNM是平行四边形.∴∠DAN=∠ANM∠=CMN∠= BCM.五、证明线段平行【例5】已知:如图,E、F 是平行四边形ABCD的对角线A C上的两点,AE=CF.试说明:(1)△ADF≌△CBE;(2)EB∥DF.【思考与分析】要说明△ADF≌△CBE,就要找全等的条件. 猛一看,题中只有AE=CF一个条件,其实还有一个条件四边形ABCD是平行四边形,则A D=BC,∠DAF=∠BCE,所以△ADF≌△CBE.所以∠DFA=∠BEC,所以(2)的结论成立.4解:(1)∵AE=CF,∴AE+EF=CF+FE即AF=CE .又四边形ABCD是平行四边形,∴AD=CB,AD∥BC .∴∠DAF=∠BCE .在△ADF与△CBE中∴△ADF≌△CBE(SAS). (2)∵△ADF≌△CBE,∴∠DFA=∠BEC .∴DF∥EB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形专题
专题笔记
(一)平行四边形的定义及性质
1.平行四边形的概念:两组对边分别平行的四边形是平行四边形
2.平行四边形的性质(边,角,对角线,对称性)
(1)边的性质:平行四边形的对边相等
平行四边形的对边平行
(2)角的性质:平行四边形的对角相等
(3)对角线的性质:平行四边形的对角线互相平分
(4)平行四边形是中心对称图形
(二)平行四边形的判定:
1.平行四边形的判定
(1)两组对边分别平行的四边形是平行四边形(定义)
(2)两组对边分别相等的四边形是平行四边形
(3)对角线互相平分的四边形是平行四边形
(4)一组对边平行且相等的四边形是平行四边形
(注意:必须是同一组对边平行且相等,也就是一组对边平行,另一组对边相等时,不一定是平行四边形。
有两条边相等,并且另外两条边相等的四边形不一定是平行四边形)2.两条平行线间的距离的定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离,实际上平行线间的距离处处相等(三)三角形的中位线
1.三角形中位线的定义:连接三角线两边中点的线段叫做三角形的中位线
2.三角形中位线定理:三角形的中位线平行于三角线的第三边,且等于第三边的一半
(要区别三角形中位线和中线不要搞混淆了,说的是中位线与第三边的位置关系,中位线与第三边的数量关系)
(四)多边形的内角与外角和
1.多边形及正多边形
(1)多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形。
(2)多形的分:多形按成它的段的条数分三形(三角形)、四形、五形⋯⋯由 n 条段成的多形叫做n 形
(3)多形的角:接多形不相的两个点的段叫做多形的角
(4)正多形:在平面内,内角都相等、也都相等的多形叫做正多形2.多形的内角和与外角和
(1)多形的内角和: n 形的内角和等于( n-2 ) *180°( n≥ 3)
(2)多形的外角和:多形的外角和等于360°
n( n3)
(3)多形的角有: 2
专题强化训练。