平面向量的减法运算课件

合集下载

02-第二节 平面向量的运算-课时1 向量的加法运算、减法运算高中数学必修第二册人教版

02-第二节 平面向量的运算-课时1 向量的加法运算、减法运算高中数学必修第二册人教版

= = ,所以四边形和四边形都是平行四边形,所以
= , = .
A √ 由平行四边形法则,得 + = .
B √ || = || = 1,|| = || = 1,所以|| = ||.
C × − = − = + ≠ .
D.
【解析】 + ( + ) + = + + + = .
)
2.如图所示的方格纸中有定点,,,,,
,,则 + =( C )
A.
B.
C.
D.
【解析】 设 = + ,利用向量加法的平行四
边形法则作出向量,再平移即可发现 = .
1.(多选)如图,在等腰梯形中,//, = 2,
= = = 1,为的中点,则( ABD
A. + =
B.|| = ||
C. − =
D. + =
)
【解析】 由题意得|| = || = || = 1,//,//,所以
所以△是以∠为直角的直角三角形,
从而 ⊥ ,所以平行四边形是矩形.
根据矩形的对角线相等,知|| = ||,因此| + | = 4.
(2)若|| = || = | −
|+|
|,求
.
|−|
【解析】 如图所示,平行四边形中,设 = ,
(1)若|| = 7 + 1,|| = 7 − 1,且| − | = 4,求| + |;
【解析】 如图所示,设 = , = ,以,为邻边作
平行四边形,则|| = | − | = | − |,|| = |
+| = | + |.

6.2.2 向量的减法运算(教学课件)高一数学(人教A版2019必修第二册)

6.2.2 向量的减法运算(教学课件)高一数学(人教A版2019必修第二册)

3
向量的减法运算 创设情境 问题2:类比实数x的减法,你认为向量的减法该怎样定义?
减去一个向量等于加上这个向量的相反向量
4
向量的减法运算 向量的减法
向量的减法 求两个向量差的运算叫做向量的减法
向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b)
问题3:任意两个非零向量a与b,根据减法的定义如何作图得到a-b?
解:因为四边形 ACDE 是平行四边形,所以C→D=A→E=c, B→C=A→C-A→B=b-a, 故B→D=B→C+C→D=b-a+c.
14
3:6
向量的减法运算 方法小结
用向量表示其他向量的方法 (1)解决此类问题要充分利用平面几何知识,灵活运用平行四边形法则 和三角形法则. (2)表示向量时要考虑以下问题:它是某个平行四边形的对角线吗?是 否可以找到由起点到终点的恰当途径?它的起点和终点是否是两个有 共同起点的向量的终点? (3)必要时可以直接用向量求和的多边形法则.
(2)试探索不同情况下|a-b|,|a|,|b|之间的关系.
7
向量的减法运算 例练结合 例1 如图,已知向量a,b,c,d,求作向量a−b,c−d.
a
b
d
c
b
d
a
c
O
8
向量的减法运算 例练结合
变式:如图,已知向量 a,b,c不共线,求作向量a b c .
法一:如图①,在平面内任取一点 O,作O→A=a,A→B=b,则O→B=a+b,再作O→C=c, 则C→B=a+b-c.
4.如图所示,解答下列各题: (1)用 a,d,e 表示D→B; (2)用 b,c 表示D→B; (3)用 a,b,e 表示E→C; (4)用 c,d 表示E→C.

第1讲 平面向量的概念及加减运算(教师版)

第1讲 平面向量的概念及加减运算(教师版)

第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。

6.2平面向量的运算课件共40张PPT

6.2平面向量的运算课件共40张PPT
故选 B.




即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.


解析:由=,可得四边形 ABCD 为平行四边形,


由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形




[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:


(1)+;





解:(1)+=+=.
[例 2] 化简:



(2)++;






解:(2)++=++



=(+)+
→→Biblioteka =+=0.
[例 2] 化简:












解:(2)原式=--+=(-)+(-)=+=0.



[备用例 2] 化简:--.






解:法一 --=-=.













4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册
第六章 平面向量及其应用
6.2.1 向量的加法运算 6.2.2 向量的减法运算
教学目标
借助实例和平面向量的几何意义,掌握平面向量
1
的加法、减法运算及其运算规律.
2 理解平面向量的加法、减法运算的几何意义.
(1)向量的加法:求两个向量和的运算, 叫做向量的加法.
对于零向量与任意向量a ,规定a+0 0 a a .
本节课学习了平面向量的加法、减 法运算.
解析:由题意和图形可知 BAC 90 ,因为| AB | 300 ,| BC | 300 2 ,
所以| AC | 300 ,因为 ABC 45 ,A 地在 B 地南偏东 30°的方向处. 所以 C 地在 B 地南偏东 75°的方向处. 故飞机从 B 地向 C 地飞行的方向为南偏东 75°.
9.化简下列各式: (1) ( AB MB) (OB MO) . (2) AB AD DC .
B a-b
b Oa A
例 1 长江两岸之间没有大桥的地方,常常通过轮渡进行运 输.如图,一艘船从长江南岸 A 地出发,垂直于对岸航行, 航行速度的大小为 15 km/h,同时江水的速度为向东 6 km/h. (1)用向量表示江水速度、船速以及船实际航行的速度; (2)求船实际航行的速度的大小(结果保留小数点后一位)与方向(用与江水速度 间的夹角表示,精确到 1°).
(2)向量加法的三角形法则:已知非零向量a,b ,在平面内
任取一点 A ,作 AB a , BC b ,则向量 AC 叫做a 与b 的和,
记作 a b ,即 a b AB BC AC .如图.
C
b a+b
Aa
B
(3)向量加法的平行四边形法则:已知两个不共线向量a,b , 作 AB a , AD b ,以 AB , AD 为邻边作 ABCD ,则对角线 上的向量 AC a b .如图.

7.2-平面向量的加法、减法和数乘向量

7.2-平面向量的加法、减法和数乘向量

a
交换律:
ab
总结: 向量的加法满足交换律与结合律。
ba
结合律:
a b c a b c
典例分析
例2:如图所示,已知 a, b,用向量加法的三角形 法则 作和向量a b。
a b
(1)
解析: 作AB a, BC b;
A B
C
a b AB BC AC
D O A B
C
练习3
如图所示,已知O是正六边形ABCDEF的中心, 则:
A F O E
( 1 ) OA OC ______ OB ;
(2) BC EF ______ 0 ;
B
0 ; ( 3) OA FE ______
D C (4) AB BC CD DE EF FA ________ 0 。
(1)用向量加法的平行四边形法则作出 箭尾所受两个方向力F1、F2的合力F。 (2)如果力F1、F2的大小为100N,它 们的夹角为90°,则它们的合力F的大小 是多少?
典例分析
例3:如图所示,已知a, b,用向量加法的平行四边 形法则作和向量a b。
b
a
A
C
D
B
在平面内任取一点 A, 作AB b, AC a, 解: 以AC、AB为邻边作平行四边形 ABDC,
(3)b / / a(a 0)是b a成立的什么条件?
成立 充要
41
向量共线定理:
向量a (a 0)与b共线, 当且仅当有唯一一个实数 , 使b a.
即a与b共线
b a (a 0)
思考:1) a 为什么要是非零向量?

平面向量的概念+加减法运算

平面向量的概念+加减法运算

b a,
连结OC,则 O C O A O B a b .
A
a
C
O ab
b
B
平行四边形法则
尝试练习二:
(3)已知向量a、b ,用向量加法的三角形法则和平行四边形
法则作出 a b

b

b
a
a
思考2:数的加法满足交换律和结合律,即对任意a,bR,

abba,
( a b ) c a ( b c ) .
(5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中真命题的个数是( )
A.0 B. 1
D
C
C. 2
变:若 a ∥ b, b ∥ c, 则a ∥c
D. 3
C
D
当b ≠ 0时成立。
A
B
B
A
小结:
向量
定义
几何表示法:有向线段 表示
符号表示法: a ,b AB
长度(模)
(1 )
(2)当 a
A B A D D B ,b 共线时,怎样作
a( b2 ) baB 呢A ? B C C A
( a3 ) OB AC B bA OABC
(4 )O D O A A D
OA
B
(5 a )O bA B O A B B A B O A
一般地 a b
三、几何意义
O A
b
ab
B
2.两个特殊向量:
零向量---长度(模)为0的向量叫做零向量,记作 0。 单位向量---长度(模)等于1个单位长度的向量叫作单位向量。 问:在平面上把所有单位向量的起点平移到同一点P,那么它们 的终点的集合组成什么图形?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即: a b = a (b)
r
求两个向量差的运算叫做向量的减法
a
rrrrBiblioteka 2.已知向量rra,
b
,如何作出 向量
a - br?r
r b
r
3.差向量 a - b 的方向与原来两个向量 a
向有什么关系?如何用一句话来表达?
, b的方r
b
OaA rr
ab
向量减法的角形法则: 共起点,箭头指向被减向量
B
uuur r r
记作 a .
r r 注:1.零向量的相反向量仍是零向量; 0=0
2.任一ar向量(与ar其)相=反(向ar量) 的 和ar 是= 零0r 向量;
uuur uuur 重要提示 : AB = BA
1.什么叫r 做向r量的差?什么是向量r 的r减法? 向量a加r 上rb的r相反r向量,叫做 a与b的差,
b
d
a
c
d b a
c
课堂练习:
1、如图,已知a、b,求作a-b。
(1)
(2)
b a
(3)
a
a
b
b
2、填空: AB-AD= DB BA-BC= CA BC-BA= AC OD-OA= AD OA-OB= BA
(4)
a
b
(1) (ra)r= a, a (a) = (a) a = 0
(2) r 0 = 0r
rr
rr r
(3) a = b, b = a, a b = 0
ar2.向量减法的平r行四Ouu边Cur 形= ar法则br
rB b
C
b
uuur r r BA = a b
O
r aA
例题分析:
例1、已知向量a、b、c、d,求作向量a-b,c-d。
uBuAur=
a
b r
r
AB = b a
特例:
r ra b
(1)
uuur r OA = a
(1) O A B
r ar b (3)
rr
ab
(3) B
OA
uuur r OB = b
r a r b
(2)
rr ab
O B A (2)
r ra b
(4)
rr ab
A
O
(4)
B
说明:1.关于相反向量
r r r r r rr
平面向量的减法运算
温故
1.向量加法的三角形法则: 2.平行四边形法则:
首尾相连,由首至尾
C ab b
A a B
共起点
Ba
b
a
b
C
b
O
a
A
3.向量加法的交换律
:
ar
r b
=
r b
ar .
4.向量加法的结合律
: (ar
r b)
cr
=
ar
r (b
cr )
r
r
与r向量 a长度相等,方向相反的向量,叫做a 的相反向量,
相关文档
最新文档