复杂模型机的设计与实现

合集下载

计算机硬件课程设计报告——拓展接口的复杂模型机设计

计算机硬件课程设计报告——拓展接口的复杂模型机设计

计算机硬件课程设计报告——拓展接口的复杂模型机设计学院:计算机科学与工程学院专业:计算机科学与技术班级:组员1:组员2:起止时间:目录一、实验目的 (3)二、实验内容 (3)三、实验思路 (3)四、实验原理 (3)五、实验步骤 (10)六、实验设计 (11)七、实验心得 (14)一、实验目的经过一系列硬件课程的学习及相关实验后,做一个综合的系统性的设计,这在硬件方面是一个提高,进一步培养实践能力。

二、实验内容搭建一台有拓展接口的8位模型机,指令系统要求有10条以上,其中包括运算类指令、传送类指令、控制转移类指令、输入输出指令、停机指令等。

三、实验思路1、确定设计目标:确定所设计计算机的功能和用途。

2、确定指令系统:确定数据的表示格式、位数、指令的编码、类型、需要设计哪些指令及使用的寻址方式。

3、确定总体结构与数据通路:总体结构设计包含确定各部件设置以及它们之间的数据通路结构,列出各种信息传送路径以及实现这些传送所需要的微命令。

4、设计指令执行流程:数据通路确定后,就可以设计指令系统中每条指令的执行流程。

根据指令的复杂程度。

每条指令所需要的机器周期数。

对于微程序控制的计算机,根据总线结构,需要考虑哪些微操作可以安排在同一个微指令中。

5、确定微程序地址:根据后续微地址的形成方法,确定每条微程序地址及分支转移地址。

6、根据微指令格式,将微程序流程中的所有微操作进行二进制代码化,写入到控制存储器中的相应单元中。

7、组装、调试:在总装调试前,先按功能模块进行组装和分调,因为只有功能模块工作正常后,才能保证整机的运行正确。

四、实验原理1、指令系统及指令格式(1)数据格式8位。

(2)指令格式:指令系统应包括:算术逻辑运算指令、访存指令、控制转移指令、I/O指令、停机指令。

一般指令格式如下:O P-C O D E(4位)R S(2位)R D(2位)D A T A /A D D R (8位)其中R S 、R D 可以是R 0、R 1、R 2中任一个,它们的代码分别为00、01、10。

《计算机组成原理》复杂指令模型机设计与实现

《计算机组成原理》复杂指令模型机设计与实现

《计算机组成原理》复杂指令模型机设计与实现
复杂指令模型(CISC)是一种用来描述CPU识别并执行复杂指令的计算机架构。

CISC机器比RISC机器具有更多的指令,但它的实现却要复杂一些。

这里介绍的是完成CISC机器设计与实现的一些基本IO结构和步骤。

(1)运行环境的设置:使用嵌入式开发环境(EDE)完成硬件的设计。

该环境支持大多数底层硬件架构,如内存,存储器和处理器等,允许程序员快速检查和调试指令,以期达到最佳性能。

(2)硬件实现:通过EDE提供的硬件实现工具,程序员可以根据指定的指令系统(CISC架构)完成对CISC架构CPU进行硬件实现。

此过程中,需要设计出包括指令存取模块、指令执行模块、指令缓存模块、数据缓存模块等硬件模块,将指令的解释与执行紧密结合。

(3)指令编程:利用EDE工具和指定的指令集,开发者需要把各个指令和指令集编程到CISC CPU 系统中,使得指令能够正确的工作。

(4)测试验证:在指令编程完成后,需要对CISC机器系统进行功能测试及验证,确保CISC机器系统能够正确地识别和执行各种指令,最大程度地发挥CISC 机器的性能。

(5)实时性评估:在确认CISC机器系统能正常工作后,需要对系统的实时性(以指令周期为单位时间)进行定期评估,确保CISC机器系统运行的流畅。

总之,完成CISC机器设计与实现过程中,需要首先通过嵌入式开发环境完成硬件设计,接着通过指定的指令集将指令编程至CISC CPU系统中,尽可能达到最佳性能,最后对CISC机器系统进行功能测试及实时性评估,以证明它能够正常工作。

计算机组成原理实验报告基本模型机和复杂模型机的设计

计算机组成原理实验报告基本模型机和复杂模型机的设计

计算机组成原理实验报告基本模型机和复杂模型机的设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]基本模型机设计一. 设计目的1. 在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台稍微复杂的模型计算机;2. 为其定义5条机器指令,并编写相应的微程序,具体上机调试掌握整机概念二. 设计内容部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能,这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。

三.概要设计为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序.存储器读操作:拨动总清开关CLR后,控制台开关SWB,SWA 为”0 0”时,按START微动开关,可对RAM连续手动读操作.存储器写操作:拨动总清开关CLR后,控制台开关SWB SWA置为”0 1”时,按START微动开关可对RAM进行连续手动写入.启动程序:拨动总清开关CLR后,控制台开关SWB SWA置为“1 1”时,按START微动开关,既可转入到第01号“取址”微指令,启动程序运行.上述三条控制台指令用两个开关SWB SWA 的状态来设置,其定义如下表3-1读写变化根据以上要素设计数据通路框图,如图3-1:表3-2 微代码的定义表3-3 A,B,P字段内容A字段 B字段 P字段当拟定“取指令”微指令时,该微指令的判别测试字段为P1测试。

由于“取指”微指令是所有微程序都使用的公用微指令,因此P1测试结果出现多路分支。

本次课程设计用指令寄存器的前4位(I7-I4)作为测试条件,出现5路分支,占用5个固定微地址单元。

控制台操作为P4测试,它以控制台开关SWB,SWA作为测试条件,出现了3路分支,占用3个固定微地址单元。

实验六 复杂模型机的设计与实现

实验六 复杂模型机的设计与实现

实验六复杂模型机的设计与实现本实验旨在介绍复杂模型机的设计与实现,包括硬件设计、软件开发以及测试等环节。

一、实验目的1、了解复杂模型机的原理和结构。

4、学会使用测试工具对复杂模型机进行测试和验证。

二、实验原理复杂模型机是一种灵活多变的系统,其结构和输入规则可以进行修改和扩充。

其原理是通过对输入的逐步处理和变换,获取到相应的输出结果。

复杂模型机的硬件设计包括电路结构和部件选择等方面,需要根据具体的应用场景进行选择和设计。

而软件开发则包括编程语言、算法设计以及接口设计等方面。

最终,测试是对复杂模型机进行验证的过程,通过测试可以发现系统中存在的问题,进行修改和优化。

三、实验内容1、硬件设计硬件设计是复杂模型机设计中一个非常重要的环节。

根据具体的应用场景,需要选择合适的器件和电路结构。

例如,在一些需要大量数据传输的应用场景中,需要选择高速缓存、高速总线等器件,以提升系统处理速度。

此外,还需要注意信号处理、干扰防护、热稳定性等问题。

2、软件开发软件开发包括编程语言的选择、算法设计、接口设计等方面。

在编程语言的选择方面,C、C++、Python等语言都有优缺点,需要根据实际情况进行选择。

算法的设计则是根据具体的应用场景来的。

例如,在图像处理领域中,常用的算法有人脸识别、图像增强等。

接口设计包括输入输出接口的设计,需要实现对多种交互方式的支持,如图形界面、脚本等。

3、测试和验证测试和验证是对复杂模型机进行验证的过程,通过测试可以发现系统中存在的问题,进行修改和优化。

常用的测试工具包括单元测试、集成测试、性能测试等。

四、实验步骤根据实际需求进行硬件设计,选择器件和电路结构。

最终进行硬件搭建和测试。

根据实际需求进行软件开发和实现,包括编程语言的选择、算法设计、接口设计等方面。

最终进行软件测试和验证。

五、实验注意事项1、在进行实验前,需要对硬件和软件进行备份,以免因实验操作失误造成数据丢失或损坏。

2、在进行大规模测试前,需要对系统进行充分的测试和验证,以确保系统的稳定性和性能。

复杂模型机实验实验报告(共9篇)

复杂模型机实验实验报告(共9篇)

复杂模型机实验实验报告(共9篇)_复杂模型机实验报告计算机组成原理实验报告实验题目:一台模型计算机的总体设计之复杂模型机设计实验目的:(1)在掌握部件单元电路实验的基础上,进一步将其组成系统,构造一台复杂模型计算机,建立一台基本完整的整机。

(2)为其定义至少五条机器指令,并编写相应的微程序,通过联机调试,观察计算机执行指令:从取指令、指令译码、执行指令等过程中数据通路内数据的流动情况,进一步掌握整机概念。

实验设备TDN-CM+教学实验系统一套、微型计算机一台、排线若干。

实验原理:(1)数据格式及指令系统:①数据格式模型机规定数据采用定点整数补码表示,字长为8位,其格式如下:其中,第7位为符号位,数值表示范围是-27 ≤X≤27-1 ②指令格式模型机设计4大类指令共16条,其中包括算术逻辑指令、I/O 指令、访问及转移指令和停机指令。

A.算术逻辑指令设计九条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:其中,OP-CODE为操作码,RS为源寄存器,RD为目标寄存器,并规定:九条算术逻辑指令的助记符、功能和具体格式见表5.2-1。

B.访问及转移指令:模型机设计两条访问指令,即存数(STA)、取数(LDA),两条转移指令,即无条件转移(JMP)、结果为零或有进位转移(BZC),指令格式如下:其中,OP-CODE为操作码,RD为目的寄存器地址(LDA、STA 指令使用)。

D为位移量(正负均可),M为寻址模式,其定义如下:本模型机规定变址寄存器RI指定为寄存器R2。

C.I/O指令:输入(IN)和输出(OUT)指令采用单字节指令,其格式如下:其中,addr=01时,选中“INPUT DEVICE”中的开关组作为输入设备,addr=10时,选中“OUTPUT DEVICE”中的数码块作为输出设备。

D.停机指令:停机指令格式如下:HALT指令,用于实现停机操作。

③指令系统:本模型机共有16条基本指令,其中算术逻辑指令七条,移位指令两条,访问内存指令和程序控制指令四条,输入/输出指令两条,其它指令一条。

组成原理课程设计-复杂模型机

组成原理课程设计-复杂模型机

课程设计报告课程名称:计算机组成原理设计题目:复杂模型机专业:xxxxxx 姓名:xx学号:xxxxx 同组人:xxxxxx 指导教师:xx二零一六年一月目录1、课程设计任务书 (3)1.1 设计任务 (3)1.2 性能指标和设计要求 (3)2、本设计模型机体系结构及功能 (3)2.1 模型机的体系结构 (3)2.2 模型机所具有的基本功能 (4)3、模型机硬件设计 (4)3.1 模型机总体结构设计 (4)3.2 模型机的硬件实现 (5)3.3 模型机数据通路的设计 (5)4、模型机机器指令系统设计 (6)4.1 指令设计 (6)4.2 指令格式 (6)4.3 指令系统 (8)5、模型机控制器微程序设计 (9)5.1 机器指令周期分析 (9)5.2 模型机硬件译码电路 (9)5.3 微程序流程图设计 (11)5.4 微指令格式设计 (12)5.5 微指令编码设计 (12)5.6微指令地址及控存存储器设计 (13)6、模型机功能测试 (14)6.1 机器指令功能调试 (14)6.2整机功能测试 (17)7、结论 (18)8、致谢 (18)9、附录 (18)1、附录一 (18)2、附录二 (19)1、课程设计任务书1.1 设计任务1、基本模型机的设计与实现。

2、在基本模型机的基础上设计一台复杂模型机。

1.2 性能指标和设计要求利用所学过的理论知识,特别是微程序设计的思想,设计基于微程序控制器的模型计算机,包括设计相应的硬件平台、机器指令系统和微指令等。

设计环境为TD-CMA 计算机组成原理教学实验箱、微机,联机软件等。

同时设计好基于模型机的测试验证程序,并在设计好的硬件平台上调试通过,以验证所设计的模型机功能的可行性与可靠性。

在设计完成的前提下,撰写出符合要求的课程设计说明书并通过设计答辩。

1.基本模型机设计与实现设计一台简单模型机,在具备基本必要的硬件平台的基础上,进一步要求其机器指令系统至少要包括五条不同类型指令:如一条输入指令(假设助记符为IN),一条加法指令(假设助记符为ADD),一条输出指令(假设助记符为OUT)、一条无条件转移指令(假设助记符为JMP)和一条停机指令(假设助记符为HLT);在设计好的模型机基础上,设计一个进行两个数求和运算的测试验证程序,用以验证模型机功能的可行性与可靠性。

复杂模型机设课程设计报告

复杂模型机设课程设计报告一、课程目标知识目标:1. 理解并掌握复杂模型机的结构组成及其工作原理;2. 学习并运用模型机的编程方法,实现对简单任务的执行;3. 掌握模型机的调试与优化方法,提高模型机的运行效率。

技能目标:1. 能够运用所学知识设计并搭建简单的复杂模型机;2. 能够运用编程语言对模型机进行编程,实现特定功能;3. 能够分析并解决模型机在运行过程中出现的问题,提高实际操作能力。

情感态度价值观目标:1. 培养学生的团队合作精神,学会在团队中分工合作,共同完成任务;2. 增强学生对工程技术的兴趣,激发创新意识,培养探究精神;3. 引导学生关注科技发展,认识到复杂模型机在现代科技领域的重要地位和价值。

课程性质:本课程为实践性较强的学科课程,旨在通过理论与实践相结合的方式,帮助学生掌握复杂模型机的相关知识。

学生特点:学生处于高年级阶段,具备一定的学科基础和动手能力,对新技术充满好奇,喜欢探究和挑战。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化实际操作训练,提高学生的综合运用能力。

在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 复杂模型机的基本概念与结构:介绍模型机的定义、分类及其工作原理,重点讲解复杂模型机的结构组成和功能。

教材章节:第一章 模型机概述2. 模型机的编程方法:学习编程语言,掌握模型机的编程技巧,实现基本指令的编写与执行。

教材章节:第二章 编程语言与编程方法3. 模型机的搭建与调试:讲解如何设计并搭建复杂模型机,学会使用调试工具,对模型机进行调试与优化。

教材章节:第三章 模型机的搭建与调试4. 实际案例分析:分析典型复杂模型机的应用案例,让学生了解模型机在现代科技领域的实际应用。

教材章节:第四章 复杂模型机应用案例5. 综合实践:组织学生进行小组合作,设计并搭建一个简单的复杂模型机,实现特定功能,提高学生的实际操作能力。

复杂模型机组成原理实验

内容摘要本实验利用EL-JY-Ⅱ型计算机组成原理实验系统组建电路,综合运用运算器、控制器、存储器、输入输出系统、总线等部件和辅助电路,完成一个较完整的模型计算机设计和实现,并构造一个指令系统,编写机器指令实现不同的具体功能,如实现数据的输入、输出、加法、减法、移位、自增、自减以及赋值等运算的功能。

关键词:模型机,指令系统,数据输入/输出,算术逻辑运算目录内容摘要 (1)第1章绪论 (4)1.1设计地点 (4)1.2设计目的 (4)1.3设计的意义 (4)1.4课程设计的主要内容和要求 (4)1.5实验的环境 (5)第2章系统设计与实现 (5)2.1模型机结构框图 (5)2.2工作原理 (6)2.2.1 数据格式 (6)2.2.2 指令格式 (6)2.2.3 指令系统 (7)2.2.4 设计微代码 (8)2.2.5 实验微代码 (11)2.3程序代码 (12)2.4实验内容介绍 (12)2.5系统实现步骤 (13)2.6测试用例 (15)2.7硬件连线图 (15)第3章总结 (16)参考文献 (17)课程设计任务书第1章绪论本实验实现的是对复杂模型机组成原理的研究。

1.1 设计地点图书馆五楼机房。

1.2 设计目的本课程设计综合运用运算器、控制器、存储器、输入输出系统、总线等部件和辅助电路,完成一个较完整的模型计算机设计和实现(包括硬件和软件)。

通过课程设计对计算机组成和系统结构的基础知识进行全面的掌握,培养独立分析、研究、开发和综合设计能力。

1.3 设计的意义通过对复杂模型机组成的研究以及对微程序、微代码、机器指令的深入理解,进一步增强对计算机组成的学习,巩固以前所学知识,并对以后的学习打下坚实的基础。

1.4 课程设计的主要内容和要求掌握计算机五大功能部件的组成及功能,熟悉完整的单台计算机基本组成原理,掌握计算机中数据表示方法、运算方法、运算器的组成、控制器的实现、存储器子系统的结构与功能、输入/输出系统的工作原理与功能。

复杂模型机的设计与实现

计算机组成原理课程设计实验报告复杂模型机的设计与实现一、课程设计目的综合运用所学计算机原理实验知识,设计并实现较为完整的计算机。

二、设计要求1、确定设计目标参考实验指导书上复杂模型机设计的过程,运用其微指令格式,独立设计指令系统。

并用该指令系统中的指令编一完成简单运算的程序(有数据输入和输出的)。

并进行调试运行。

2、确定指令系统确定数据的表示格式、位数、指令的编码、类型、需要设计哪些指令及使用的寻址方式。

3、总体结构与数据通路总体结构设计包含确定各部件设置以及它们之间的数据通路结构。

在此基础上,就可以拟出各种信息传送路径,以及实现这些传送所需要的微命令。

对于部件设置,比如要确定运算器部件采用什么结构,控制器采用微程序控制。

综合考虑计算机的速率、性能价格比、可靠性等要求,设计合理的数据通路结构,采用何种方案的内总线及外总线。

数据通路不同,执行指令所需要的操作就不同,计算机的结构也就不一样。

4、设计指令执行流程数据通路确定后,就可以设计指令系统中每条指令的执行流程。

根据指令的复杂程度,每条指令所需要的机器周期数。

对于微程序控制的计算机,根据总线结构,需考虑哪些微操作可以安排在同一个微指令中,哪些微操作不能安排在同一条微指令中。

5、确定微程序地址根据后续微地址的形成方法,确定每条微程序地址及分支转移地址。

6、根据微指令格式,将微程序流程中的所有微指令代码化,转化成相应的二进制代码,写入到控制存储器中的相应单元中。

7、组装、调试在总调试前,先按功能模块进行组装和分调,因为只有各功能模块工作正常后,才能保证整机的运行正确。

当所有功能模块都调试正常后,进入总调试。

连接所有模块,用单步微指令方式执行机器指令的微程序流程图,当全部微程序流程图检查完后,若运行结果正确,则在内存中装入一段机器指令,进行其他的运行方式等功能调试及执行指令的正确性验证。

三、数据格式以及指令格式1、数据格式模型机规定采用定点补码表示法表示数据,且字长为8位,其格式如下:2、指令格式模型机设计四大类指令共十六条,其中包括算术逻辑指令、I/O指令、访问存储器及转移指令和停机指令。

计算机组成原理实验八复杂模型机的设计与实现心得

计算机组成原理实验八复杂模型机的设计与实现心得
在计算机组成原理实验八中,我们需要设计并实现一个复杂的模型机。

这是一个很有挑战性的任务,需要我们充分运用所学的知识和技能,才能成功完成。

在设计过程中,我们首先需要明确模型机的功能需求,并根据需求确定模型机的各个部分以及它们之间的相互关系。

在此基础上,我们可以开始进行具体的设计和实现工作。

在具体实现过程中,我们需要注意代码的可读性和可维护性,尽量避免出现冗长、复杂的代码结构。

同时,我们需要对代码进行严格的测试和调试,确保模型机的各个部分都能正常运行和协同工作。

通过这次实验,我不仅深入了解了计算机组成原理的相关知识,也锻炼了自己的设计和实现能力。

希望今后能够在这方面继续努力,不断提高自己的技能水平。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理课程设计实验报告复杂模型机的设计与实现一、课程设计目的综合运用所学计算机原理实验知识,设计并实现较为完整的计算机。

二、设计要求1、确定设计目标参考实验指导书上复杂模型机设计的过程,运用其微指令格式,独立设计指令系统。

并用该指令系统中的指令编一完成简单运算的程序(有数据输入和输出的)。

并进行调试运行。

2、确定指令系统确定数据的表示格式、位数、指令的编码、类型、需要设计哪些指令及使用的寻址方式。

3、总体结构与数据通路总体结构设计包含确定各部件设置以及它们之间的数据通路结构。

在此基础上,就可以拟出各种信息传送路径,以及实现这些传送所需要的微命令。

对于部件设置,比如要确定运算器部件采用什么结构,控制器采用微程序控制。

综合考虑计算机的速率、性能价格比、可靠性等要求,设计合理的数据通路结构,采用何种方案的内总线及外总线。

数据通路不同,执行指令所需要的操作就不同,计算机的结构也就不一样。

4、设计指令执行流程数据通路确定后,就可以设计指令系统中每条指令的执行流程。

根据指令的复杂程度,每条指令所需要的机器周期数。

对于微程序控制的计算机,根据总线结构,需考虑哪些微操作可以安排在同一个微指令中,哪些微操作不能安排在同一条微指令中。

5、确定微程序地址根据后续微地址的形成方法,确定每条微程序地址及分支转移地址。

6、根据微指令格式,将微程序流程中的所有微指令代码化,转化成相应的二进制代码,写入到控制存储器中的相应单元中。

7、组装、调试在总调试前,先按功能模块进行组装和分调,因为只有各功能模块工作正常后,才能保证整机的运行正确。

当所有功能模块都调试正常后,进入总调试。

连接所有模块,用单步微指令方式执行机器指令的微程序流程图,当全部微程序流程图检查完后,若运行结果正确,则在内存中装入一段机器指令,进行其他的运行方式等功能调试及执行指令的正确性验证。

三、数据格式以及指令格式1、数据格式模型机规定采用定点补码表示法表示数据,且字长为8位,其格式如下:2、指令格式模型机设计四大类指令共十六条,其中包括算术逻辑指令、I/O指令、访问存储器及转移指令和停机指令。

(1) 算术逻辑指令设计9条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:其中,OP-CODE为操作码,Rs为源寄存器,Rd为目的寄存器,并规定:(2) 访存指令及转移指令模型机设计2条访问指令,即存数(STA)、取数(LDA)、2条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令(BZC)。

其格式如下:其中,OP-CODE为操作码, Rd为目的寄存器,D为位移量(正负均可),M为寻址方式,其定义如下:本模型机规定变址寄存器RI指定为寄存器R2。

(3) I/O指令输入和输出指令采用单字节指令,其格式如下:其中,addr=01 时,表示选中“输入单元”中的开关组作为输入设备,addr=10时,表示选中“输出单元”中的数码块作为输出设备。

(4) 停机指令这类指令只有1条,即停机指令HALT,用于实现停机操作,指令格式如下:3、指令系统(1)本模型机共有16条基本指令。

其中,算术逻辑指令7条,访问内存指令和程序控制指令4条,输入输出指令2条,其他它指令1条。

表1列出了各条指令的格式、汇编符号、指令功能。

表1 复杂模型机指令系统(2)微指令格式表2 复杂模型机微指令结构图1 1 0 LDAR 1 1 0 PC_B 1 1 0 LDPC其中uA5~uA0为6位的后继微地址,A、B、C为三个译码字段,分别由三个控制位译码出多位。

C字段中的P1~P4是四个测试字位,其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的为地址入口,从而实现微程序的顺序、分支、循环运行。

具体来说,P1测试用于“取指令”微指令,它用下址低四位(uA3~uA0)与指令寄存器高四位(IR7~IR4)相或得到各路分支;P2测试用下址低2位(uA1~uA0)与指令寄存器的IR3IR2相或得到各路分支;P3测试用于条件转移,它用下址的uA4与(ZI +CY)相或得到各路分支;P4测试用于控制台操作,它用下址低2位(uA1~uA0)与SWB、SWA相或得到各路分支。

在上述各测试下址中未用到的位均直接保留。

AR为算术运算是否影响进位及判零标志控制位,其为零有效。

B字段中的RS_B、RD_B、RI_B分别为源寄存器选通信号,目的寄存器选通信号及变址寄存器选通信号,其功能是根据机器指令来进行三个工作寄存器R0、R1及R2的选通译码。

三字段中的其他位类似与此,均是某芯片的选通信号,它们的功能都是根据机器指令来进行相应芯片的选通译码。

(3)微程序流程图本模型机的数据通路如图1所示。

根据机器指令系统要求,设计微程序流程图及确定微地址,如图2所示.工作时序波形图如图3所示指令译码器及逻辑表达式如图4所示寄存器译码器如图5所示图3时序波形图如图4指令译码器SE1=I4•T4•P1+I2•T4•P2+P4•T4•SWASE2=I5•T4•P1+I3•T4•P2+P4•T4•SWBSE3=I6•T4•P1SE4=I7•T4•P1SE5=P3•T4•(FC+FZ)图5寄存器译码器图1 复杂模型机的设计的数据通路图图2 微程序流程图图3 实验线路图(4)实验的接线图为:图4 实验接线图四、实验步骤1、按图3连接实验线路,仔细查线无误后,接通电源。

2、编程A.将控制台单元的编程开关SP06设置为WRITE(编程)状态。

B.将控制台单元上的SP03置为STEP,SP04置为RUN状态。

C.用开关单元的二进制模拟开关设置微地址UA5~UA0。

D.在微控制器单元的开关LM24~LM01上设置微代码,24位开关对应24位显示灯,开关量为1时灯亮,开关量为0时灯灭。

E. 按动START键,启动时序电路,即将微代码写入到28C16的相应地址单元中。

F.重复C~E步骤,将表3的微代码写入28C16中。

3、校验A. 将编程开关SP06设置为READ(校验)状态。

B. 将实验板的SP03开关置为STEP状态,SP04开关置为RUN状态。

C. 用二进制开关置好微地址μA5~μA0。

D. 按动START键,启动时序电路,读出微代码.观察显示灯LM24~LM01的状态(灯亮为“1”,灭为“0”),检查读出的微代码是否与写入的相同。

如果不同,则将开关置于WRITE编程状态,重新执行(2)即可4、写程序/运行程序A. 将控制台单元上的SP03置为STEP状态,SP04置为RUN状态,SP05置为NORM状态,SP06置为RUN状态。

B.拨动开关单元的总情开关CLR(1→0→1),微地址寄存器清0,程序计数器清0。

然后使开关单元的SWB、SWA开关设置为“0 1”,按动一次START,微地址显示灯显示“001001”,再按动一次START,微地址灯显示“001100”,此时数据开关的内容置为要写入的机器指令,按动两次START键后,即完成该条指令的写入。

若仔细阅读KWE的流程,就不难发现,机器指令的首地址总清后为00H,以后每个循环PC自动加1,所以,每次按动START,只有在微地址灯显示“001100”时,才设置内容,直到所有机器指令写完。

C. 写完程序后须进行校验。

拨动总清开关CLR(1→0→1)后,微地址清零。

PC程序计数器清零,然后使控制台开关SWB,SWA为“0 0”,按动启动START,微地址灯将显示“001000”;再按START,微地址灯显示为“001010”;第3次按START,微地址灯显示为“111011”;再按START后,此时输出单元的数码管显示为该首地址中的内容。

不断按动START,以后每个循环PC会自动加1,可检查后续单元内容。

每次在微地址灯显示为“001000”时,是将当前地址中的机器指令写入到输出设备中显示。

5、运行程序。

(1)单步运行程序①使编程开关SP06处于RUN状态,SP03为STEP状态,SP04为RUN状态,SP05为NORM状态,开关单元的SWB,SWA为“1 1”。

②拨动总清开关CLR(1→0→1),微地址清零,程序计数器清零,程序首址为00H。

③单步运行一条微指令,每按动一次START键,即单步运行一条微指令。

对照微程序流程图,观察微地址显示灯是否和流程一致。

④当运行结束后,可检查运行结果是否和理论值一致。

(2)连续运行程序①使编程开关SP06处于RUN状态,SP03为RUN状态,SP04为RUN状态,SP05为NORM状态,开关单元的SWB,SWA为“1 1”。

②拨动CLR开关,清微地址及程序计数器,然后按动START,系统连续运行程序,稍后将SP04拨至“STOP”时,系统停机。

③停机后,可检查运行结果是否和理论值一致。

提示:1.联机运行能测试新功能,只限复杂模型机。

2.装在指令集微指令后就需运行(做其他可能会覆盖代码)。

3.需要有运行程序方法4.SWA,SWB必须为11状态。

五、系统测试实验程序如下:采用机器指令:IN,ADD,STA,OUT,JMP,LDA,RLC,BZC,HLAT,MOV,COM,RRC,CLR,ADC,SBC地址内容助记符说明00 44 IN 01,R0 输入0201 BO INC R002 81 MOV R0,R103 72 CLR R205 E4 RLC R1,R206 96 RRC R1,R007 A8 ADC R1.R208 D2 SBC R2,R009 C2 AND R0,R20A 00 LAD 00,19,R00B 19 (19)=090C 11 LDA 01,1A,R10D 1A (1A)=20,(20)=03 0E 22 LDA 10,1B,R20F 1B (1B)=1810 58 OUT 10,R011 08 JMP 60H12 60 HALT 停机微程序$M00018108$M0101ED82$M0200C050$M0300A004$M0400E0A0$M0500E006$M0600A007$M0700E0A0$M0801ED8A$M0901ED8C$M0A00A03B$M0B018001$M0C00203C$M0D00A00E$M0E01B60F$M2205DB81$M230180E4 $M24018001 $M2595AAA0 $M2600A027 $M2701BC28 $M2895EA29 $M2995AAA0 $M2A01B42B $M2B959B41 $M2C01A42D $M2D65AB6E $M2E0D9A01 $M2F01AA30 $M0D00A00E $M0E01B60F $M0F95EA25 $M1001ED83 $M1101ED85 $M1201ED8D $M1301EDA6 $M14001001 $M15030401 $M16018016 $M173D9A01 $M18019201 $M1901A22A $M1A01B22C $M1B01A232 $M1C01A233 $M1D01A236$M1E318237 $M1F318239 $M20009001 $M21028401 $M2205DB81 $M230180E4 $M24018001 $M2595AAA0 $M2600A027 $M2701BC28 $M2895EA29 $M2995AAA0 $M2A01B42B $M2B959B41 $M2C01A42D $M2D65AB6E $M2E0D9A01 $M2F01AA30 $M300D8171 $M31959B41 $M32019A01 $M3301B435 $M3405DB81 $M35B99B41 $M360D9A01 $M37298838 $M38019801 $M3919883A $M3A019801 $M3B070A08$M3C068A09六、结束语这次课程设计本来的要求是要花上两周的时间来设计及完成,如果要认认真真的完成者实验,在了对设计题目的理解和分析之上就要花很长的时间。

相关文档
最新文档