偏导数及高阶偏导数

合集下载

9-2偏导数

9-2偏导数

(与求导顺序无关时 应选择方便的求导顺序 与求导顺序无关时, 应选择方便的求导顺序) 与求导顺序无关时
练习
y ∂ 2z ∂ 2z (1)设z = arctan ,求 2 , x ∂x ∂x ∂y
(2)设z = xf ( x 2 − y 2 ),
(3) 已知 u = f ( r ),r =
∂u ∂r x = f ′( r ) ⋅ = f ′( r ), ∂x ∂x r
∂z ∂ f , , zy , ∂y ∂y
′ f y ( x, y) , f y ( x, y)
y= y0
显然有
fx (x0, y0 ) = fx( x, y) x=x0 ,
fy ( x0, y0 ) = f y ( x, y) x=x0 .
y= y0
偏导数的概念可以推广到二元以上的函数
如 三 元函 数 u = f ( x , y , z ) 的 偏导 数为
这两个二阶混合偏导数相等. 这两个二阶混合偏导数相等. 相等

∂2z ∂2z ( x, y)∈D. = ∂x∂y ∂y∂x
即二阶混合偏导数在连续的条件下, 即二阶混合偏导数在连续的条件下,求导与次序无关
此定理可以推广. 此定理可以推广. 推广
例8
1 ∂ 2u ∂ 2u ∂ 2u 证明函数u = 满足方程 2 + 2 + 2 = 0, r ∂x ∂y ∂z 其中r = x 2 + y 2 + z 2 ,
注意 思考
∂ 2z ∂ 2z 此时 有 = ∂ x ∂ y ∂ y∂ x
混合偏导数都相等吗? 混合偏导数都相等吗?
(不一定 不一定) 不一定
问题: 具备怎样的条件才能使混合偏导数相等? 问题: 具备怎样的条件才能使混合偏导数相等?

偏导数与高阶偏导数详细解法

偏导数与高阶偏导数详细解法

第二节偏导数 教学目的: 使学生了解偏导数的概念;熟练掌握阶及二阶偏导数的计算方法;了解偏导数存在与函数连续的关系。

教学重点: 一阶及二阶偏导数的计算教学过程:一、偏导数的定义及其计算法对于二元函数z 二f(xy)如果只有自变量x 变化 而自变量y 固定 这时它就是x 的一元函 数这函数对x 的导数 就称为二元函数z 二f(xy)对于x 的偏导数定义设函数z=f(xy)在点(x o y o )的某一邻域内有定义 当y 固定在y o 而x 在X o 处有增量 x 时相应地函数有增量f(x o x y o) —f(x o y o ).如果极限f (X o X, y o ) - f (X o , y o )A x存在则称此极限为函数z=f(xy)在点(x o y o )处对x 的偏导数 记作例如f (X o :x, y o ) - f(x o , y o )A x 类似地函数z 斗(xy)在点(x o y o )处对y 的偏导数定义为Hm f(x °,y o :y)-f (x °,y o ) .y —.o y偏导函数如果函数zh(xy)在区域D 内每一点(xy)处对x 的偏导数都存在 那么这个偏 导数就是x 、y 的函数它就称为函数z=f(xy)对自变量x 的偏导函数 记作——zx 或 f x (x, y) ■ X x偏导函数的定义式:fx(x,y 円m f(x 2)7("cf — y —y o C X=X o -z x y=y o :z .x x=x ° 或 f x (x o , y o ) y mof x (x o ,yo ^.'r.o 记作各X’ * 0 x=X o ■z yy=y ° y To 或 f y (x o y o ). X =<o y =y °类似地可定义函数z=f(xy)对y的偏导函数记为Z/或f y(x,y) ‘-■y :y偏导函数的定义式:f y(x,y) = limf(x,y:y)-f(x,y)求兰时只要把y暂时看作常量而对x求导数求埜时只要把x暂时看作常量而对y ;x ;y 求导数,讨论下列求偏导数的方法是否正确?f x(><0,y o) = f x(x,y)x^ f y(x o,y o) = f y(X,y) xs .y=y°d df x(X o,y o) =【dxf (x,y o)〕xK fygy o)珂石fd o’y)]© ■偏导数的概念还可推广到二元以上的函数.例如三元函数u=f(xyz)在点(xyz)处对x的偏导数定义为f (x :x,y,z) —f(x,y,z)Ax其中(xyz)是函数u=f(xyz)的定义域的内点它们的求法也仍旧是一元函数的微分法问题,例1求z=x2+3xy+y2在点(1 . 2)处的偏导数,解—=2x 3y z =3x 2y . z & cyXT =21 3 2=8 ]z例2求z=x2sin 2y的偏导数解—=2xsin2y — -2x2cos2y . & cy例 3 设z=x y(x Qx^)求证――1—■ =2zy ex In x 內证—=yx y A— =x y I nx,x :y——1 -yx y^ —x y I nx 二x y x y=2z .y :x In x : y y In x例4求x^y^z2的偏导数解』- ______X 仝 [.一__________ y ____ & +'x2+ y2+z2r by Jx2+y2+z2=_yx”31 22 = 7 .例5已知理想气体的状态方程为pV=RT(R为常数)•求证空乂 .兀_1证因为p = R L P 一马. "vw V 2V=RL 卫卫p ::T pT pV 汀 VT = R 亍 R 所以8汎汀=_RT RV-RT-I討贡④ V 2 p R pV ^例5说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商 二元函数z=f(xy)在点(x o y o )的偏导数的几何意义:f x (x o y o )=[f(x y o )]x 是截线z=f(x y o )在点M o 处切线T x 对x 轴的斜率 f y (x o y o ) =[f(x o y)]y 是截线z=f(x o y)在点M o 处切线T y 对y 轴的斜率偏导数与连续性对于多元函数来说即使各偏导数在某点都存在也不能保证函数在 该点连续例如 xyf(x,y) = x 2 y 2I 0 在点(0 0)有f x (0. 0)=0 f y (o. 0)=0但函数在点(0 0)并不连续“提示:f(x,O) =0 f (0, y^of x (O,O)=f [f(x,0)]=0 f y (0, 0^-d [f(0, y)H0 . dx dy当点P(x y)沿x 轴趋于点(0 0)时有lim f(x, y)=lim f (x, 0) = lim 0 =0 (x,y) >(0,0) X r 0 x >0当点P(x y)沿直线y=kx 趋于点(0 0)时有因此.lim f (x,y)不存在 故函数f(xy)在(0 0)处不连续(x,y)T(0,0) 类似地可定义函数z=f(xy)对y 的偏导函数 记为 冷 f zy 或 f y (x,y) • x 2 y 2" x 2 y 2 =0 lim 2 ' 2(x,y)—?(o,o )x 2 y 2y=kx=lim 2 x >0 x 2 kx 2_ k 2x 2 k 2偏导函数的定义式恥心肩“™高阶偏导数 设函数Z 二f(xy)在区域D 内具有偏导数^ = f x (x, y)迸二 f y (x,y).那么在D 内f x (xy)、f y (xy)都是xy 的函数如果这两个函数的偏导数也存在 贝U 称它们 是函数x 二f(xy)的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数z 二f(xy)在区域D 内的偏导数f x (xy)、f y (xy)也具有偏导数 则它们的偏导数称为函数z=f(xy)的二阶偏导数按照对变量求导次序的 不同有下列四个二阶偏导数2手(孑•手(勺=2 2 其中ry (:xU x y (x ,y) 称为混合偏导数;:(;:Z )_ ;:2Z 1 ( ::Z) _ r 2Z ( ::Z) _ ::2z ;:( ;:z )_ ;:2z :x ;:x ;:x 2 : y . x .x :y ;x ; y y ; x ;:y ;y ;:y 2同样可得三阶、四阶、以及n 阶偏导数二阶及二阶以上的偏导数统称为高阶偏导数‘ 例 6 设 z=x 3y 2-3xy 3-xy V 求 f 、-f 、 - x 和 L x 2 :x 3 :yx : xy解/ =3x 2y 2 -3y 3 -y Z =2x f y-9xy 2 -x :x :y C 2Z 62 ^z 6 2, 2 =6x y 3=6 .x:x -2-2 6^丫-9丫2-1x 6x 2y-9y 2 -1 x x .y y x -2 “2由例6观察到的问题 x xoycx cxcy 定理如果函数z=f(xy)的两个二阶混合偏导数 昙及三在区域D 内连续•那么在该 tycx cxcy区域内这两个二阶混合偏导数必相等.x : x ; x 2 :y x :x y:Z = f xy (x, y).2 补評話mx’y)弓許■2Z”yy (x " -3 :2类似地可定义二元以上函数的高阶偏导数例7验证函数z = ln . x2—y2满足方程寻•岂=0 . ex cy 证因为z=ln ... x2- y2=2"n" ' y2)所以:z x :z y___________.:x _________ x2y2;:y x2 y2匕(x2y2)-x2x y2-x2戸一(x2y2)2—(x2y2)2悬(x2y2)-y 2y x2-y2旷 (x2y2)2 _(x2y2)2'-2-2 2 2 2 2因此驚+吟=x —y 2+ y 2 -o ■ $2 cy2(x2+y2)2(x2+y2)2例8•证明函数u二1满足方程总•总•岂=0 .r ex2內2ezr其中r = J x2y2z2.证:u _ _丄工—_丄x _ __x_ dx r2ex r2r r3E2u _ 1 +3x 宜=1 +3x2_x2r3r4;x r3r5-2 / -2因此T U Uex2cy2cz2r3-x ' (r3)r6r3-x3r21LExr6同理专::2u _ —丄.3^:z2r3r5_ _ 3 3(x2y2- z2)r53 3r2—3-0r3 r5r r(。

第1节多元函数的概念(二)

第1节多元函数的概念(二)
lim 多元函数的连续定义 p p f ( P ) f ( P0 )
0
由于这种形式上的统一,使得多元函数的一些主 要概念、性质与二元函数类似. 因此,对于多元函数 微积分的研究主要以二元函数为主,多元函数微积分 可以由二元函数微积分类似推广.
小 结
一.多元函数的连续性
x x 0 , y y0
2.二元函数z=f (x, y)在区域D上的连续性 如果二元函数z=f (x, y)在平面区域D内 每一点都连续, 则函数z=f (x, y)在区域D内 连续,并称z=f (x, y)为区域D上的连续函数. 二元连续函数的图形 是空间中的一个不断开 (无孔无缝)的连续曲面。
四.多元函数的连续性
z
z f ( x, y )
x 0 y 0
lim
f ( x, y ) f ( x0 , y0 )
lim z 0
二.闭区域上连续函数的性质
作业:P302 5(1)
四.多元函数的连续性
思考题1
设为空间任一有界闭区域,P为外 一点。问上是否一定有到P点最远和 最近的点存在?为什么?
四.多元函数的连续性
思考题1解答 有. 设P点的坐标为 ( x0 , y0 , z0 ),Q( x , y , z )为上 任意一点 , 则两点间距离为
PQ ( x x 0 ) 2 ( y y0 ) 2 ( z z 0 ) 2
它 上 连 函 , 是 的 续 数 由闭区域上连续函 数的性质可知,一定有最大值和最小值存在
在(0,0)的连续性. 解 取 y kx
xy k kx 2 lim 2 2 lim 2 2 2 2 x 0 x y x 0 x k x 1 k y0
y kx

偏导数的概念

偏导数的概念

f ( x x, y ) f ( x, y ) lim , ( x, y ) D x 0 x
存在,显然这个偏导数仍是x,y的函数,称它为函数
z=f(x,y)对x的偏导函数,记作
z f , , f x ( x, y )或z x ( x, y ). x x
类似地,可以定义函数z=f(x,y)在区域D内对自变
求导.
若求函数z=f(x,y)在点(x0,y0)处对x的偏导数,只需 先求偏导函数fx(x,y),然后再求fx(x,y)在点(x0,y0)处的函 数值,即 f x ( x, y ) |( x0 , y0 ) f x ( x0 , y0 ),这样就得到了函数
z =f(x,y)在点(x0,y0)处对x的偏导数.也可以先将y=y0代入
z f ( x, y ), y y0 .
上式表示y=y0平面上的一条 曲线z=f(x,y0).根据导数的几
何意义可知:fx(x0,y0)就是这
条曲线在点M0(x0,y0,z0)处的
切线关于x轴的斜率.
同样,fy(x0,y0)是这条曲线z=f(x,y)与平面x=x0的交 线
z f ( x, y ), x x0
f xy ( x, y, z ) 2 y, f xyz ( x, y, z ) 0, f xyz (1,1,1) 0.
1 例9 证明函数 u t
u 证 t 2
x2 3 1 2 4t t e
3 1 2 t
x2 e 4t
u 2u 满足方程 2. t x
f(x0,y0).
同样还可以举出函数在(x0,y0)点连续,而在该点 的偏导数不存在的例子. 例如,二元函数 f ( x, y ) x 2 y 2 ,在点(0,0)处 是连续的,但在(0,0)点偏导数不存在. 事实上,f ( x, y ) x 2 y 2 是初等函数,(0,0)点是 定义区域内的一点,故f(x,y)在点(0,0)点是连续的. 固定y=0,让x→0,考察在(0,0)点处对x的偏导 数.此时 f ( x,0) x 2 0 | x |,已知函数|x|在x=0处是 不可导的,即f(x,y)在点(0,0)处对x的偏导数不存在, 同样可证f(x,y)在(0,0)点对y偏导数也不存在.

偏导数的概念【重点】

偏导数的概念【重点】
自变量y 看成常数(即将z看成x的一元函数),只需z对x 求导.
若求函数z=f(x,y)在点(x0,y0)处对x的偏导数,只需 先求偏导函数fx(x,y),然后再求fx(x,y)在点(x0,y0)处的函 数值,即 fx (x, y) |(x0,y0) fx (x0, y0 ),这样就得到了函数 z =f(x,y)在点(x0,y0)处对x的偏导数.也可以先将y=y0代入 z=f(x,y)中,得z=f(x,y0),然后对x求导数fx(x,y0),再以 x=x0代入.两种做法是一致的.因为在这个过程中,y为 常数y0.
同样,fy(x0,y0)是这条曲线z=f(x,y)与平面x=x0的交
线
z f (x, y), x x0 在点M0(x0,y0,z0)处的切线关于y 轴的斜率.
二 、偏导数的求法
求多元函数的偏导数就相当于求一元函数导数.一 元函数的求导法则和求导公式对求多元函数的偏导数 仍然适用.
例如,给定一个二元函数z=f(x,y),求 z 时,可将 x
固定y=0,让x→0,考察在(0,0)点处对x的偏导 数.此时 f (x,0) x2 0 | x |,已知函数|x|在x=0处是 不可导的,即f(x,y)在点(0,0)处对x的偏导数不存在, 同样可证f(x,y)在(0,0)点对y偏导数也不存在.
在点(x0,y0)处二元函数连续,推不出偏导数存在, 而偏导数存在也推不出函数在该点处连续,所以二元 函数连续与偏导数存在这二者之间没有因果关系.
2.二元函数偏导数的几何意义 二元函数z=f(x,y)的图形表示空间一张曲面.当y=y0
时,曲面z=f(x,y)与平面y=y0的交线方程为
z f (x, y),
y
y0.
上式表示y=y0平面上的一条 曲线z=f(x,y0).根据导数的几 何意义可知:fx(x0,y0)就是这 条曲线在点M0(x0,y0,z0)处的 切线关于x轴的斜率.

偏导数与高阶导数

偏导数与高阶导数

将点(1,3)代入上式,得
可得
所以
在求定点处的导数时,
先代入固定变量取值,
然后再求导,可简化求导计算。

2.偏导数的计算
例4 设


所以
二元以上多元函数的偏导数可类似地定义和计算
例 求函数 的偏导数.
对x求偏导数就是视y, z为常数,对x求导数
曲线

fx (x0, y0),
第二节 偏导数与高阶偏导数
4.偏导数与连续的关系
对于二元函数偏导数与连续的关系如何?
连续

一元函数可导与连续的关系:
可导
由偏导数定义

所以,函数在(0, 0) 处对变量 x,y 的偏导数存在.
让 沿直线 而趋于(0,0),
这里 为常数,
当劳动力投入不变时,产量对资本投入的变化率为
当资本投入不变时,产量对劳动力投入的变化率
该问题说明有时需要求二元函数在某个变量不变的条件下,
Q表示产量.
别表示投入的劳动力数量和资本数量,

数为
引例
对另一个变量的变化率.
第二节 偏导数与高阶偏导数
此时沿着平行坐标轴的方向
偏导数存在 连续.
一元函数中在某点可导 连续,
可见,多元函数的理论除了与一元函数的理论有许多类似之处,也是还有一些本质的差别。
二、高阶偏导数
设函数 z = f (x, y) 在区域 D内有偏导函数 与
则称此极限值为z=f (x,y)在点(x0,y0)处对x的
记为
一元函数导数
如果极限存在,
函数有增量
相应
(1)定义
当y 固定在y0 , 而 x 在x0 处有增量△x时,

3.1-2 偏导数与高阶偏导

3.1-2  偏导数与高阶偏导

f yx ( x 2x, y 1y) f xy ( x 3x, y 4y)
由 于f xy , f yx连 续, 令x 0, y 0得 : f xy ( x , y ) f yx ( x , y )
( x0 , y0 ) 处的函数值。偏导函数简称偏导数。
偏导数的概念还可以推广到二元以上的多元函数。例如三元
函数 u f ( x, y, z ) 在点 ( x, y, z ) 处对 x 的偏导数定义为
函数 u f ( x, y, z ) 在点 ( x , y, z ) 处对 x 的偏导数定义为 f ( x x , y , z) f( x , y , z) f x ( x , y , z ) lim 。 x 0 x 5
第三节
偏导数与全微分
第五章
多元函数微分学及其应用
3.1 偏导数概念与几何意义
1.函数 z f ( x , y ) 在点 M 0 ( x0 , y0 ) 处的偏导数的定义
定义 3.1 设 z f ( x, y) 在点 M0 ( x0 , y0 ) 的某一邻域 N ( M0 )
上有定义,当 y 固定在 y0 而 x 在 x0 处有增量 x 时 ,相应地 函数有增量 f ( x0 x, y0 ) f ( x0 , y0 ) ,
f xy (0,0) f yx (0,0)
例1 中 2 y 2 y 2 y 2 y , 而例 2 中 , xy yx xy yx
问:混合偏导数相等需要什么条件?
18
第五章
多元函数微分学及其应用
定理 3.1:如果 f xy ( x, y) , f yx ( x, y) 在点 ( x, y) 的某邻域 内连续,则有 f xy ( x, y) f yx ( x, y) 。

一偏导数的定义及其计算法二高阶偏导数三小结

一偏导数的定义及其计算法二高阶偏导数三小结

一偏导数的定义及其计算法二高阶偏导数三小结一、偏导数的定义及其计算法偏导数是多元函数在其中一点上关于其中一个自变量的导数,偏导数描述了函数在其中一点上沿着不同自变量方向的变化率。

对于二元函数(两个自变量的函数),偏导数可以分为两种类型:偏导数∂f/∂x表示函数关于x的偏导数;偏导数∂f/∂y表示函数关于y的偏导数。

在计算中,偏导数可以使用极限的定义进行求取,也可以通过求取对应变量的偏导数公式进行计算。

1.偏导数的计算法(1)使用极限的定义对于函数f(x,y),若要求取关于x的偏导数,可以将y固定为常数,然后使用极限的定义计算:∂f/∂x = lim(h→0) (f(x + h, y) - f(x, y)) / h对于函数f(x,y),若要求关于y的偏导数,可以将x固定为常数,然后使用极限的定义计算:∂f/∂y = lim(h→0) (f(x, y + h) - f(x, y)) / h(2)使用偏导数公式对于特定类型的函数,可以通过使用相应的偏导数公式来计算偏导数。

以下列举了几种常见的偏导数公式:a.对于幂函数f(x,y)=x^n,其中n为常数,偏导数公式为:∂f/∂x=n*x^(n-1)b.对于指数函数f(x,y)=e^x,其偏导数公式为:∂f/∂x=e^xc. 对于对数函数f(x, y) = log(x),其偏导数公式为:∂f/∂x=1/xd. 对于三角函数f(x, y) = sin(x),其偏导数公式为:∂f/∂x = cos(x)e.对于常数乘积规则,偏导数的计算法为:∂(c*f)/∂x=c*(∂f/∂x)二、高阶偏导数高阶偏导数是指对于多元函数的不同自变量求取多次偏导数的过程。

高阶偏导数描述了函数在其中一点上的更高阶导数信息,它可以对函数的多个变量进行多次的偏导运算。

1.二阶偏导数二阶偏导数是指对于二元函数,对其中一个变量求取一次偏导数后,再对另一个变量求取一次偏导数。

二阶偏导数可以通过求取一次偏导数的偏导数来计算,也可以通过直接求取函数的二阶导数来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档