信用卡客户信用风险的实证研究--基于申请评分卡模型
基于rfm分析的银行信用卡客户的行为评分模型应用自组织映射神经网络som和apriori方法

Xp=(xpl,xp2,...,xpi,...,xpn)7 每个输出神经元的输出值记为撕,j=1,2,...,m。与莉个输
之前的大部分研究都是以建立准确的信用或行为的评分模型以及如何利用各种统计 方法来提高分类模型的准确度为焦点。然而,因为银行数据库的多维性,它包含有大量 的月账户记录和日交易记录,即使有了高准确度的评分模型,也会经常出现一些错误的 分类模式。
本文引入了数据挖掘的方法,建立一个基于RFM分析的数据挖掘的行为评分模型 来分析银行信用卡客户的行为,这一模型包括了对现实中的数据集进行数据处理和准备、 进行评分和客户轮廓刻画,建立的这个标准模型具有很大的实用性。两阶段的行为评分 模型的框架也是验证了实际申请中评分分析过程中数据挖掘的有效性。
由于原始数据库存在如下问题:数据不完整,存在大量的空缺值;含噪声数据,存 在大量冗余和噪声数据;数据不一致,原始数据取自各实际应用系统,而各应用系统的 数据缺乏统一标准,数据结构也有较大差异;不同的数据挖掘算法对数据有相应的要求, 因此在挖掘之前需要对原始数据进行大量的预处理工作,以减少挖掘过程中的故障,提 高数据挖掘模式的质量,降低实际挖掘所需要的时间。
The Behavioral Scoring Model of Credit Card Customers in a Bank Based on RFM
…一the Application of SOM and Apriori .
Liang Changyong Zhao Yanxia
信用卡申请评分模型的开发与应用

的特 定期 间 内 各 自符 合 特 定 违 约 状 况 的 客 户 。有 某 一 特 量 对 客 户的风 险 水平 有 较大 的预 测 能 力 ,它的 权重 可 能就 定违 约状 况的 为 坏客 户 ,无 某 一特 定 违 约 状 况为 好 客 户 。 会 大 一点 ,也 就 是说 ,申请 者的 年龄 可 能会 较 大地 影 响到 “ ” 坏 ” 客 户是 在 开发 申请评 分 模 型 时须 首 先 确定 的 其 最后 的评分 。 好 、“
统计 建模 方法 ,针 对 申请者 的 潜在 违约 概率 ,对 申请者 做 需要 依 据这 段 时 间 内发 生 的状 况而 定 。 因为在 不 同的 时 间 出风 险评价 的计量 模 型。
目前 ,包 括 国内 各家 商业 银 行在 内 的各 发卡 机构 ,已 段 内 申请者 的特 征 变量 属性 的 值 可能 会发 生 变化 ,所 以确
提 炼而 成的 相对 简单 的评 分 卡 ,有很 大的 随 意性和 不稳 定 年 内 3次拖 欠还款 ”等 分别是该 申请 者 在 “ 婚姻 状 况” “ ,年 性 ,评 分使 用者 无法 根据 此 申请 评分 体 系对据 此形 成 的信 龄 ” 一年 内 曾经拖 欠还 款 的次 数 ”这 三个 信用 特征 变 量 ,“ 用卡 资产 的风险 水平 作 出科 学和 准确 的测算 。 信 用卡 申请 评分 模 型 ,是银 行等 发 卡机 构在 决 定是 否 表 现 出来 的具 体状 况 。 观 察窗 口 :指 发 卡机 构 用来 确 定 申请 者特 征 变量 属性
定合 理 的观 察窗 口对开 发模 型 非常 重要 。观察 窗 口一 定是
经或 多或 少在开 发或 者 使用 申请 评分 。 本文 主要 阐述 申请 从 申请 时刻开 始 往前倒 退的 一段 时间 。 评 分模 型的开 发和应 用等 问题 。
信用评分模型简介

信⽤评分模型简介1、信⽤评分模型出现的动机是什么? 我们去银⾏借款的时候,他们往往都会看我们的⼀些个⼈信息,⽐如,年龄,收⼊,家庭状况,⼯作单位,婚姻状况等,也会设置⼀些门槛,只有满⾜了⼀定的门槛才会贷款于你。
但是这种对单个指标设置的门槛会存在⼀些问题,⽐如:(1)有些借款⼈虽说⼀些条件不满⾜,但是其他条件都很好(2)如何利⽤零散、⾮结构化的信息整合成科学的核额体系是⼀个难题(3)贷后管理、资产质量分析和风险定价需要可量化的数字评价体系⽀持 这样,⼀种信⽤评分就应运⽽⽣,解决了以上难题。
具象的个体风险被标准化,分数的存在使得审批有了最简单易⽤的判断标准;整体的信贷资产质量也有了量化指标2、信⽤评分的业务定义 信⽤评分表⾯上是⼀个分数,实质上是⼀个模型。
模型只是我们解决问题的⼿段,解决业务问题才是我们的⽬的。
信⽤风险计量体系包含主体评级模型和债项评级模型,主体评级和债项评级均有⼀系列评级模型组成,其中主体评级模型可⽤“四张卡”来表⽰,分别是A卡、B卡、C卡和F卡;债项评级模型通常按照主体的融资⽤途,分为企业融资模型、现⾦流融资模型和项⽬融资模型等。
我们通常所接触到的评分⼤都⽤于信贷审批,即申请评分卡(A卡,Application scorecard)。
同时,业内还常⽤的有B卡(Behavior scorecard)和C卡(Collection scorecard),分别⽤于贷后管理及催收管理。
其中,它们的使⽤场景不同的:A卡⼜称为申请者评级模型,是使⽤最⼴泛的,⽤于贷前审批阶段对借款申请⼈的量化评估;B卡⼜称为⾏为评级模型,主要任务是通过借款⼈的还款及交易⾏为,结合其他维度的数据预测借款⼈未来的还款能⼒和意愿;C卡⼜催收评级模型,是在借款⼈当前还款状态为逾期的情况下,预测未来该笔贷款变为坏账的概率,由此衍⽣出滚动率、还款率、失联率等细分的模型;F卡有称为欺诈评级模型,主要应⽤于相关融资类业务中新客户可能存在的欺诈⾏为的预测管理。
基于大数据的银行客户信用评估模型研究

基于大数据的银行客户信用评估模型研究第一章:绪论随着科技的发展和社会经济的进步,金融行业也发生了翻天覆地的变化。
其中,客户信用评估模型被广泛应用于银行风险管理系统中。
该系统利用大数据和人工智能技术,对客户的信用进行量化评估,从而实现风险的控制和管控。
本文旨在研究基于大数据的银行客户信用评估模型,为银行风险管理提供参考。
第二章:研究现状客户信用评估模型是银行风险管理体系的核心,也是当前金融行业的研究热点。
目前,国内外学者采用不同的方法构建客户信用评估模型,主要包括传统的数据挖掘技术、人工智能技术和机器学习技术。
其中,机器学习技术是目前应用最广泛的方法,包括支持向量机、神经网络、朴素贝叶斯、决策树等。
第三章:研究内容本文基于大数据技术,构建客户信用评估模型,主要内容包括以下三方面:1. 数据预处理。
通过数据清洗、缺失值处理、重复值处理、异常值处理等方法,提高数据质量和准确性。
2. 特征选择。
采用特征选择算法,从海量数据中筛选出与客户信用相关性更高的特征,提高模型的预测精度。
3. 模型构建。
选取多种机器学习模型比较和优化,构建客户信用评估模型。
通过对比不同算法的精度和效率,确定最优算法,并将其应用于实际项目中。
第四章:研究方法在该模型构建过程中,我们采用了以下方法:1. 数据收集:通过银行内部系统、第三方数据、互联网数据等多渠道收集客户信息。
2. 数据预处理:对收集到的数据进行清洗、处理、对齐、加工等工作,提高数据质量和准确性。
3. 特征工程:在数据预处理的基础上,选取适当的特征,采用多种特征选取算法确定有意义的特征。
4. 模型构建:选取SVM、决策树、朴素贝叶斯等多种机器学习算法,比较并确定最优算法。
5. 验证和评估:对构建好的客户信用评估模型进行评估和验证,测试模型的预测精度和效率。
6. 风险控制:将应用于实际风险管理系统,使模型能够在实际环境中不断学习和优化,实现风险的控制和管控。
第五章:实验结果通过模型的构建和优化,我们比较了SVM、决策树、朴素贝叶斯等多种算法的精度和效率。
基于数据挖掘的银行信用风险评估与预测模型研究

基于数据挖掘的银行信用风险评估与预测模型研究随着金融市场的高速发展,银行的信贷业务日益繁荣,但信用风险也随之增加。
为了更好地评估和预测银行的信用风险,提高信贷决策的准确性和效率,数据挖掘技术成为一种重要的工具。
本文将基于数据挖掘的方法,研究银行信用风险评估与预测模型。
首先,我们需要了解银行信用风险的概念。
银行信用风险是指在银行贷款过程中出现的借款人无法按时偿还本金和利息的风险。
信用风险评估和预测的目标是根据客户的个人和财务信息,预测客户未来还款能力,为银行决策提供可靠的依据。
数据挖掘技术适用于大量的数据分析,可以挖掘出隐藏的模式和关联规则。
在银行信用风险评估与预测中,常用的数据挖掘技术包括分类、聚类、关联规则和异常检测等。
首先,分类是一种常用的数据挖掘技术。
在银行信用风险评估中,分类技术可以将客户分为违约和非违约两类。
为了构建分类模型,首先需要选择合适的特征,如客户的年龄、性别、婚姻状况、收入水平等。
然后,通过训练样本对模型进行训练,选取适当的分类算法,如决策树、支持向量机或神经网络等。
最后,利用测试样本对分类模型进行验证和评估,并进行模型的调优。
其次,聚类是另一种常用的数据挖掘技术。
在银行信用风险评估中,聚类可以将客户根据其相似性分为不同的群组,从而揭示出潜在的信用风险。
聚类可以帮助银行更好地理解不同客户群体的特点,并针对不同群组制定不同的风险管理策略。
聚类的方法有很多种,如基于密度的DBSCAN算法、基于距离的K-means算法等。
另外,关联规则是用于挖掘数据集中项之间隐含关联关系的技术。
在银行信用风险评估中,关联规则可以帮助银行发现不同变量之间的关联性,从而更好地评估客户的信用风险。
关联规则的常用算法包括Apriori算法和FP-Growth算法。
通过关联规则的挖掘,银行可以识别出客户在还款能力上存在的弱点,从而更加准确地预测客户的信用风险。
最后,异常检测也是一种重要的数据挖掘技术。
在银行信用风险评估中,异常检测可以帮助银行发现异常的信用行为,如逾期还款、欺诈等。
评分卡模型

评分卡模型0 引言信用评分模型是消费信贷管理中的先进的技术手段,是银行、信用卡公司、个人消费信贷公司、电信公司、水电服务公司、保险公司等涉及消费信用的企业实体最核心的管理技术之一。
被广泛应用于信用卡生命周期管理、汽车贷款管理、住房贷款管理、个人贷款管理、其他消费信贷管理等领域,在市场营销、信贷审批、风险管理、账户管理、客户关系管理等各个方面都发挥十分重要的作用。
信用评分模型运用先进的数据挖掘技术和统计分析方法,通过对消费者的人口特征、信用历史记录、交易记录等大量数据进行系统的分析,挖掘数据中蕴含的行为模式、信用特征,捕捉历史信息和未来信用表现之间的关系,发展出预测性的模型,以一个信用评分来总和评估消费者未来的某种信用表现。
信用评分本质上是模式识别中的一类分类问题将企业或个体消费者划分为能够按期还本付息(即“好”客户)和违约(即“坏”客户)两类。
具体作法是根据历史上每个类别(如期还本付息、违约)的若干样本,从已知的数据中找出违约及不违约者的特征,从而总结出分类的规则,建立数学模型,用于测量借款人的违约风险(或违约概率),为消费信贷决策提供依据。
1 基于Logistic回归分析的客户信用评价卡模型本文将采用 Logistic 逻辑回归分析方法对小额贷款公司的客户信用进行评价。
首先,建立信用评价模型,给出客户信用评分卡模型,并对客户样本进行初步分类预测。
下面的理论基础和变量选择都以该小额贷款公司为例。
1.1 建模的准备1.1.1 目标变量的定义研究的目标变量为客户是否具有“违约”行为,本文是以客户逾期未归还贷款定义为“违约”行为(即“坏”客户)。
1.1.2 定量指标的筛选方法第一种定量指标的筛选方法:用随机森林法寻找自变量中对违约状态影响最显著的指标。
第二种定量指标的筛选方法:计算变量间的相对重要性,并通过相对重要性的排序,获取自变量中对违约状态影响最显著的指标。
第三种定量指标的筛选方法:通过自变量间的广义交叉验证法,获取自变量中对违约状态影响最显著的指标。
信用风险评估的常见模型分析

信用风险评估的常见模型分析随着社会的进步和经济的发展,信用风险评估越来越受到金融机构和企业的重视。
信用风险评估是指对借款人或者投资者的信用状况进行评估,以确定其还款能力和借款偿付能力的一种方法。
而信用风险评估主要就是通过对借款人的信用记录、借款人的经济状况、行业环境、政策法规等的综合分析,对借款人的信用情况进行评估。
信用风险评估有多种方法和模型,常见的有以下几种:一、德文-肯德尔模型德文-肯德尔模型(Duffie-Singleton-Kendall Model, DSK)是一种基于股票价格模型的信用风险评估方法。
它的核心思想是通过计算公司财务数据与市场指数之间的差别,从而测量其财务风险和信用风险。
在德文-肯德尔模型中,借款人的违约概率是基于公司股票的波动率来确定的,如果波动性越高,那么违约风险就越高。
二、评分卡模型评分卡模型是一种应用非常广泛的信用风险评估方法。
它是通过对大量客户历史数据进行细致的分析和模型建立,通过将客户的多个维度信息进行权重评估并变成得分卡的形式,进而对未来客户的风险程度进行精准过滤,从而为金融机构和企业提供可靠信用风险评估的依据。
一般来说,评分卡模型中会有多个变量作为考察维度,比如说客户的年龄、性别、职业、信用纪录、社会评价、资产、暴露于风险的程度等等。
三、基于机器学习的模型基于机器学习的模型是一种新兴的信用风险评估方法。
它是基于大数据和机器学习技术,利用人工神经网络、逻辑回归、支持向量机等算法进行建模,并将模型应用于信用评估中。
当然,这种模型的建立需要考虑到多个维度的因素,如特征选择、数据预处理、模型选择、交叉验证等等。
综上所述,信用评估是贷款和投资等金融和商业活动中最为关键的环节之一。
而要对借款人或投资者的信用状况进行评估,我们需要使用一些有效的模型方法。
当前常见的信用风险评估模型包括德文-肯德尔模型、评分卡模型、基于机器学习的模型等等,每种方法都有其优点和局限性,对于不同的金融机构或企业而言,选择合适的模型方法非常重要。
基于卡方分箱对申请信贷的客户建立评分体系

基于卡方分箱对申请信贷的客户建立评分体系摘要:本文基于随机森林的特征重要性筛选重要特征,后使用优化的卡方分箱法进行特征处理,计算WOE值的时候增加了一个权重因子。
数据集包含的指标有基本情况、职业信息、信用指标、债偿能力等,使用逻辑回归的方法对数据集建立评分卡模型,建立出一个评分效果较优、区分度较高的模型,基于模型对每一个样本进行打分。
关键词:特征工程,加权,随机森林,卡方分箱,逻辑回归背景介绍个人或者中小企业存在资金困难的情况常见,但是由于现金流不过偶充裕或者无抵押资产等,无法得到银行等金融体系的支持与信用,信贷业务业随之进入了疯狂式的发展,但引起风险能力不足或运营模式等问题出现了一波跑路潮。
基于对风险能力的评分,Dorfleitner等人在2016年对借款在填写申请表的输入的申请理由进行了深度挖掘,发现积极的描述性词汇和拼写问题均对借款人能否获得贷款有一定的影响申请人填写的申请理由进行。
[1]陈官羽和周毓萍在2019年从理论上阐述了决策树和随机深林等方法对重要性指标进行特征处理,构造信用评分卡对网络借贷用户个人信用水平进行预测的合理性和可橾作性。
[2]目前征信系统存在很多白户或者没有纳入征信的部分其他负债,这种情况下对于信贷机构来说,若只根据客户的征信信息判定是否放贷,会大大增加违约风险。
那么如何根据客户的特征数据为客户进行评分作为申请信贷业务的辅助依据,挖掘优质客户,避免高风险客户,更有效的进行风险管理,辅助企业信息决策。
数据预处理数据来源,选取了一个季度的数据,特征有147个,细分里面的特征,可分成贷前和贷后两个维度,本次主要研究申请评分卡,那么选取的特征是贷前的特征。
首先基于已有客户的还款状态去判定好客户和坏客户,数据集中出现逾期、展期、毁约等都属于坏客户,已结清的客户评判为好客户。
1.缺失值处理缺失值是指原始数据中由于缺少部分数据信息,从而造成样本无法获取到实际的该数据信息,它表示当前数据集中某一特征或某些特征的部分数值是有确实的。