瞬变电磁原理 ppt课件
合集下载
瞬变电磁详细原理

I 0
AR b
3 2
2
20
5 / 2 5 / 2
t
2007 吉林大学
晚延时的衰减曲线
重叠回线与中心回线曲线对比
中心回线
非磁性均匀半空间电动势响应
0 t /( 0 a )
2
0
3
近区或晚期条件
0.01 τ 0 3 中区或晚期条件
重叠回线
0 0 . 01
2007 吉林大学
TEM探测流程
激发源 发射机 信号检测 (接收机)
探测对象
理论模型 正演计算
反演解释
数据处理
2007 吉林大学
TEM信号向地下扩散示意图
早 期 信 号 反 映 浅 部 结 构
晚 期 信 号 反 映 深 部 结 构
2005 吉林大学
瞬变电磁法 (TEM) 的实际过程示意图
2007 吉林大学
2 2 2 2 1/ 2
H 1 (t ,0 ,0 ) f ( z / a )
磁场随时间的变化率可写为:
H 1 (t , z ,0 ) t 2 (1 z / a )( 2 z / a )
2 2 2 2 1/ 2
H 1 (t ,0 ,0 ) t
H 1 (t ,0 ,0 ) t
a
一次磁场垂直分量随时间的变化率可写为:
H 1 (t ,0 ,0 ) t 2 i (t ) 0 . 45 i ( t ) a t
a
t
2.回线轴上的一次场垂直分量为:
H 1 (t , z ,0 ) H 1 (t ,0 ,0 ) 2 (1 z / a )( 2 z / a )
瞬变电磁法培训PPT资料优秀版

本安型瞬变电磁仪、CUGHDR高密度电法实时成像仪、KDZ-3114矿井槽波地震系统、 SHZ200矿用瞬变电磁仪、ZHV-6/9矿用本安型钻孔全孔壁成像仪、钻孔全孔壁成像仪、
Cugtem矿用瞬变电磁仪
瞬变电磁法原理
技术原理
瞬变电磁法(Transient Electromagnetics Method, TEM)是以地壳中岩(矿)石的导 电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向 地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡 流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的 一支时间域电磁法。下图即为瞬变电磁法原理的图解。
SHZ200矿用瞬变电磁仪、ZHV-6/9矿用本安型钻孔全孔壁成像仪、钻孔全孔壁成像仪、 中国地质大学(武汉)高科资源探测仪器研究所
H2i、-tec单h R脉eso冲urc激ecs发Ex就plo可ratio得n I到nstr多um信ent息Ins的txtu整te M条em瞬be变r of电CU场G 衰减曲线,通过加大发射功率和多次叠 研维 加究修,所 检一测可贯、大坚工持程幅“服度敬务业及地、技提创术新支高、持信攻于坚一噪、体比协的作系,”统加的服精务大神模勘,式始。探终深秉承度为;地勘行业服务的理念,建立了集产品供应、方案设计、仪器研发、
瞬变电磁法由于具有许多传统直流电法不可比拟的优点,是当今得以迅速发展推
本地3、安下型 (采瞬矿用变用电)不磁瞬接仪变、、地海CU回洋G瞬H线D变R装,高本密置文度,主电要法适涉实宜及时地成于下像各瞬仪变、种(K矿地DZ井-理3瞬11变环4矿电境井磁槽法下波)的地。震野系外统、工作;
Cugtem矿用瞬变电磁仪
Cugtem矿用瞬变电磁仪
Cugtem矿用瞬变电磁仪
瞬变电磁法原理
技术原理
瞬变电磁法(Transient Electromagnetics Method, TEM)是以地壳中岩(矿)石的导 电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向 地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡 流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的 一支时间域电磁法。下图即为瞬变电磁法原理的图解。
SHZ200矿用瞬变电磁仪、ZHV-6/9矿用本安型钻孔全孔壁成像仪、钻孔全孔壁成像仪、 中国地质大学(武汉)高科资源探测仪器研究所
H2i、-tec单h R脉eso冲urc激ecs发Ex就plo可ratio得n I到nstr多um信ent息Ins的txtu整te M条em瞬be变r of电CU场G 衰减曲线,通过加大发射功率和多次叠 研维 加究修,所 检一测可贯、大坚工持程幅“服度敬务业及地、技提创术新支高、持信攻于坚一噪、体比协的作系,”统加的服精务大神模勘,式始。探终深秉承度为;地勘行业服务的理念,建立了集产品供应、方案设计、仪器研发、
瞬变电磁法由于具有许多传统直流电法不可比拟的优点,是当今得以迅速发展推
本地3、安下型 (采瞬矿用变用电)不磁瞬接仪变、、地海CU回洋G瞬H线D变R装,高本密置文度,主电要法适涉实宜及时地成于下像各瞬仪变、种(K矿地DZ井-理3瞬11变环4矿电境井磁槽法下波)的地。震野系外统、工作;
Cugtem矿用瞬变电磁仪
Cugtem矿用瞬变电磁仪
瞬变电磁原理

(2)高阻地质体感应二次场衰减速度较快,二次场 电压较小。
根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
• 由于瞬变场与一维层状介质表面的瞬变场表达式 之间存在着复杂的隐函数关系,难以用解析法导 出视电阻率与场之间的显式反函数,通常只能使 用各种近似定义方法、精确定义再通过数值计算 的方法,求视电阻率与场之间的显式反函数
• 近似定义方法即所谓的早期和晚期视电阻率定义, 数值计算方法则是全区视电阻率定义
• 矿井瞬变电磁法由于受仪器煤安条件限制、施工 环境限制、测量线圈大小限制等诸多因素,其勘 探深度不如地面深,一般深度小于100 m左右,
• 井下为全空间瞬变响应,这种瞬变响应来自于回 线平面上下(或前后)地层,井下的支护、轨道等 铁构件属于良导体,这对确定异常体的位置带来 困难。
2021/6/16
瞬变电磁法基本原理(1)
类别 场的性质
方法名称
天然场
自然电场法
电剖面法
直流 电阻率法 电法
电测深法 高密度电法
激发极化法
充电法
交流 电法
人工场
频率电磁测深法 瞬变电磁法 电磁法
应用 地下水流向、金属硫化矿 断层破碎带、熔岩发育带
含水层厚度、埋深 电剖面法+电测深法 地下水、石油、金属硫化矿 地下河、供水裂隙带
• 器件性能差异、电路设计、PCB电路 布板等都亦能产生仪器机内噪声。
2021/6/16
23
噪声的抑制
根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
• 由于瞬变场与一维层状介质表面的瞬变场表达式 之间存在着复杂的隐函数关系,难以用解析法导 出视电阻率与场之间的显式反函数,通常只能使 用各种近似定义方法、精确定义再通过数值计算 的方法,求视电阻率与场之间的显式反函数
• 近似定义方法即所谓的早期和晚期视电阻率定义, 数值计算方法则是全区视电阻率定义
• 矿井瞬变电磁法由于受仪器煤安条件限制、施工 环境限制、测量线圈大小限制等诸多因素,其勘 探深度不如地面深,一般深度小于100 m左右,
• 井下为全空间瞬变响应,这种瞬变响应来自于回 线平面上下(或前后)地层,井下的支护、轨道等 铁构件属于良导体,这对确定异常体的位置带来 困难。
2021/6/16
瞬变电磁法基本原理(1)
类别 场的性质
方法名称
天然场
自然电场法
电剖面法
直流 电阻率法 电法
电测深法 高密度电法
激发极化法
充电法
交流 电法
人工场
频率电磁测深法 瞬变电磁法 电磁法
应用 地下水流向、金属硫化矿 断层破碎带、熔岩发育带
含水层厚度、埋深 电剖面法+电测深法 地下水、石油、金属硫化矿 地下河、供水裂隙带
• 器件性能差异、电路设计、PCB电路 布板等都亦能产生仪器机内噪声。
2021/6/16
23
噪声的抑制
瞬变电磁原理

瞬变电磁响应过程(1)
在导电率为s、磁导率为μ的均匀地质体表面敷设面积为S 的矩形发射回线中供以阶跃电流。
1 t 0 I t 0 t 0
在电流断开之前(t<0时),发射电流在回线周围 的地质体和空间中建立起一个稳定的磁场。
均匀大地瞬变电磁响应过程(2)
在t=0时刻,将电流突然关断,由该电流 产生的磁场也立即消失。一次场的剧烈变化 通过空气传至回线周围的地质体中,并在地 质体中激发出感应电流以维持发射电流断开 之前存在的磁场不会立即消失。
瞬变电磁法的“烟圈”理论 (2)
在发送一次脉冲磁场的间歇期间,观测由地质体受激 励引起的涡流产生的随时间变化的感应二次场的强度。 地质体介质被激励所感应的二次涡流场的强弱决定于 地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场 的大小与地下介质的电性有关: (1)低阻地质体感应二次场衰减速度缓慢,二次场 电压较大; (2)高阻地质体感应二次场衰减速度较快,二次场 电压较小。 根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
0t
V d t 2
矿井瞬变电磁法特点(1)
• 从烟圈效应的观点看,早期瞬变电磁场是由近地 表的感应电流产生的,反应浅部电性分布,晚期 瞬变电磁场是由深部的感应电磁场产生的,反映 深部的电性分布。因此,观测和研究大地瞬变电 磁场随时间的变化规律,可以探测大地电位的垂 向变化,这便是瞬变电磁测深的原理。 • 矿井瞬变电磁法由于受仪器煤安条件限制、施工 环境限制、测量线圈大小限制等诸多因素,其勘 探深度不如地面深,一般深度小于100 m左右, • 井下为全空间瞬变响应,这种瞬变响应来自于回 线平面上下(或前后)地层,井下的支护、轨道等 铁构件属于良导体,这对确定异常体的位置带来 困难。
矿井瞬变电磁培训课件

1)时间域电磁法
在瞬变过程的早期阶段,频谱中高频成分占优势,因此涡旋电流主 要分布在地表附近,由于趋肤深度的高频效应,阻碍电磁场向地下深部 传播,因此早期阶段的瞬变场主要反映地层的浅部地质信息。在晚期阶 段,高频成分被导电介质吸收,低频成分占主导地位,在这一阶段,局 部地质体中的涡流,实际上全部消失,而各层产生的涡流磁场之间的连 续相互作用使场平均化,这时瞬变场的大小主要依赖于地电断面总的纵 向电导。
G214
60 °
30°
迎头垂直断面
迎头 42
二、矿井水害与MTEM探测技术
“扇形”水平观测系统
正前方 左30度
30°
60 °
右30度 右60度
左60度
迎头垂直断面
迎头
° 60
30°
迎头
42
G214
G214
60 °
30°
42
二、矿井水害与MTEM探测技术
探测方向
工作面煤层顶板
工作面煤层顶板
一. 矿井瞬变电磁的基本原理与发展历史
重叠回线(a)、中心回线(b)、偶极回线(c)、大定源回线(d)
R T (a) T
R (b)
T
R
( c)
R
T
R (d)
R
R
R
一. 矿井瞬变电磁的基本原理与发展历史
1.2发展历史
1)地面发展历史
上世纪前苏联50年代基本建立了瞬变电磁法解释理论和野外施工方法 大规模发展该方法始于70年代 80年代以来,随着计算机技术的发展,欧美各国在瞬变电磁法的二,三维 正演模拟技术方面(有限元,有限差分,积分方程及混合方法直接解时间域 热传导方程或者先解频域亥姆霍兹方程,再进行域的转换)亦做了大量的计
瞬变电磁原理与应用PPT课件

0.2622 0.3171 0.382
0E+0
0.4594
440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 0.5542
1E+3 8E+2
0.6691 0.8064
4E+2
0.9712
0E+0
440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800
2. 对于近地表浅层探测时, “烟圈”理论计算的视深度不在 适用,在浅层探测时计算结果严重偏离实际的深度,计算 的深度从距地表20米至40米之间,探测明显存在着盲区;
3. 对浅层1号坑的1米深的低阻异常反映不出来,但对于2号 坑的2米深的低阻异常,反映清晰,但异常体的深度位置 在视深度-25米至40米位置,与实际的目标体埋深不符。
4.0E+4
0.0974
3.0E+4 2.0E+4 1.0E+4
0.1198 0.1473 0.1798
0.2172
440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 8E+3
6E+3 4E+3 2E+3
-20
22 20
-30
19 18
17
-40
16 15
14
-50
13 12
-60
11 10
8
-70
7 6
5
矿井瞬变电磁培训课件

绘制电阻率或磁导率等值线图,圈定异常区域,评估异常区域的性质和规模
矿井瞬变电磁法的数据处理和解释方法
矿井瞬变电磁法的现场工作
03
观测方案
矿井瞬变电磁法观测方案应包括观测目的、观测内容、观测点布设、观测时间、采样率和数据处理等。
测量步骤
矿井瞬变电磁法测量步骤包括电源接入、发射线圈布置、接收线圈布置、数据采集和数据处理等。
将矿井瞬变电磁法与地震、电法等其他地球物理方法进行联用,综合多种信息进行地质解译。
联用研究
将矿井瞬变电磁法与地质、采矿等其他学科进行一体化研究,从多角度、多层次研究矿井地质构造和矿产资源开发利用。
一体化研究
矿井瞬变电磁法与其他地球物理方法的联用及一体化研究
THANKS
感谢观看
将一个激励线圈通以交变的电流,使其周围产生交变的磁场
将该交变磁场视为“一次场”,通过测量“一次场”在大地中产生的涡旋电流随时间的变化规律,推断地下岩层的电阻率和磁导率分布情况
通过改变线圈的放置方向和移动线圈的位置,可以获得不同方向和深度的地质信息
数据处理
去除噪声,修正系统误差,提取有用信号
解释方法
矿井瞬变电磁法可以监测土壤、地下水和空气中的重金属含量,为环境保护和治理提供科学依据。
03
矿井瞬变电磁法在环境保护和考古研究中的应用
02
01
矿井瞬变电磁法的安全防护
05
在使用矿井瞬变电磁法进行探测前,必须对仪器进行全面检查,确保仪器工作正常且符合安全标准。
操作前检查
对矿井内部和周围环境进行勘察,确保没有安全隐患和障碍物影响探测工作。
现场勘察
操作时必须保持与井壁、顶板、底板等井下固定设施的安全距离,防止因操作不当而引发事故。
矿井瞬变电磁法的数据处理和解释方法
矿井瞬变电磁法的现场工作
03
观测方案
矿井瞬变电磁法观测方案应包括观测目的、观测内容、观测点布设、观测时间、采样率和数据处理等。
测量步骤
矿井瞬变电磁法测量步骤包括电源接入、发射线圈布置、接收线圈布置、数据采集和数据处理等。
将矿井瞬变电磁法与地震、电法等其他地球物理方法进行联用,综合多种信息进行地质解译。
联用研究
将矿井瞬变电磁法与地质、采矿等其他学科进行一体化研究,从多角度、多层次研究矿井地质构造和矿产资源开发利用。
一体化研究
矿井瞬变电磁法与其他地球物理方法的联用及一体化研究
THANKS
感谢观看
将一个激励线圈通以交变的电流,使其周围产生交变的磁场
将该交变磁场视为“一次场”,通过测量“一次场”在大地中产生的涡旋电流随时间的变化规律,推断地下岩层的电阻率和磁导率分布情况
通过改变线圈的放置方向和移动线圈的位置,可以获得不同方向和深度的地质信息
数据处理
去除噪声,修正系统误差,提取有用信号
解释方法
矿井瞬变电磁法可以监测土壤、地下水和空气中的重金属含量,为环境保护和治理提供科学依据。
03
矿井瞬变电磁法在环境保护和考古研究中的应用
02
01
矿井瞬变电磁法的安全防护
05
在使用矿井瞬变电磁法进行探测前,必须对仪器进行全面检查,确保仪器工作正常且符合安全标准。
操作前检查
对矿井内部和周围环境进行勘察,确保没有安全隐患和障碍物影响探测工作。
现场勘察
操作时必须保持与井壁、顶板、底板等井下固定设施的安全距离,防止因操作不当而引发事故。
瞬变电磁法讲义(原理)

二、ATTEM系统设计思路
I(发射电流)
I0
VETEM
常规仪器记录时间范围
T0 T1
TV T2 ATTEM
T (时间)
解决问题:
1 近地表模糊区的 探测
2 祢补VETEM和常
规电磁法仪器的空白 区
3 降低发射机下降沿 设计难度
D
ATTEM
模糊 区
T1
TV=5微妙
地面
VETEM的探测范围
ATTEM 采样试验
实施方案:同步措施
研究方案
发射机
收发装置固定 接收机
光纤同步电缆(消除导线同步噪声)
谢谢大家!!!
知识回顾 Knowledge Review
米 大地电磁(MT) :>1000米
上述方法有探测盲区(Gap),这个 盲区又是地下人文活动最频繁的区 域。
如何解决 2 - 20 米 范围的问题?
GPR
地表
探测盲区(Gap)
TEM/FEM
TEM理论模型的缺陷
瞬变电磁法的基本原理
理想模型难以物理 实现的原因:
发射电流不能用零 时间关断!
I(发射电流)
10人,每人每年1万 用于资料的检索、查阅和收集 用于日常数据处理、打印、绘图等耗材,每年2万 国内学术交流及调研,每年平均3人次,每人次1万
野外试验将在3年内随时进行,试验总天数共约80天,租车2辆,每辆车 每天300元,共4万;试验人员及民工10人,每人每天100元,共8万;野外 耗材、充电瓶、发电机、赔青及其它费3万。
受训练的1 人 各种地表
解释 水平
屏幕可 监视部 分
没有 开发
剖面/时 间,等值 线/时间 ID反演
神经网 络反 演
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (2)
在发送一次脉冲磁场的间歇期间,观测由地质体受激 励引起的涡流产生的随时间变化的感应二次场的强度。
地质体介质被激励所感应的二次涡流场的强弱决定于 地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场 的大小与地下介质的电性有关:
(1)低阻地质体感应二次场衰减速度缓慢,二次场 电压较大;
瞬变电磁法基本原理(1)
瞬变电磁原理
瞬变电磁法基本原理(2)
瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM), 利用不接地回线(线圈)向被测地质体发射 脉冲式电场作为场源(一次场),以激励被 测地质体产生二次场,在发射脉冲的间隙利 用接收回线(线圈)接收二次场随时间变化 的响应。从接收的二次场数据中分析出地质 体异常导电体的位置,从而达到解决地质问 题的目的。
在t=0时刻,将电流突然关断,由该电 流产生的磁场也立即消失。一次场的剧烈变 化通过空气传至回线周围的地质体中,并在 地质体中激发出感应电流以维持发射电流断 开之前存在的磁场不会立即消失。
瞬变电磁原理
均匀大地瞬变电磁响应过程(3)
由于介质的欧姆损耗,这一感应电流将迅速衰 减,由它产生的磁场也随之迅速衰减,这种迅速衰 减的磁场又在其周围介质感应出新的强度更弱的涡 流。这一过程继续下去,直至地质体的欧姆损耗将 磁场能量消耗殆尽。这便是地质体中的瞬变电磁过 程,伴随这一过程的地磁场就是地质体的瞬变电磁 场。
V d t
2
0t (5-3-3)
从式(5-3-1)到式(5-3-3)可以看出:感应涡流扩散的速 度与地质体电导率和磁导率有关。导电性和磁导率越好,扩 散速度越慢,在导电性和导磁性较好的地质体上,能在更长 的延时后观测到大地瞬变电磁场。
瞬变电磁原理
矿井瞬变电磁法特点(1)
• 从烟圈效应的观点看,早期瞬变电磁场是由近地 表的感应电流产生的,反应浅部电性分布,晚期 瞬变电磁场是由深部的感应电磁场产生的,反映 深部的电性分布。因此,观测和研究大地瞬变电 磁场随时间的变化规律,可以探测大地电位的垂 向变化,这便是瞬变电磁测深的原理。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (3)
任一时刻地下涡旋电流在地表产生的磁场可以 等效为一个水平环状线电流的磁场。在发射电流刚 关断时,该环状线电流紧接发射回线,与发射回线 具有相同的形状。随着时间的推移,该电流环向下 、向外扩散,并逐渐变形为圆电流环。附图示意了 发射电流关断后不同时刻地下等效电流环的分布。 从图中可以看到,等效电流环很像从发射回线中“吹 ”出的一系列“烟圈” 。
瞬变电磁原理
均匀大地瞬变电磁响应过程(4)
在瞬变过程早期阶段,高频谐波占主导地位。 由于高频的趋肤效应,涡旋电流主要集中在导电介 质的表层附近且阻碍电磁场向地质体深处传播。所 以早期阶段主要反映地质体断面上部地质信息。
随着时间的推移,高频成分被导电介质吸收, 从而低频成分占主导地位。它在导电地质体中激发 出很强的涡旋电流。然而由于热损耗,这些涡旋电 流场很快就消失了。
在瞬变过程的晚期,局部地质体中的涡流实际 上全部消失,而在各个地层中的涡流磁场之间连续 的相互作用使场均匀化和使电流均匀分布,晚期场 将依赖于断面的总纵向电导。
瞬变电磁原理
均匀大地瞬变电磁响应过程(4)
决定瞬变过程状态的基本参数是场的瞬 变时间。瞬变时间t依赖于地质体的导电性和 发—收距离。在近区和高阻岩石区,瞬变时 间很短——几十~几百毫秒。在断面中赋存 着良导地质体时这一过程变缓。在远区,瞬 变时间可达到几十秒,而在良导地质体上有 时达到一分钟或更长。
(2)高阻地质体感应二次场衰减速度较快,二次场 电压较小。
根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
由此可见,研究电磁场的瞬变过程可得 到不同电导率地层系列的地质信息及总纵向 电导,也可以分离出断面中的高导电带。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (1)
瞬变电磁法物理基础是电磁感应原理,据此理 论,在电导率和磁导率均匀的地质体上,敷设输入 阶跃电流的回线,当发送回线中电流突然断开时, 在下半空间就要被激励起感应涡流场以维持在断开 电流前存在的磁场,此瞬间的电流集中在回线附近 的地质体表面,并按指数规律衰减。随后,面电流 开始扩散到地质体下半空间中,在切断电流后的任 意晚期时间里,感应涡流呈多个层壳的环带状,随 着时间的延长,涡流场将向下及向外扩散。感应涡 流场在地质体表面引起的磁场为整个“环带”各个涡 流层的总效应,这种效应可以用一个简单的电流环 等效,表现为一系列与发送线圈同形状并且向下向 外扩散的电流环,通常称之为“烟圈”。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (4)
“烟圈”的半径r、深度d的表达式分别为:
r 8c2t/0(a25-3-1)
d4 t/0 (5-3-2)
式中:a为发射线圈半径,c2(8/)20.546479 当发射线圈半径对于“烟圈”半径很小时,可得 tanθ=d/r≈1.07,θ≈47°,故“烟圈”将沿47°倾斜锥面扩散, 其向下传播的速度为:
瞬变电磁法特点就基于Байду номын сангаас两个可分性。
瞬变电磁原理
瞬变电磁响应过程(1)
在导电率为s、磁导率为μ的均匀地质体表面敷设面积为S 的矩形发射回线中供以阶跃电流。
It
1 0
t t
0 0
在电流断开之前(t<0时),发射电流在回线周围
的地质体和空间中建立起一个稳定的磁场。
瞬变电磁原理
均匀大地瞬变电磁响应过程(2)
瞬变电磁原理
瞬变电磁法基本原理(3)
瞬变电磁原理
瞬变电磁法基本原理(4)
前面提到测量数据是在脉冲间隙中得到 的,理论上不存在一次场源的干扰,这称之 为时间上的可分性。
根据傅立叶变换理论可知,方波脉冲可 视为许多不同频率的组合,不同延时观测的 主要频率成分不同,相应时间的场在地质体 中的传播速度不同,调查深度也就不同,这 称之为空间的可分性。
瞬变电磁法的“烟圈”理论 (2)
在发送一次脉冲磁场的间歇期间,观测由地质体受激 励引起的涡流产生的随时间变化的感应二次场的强度。
地质体介质被激励所感应的二次涡流场的强弱决定于 地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场 的大小与地下介质的电性有关:
(1)低阻地质体感应二次场衰减速度缓慢,二次场 电压较大;
瞬变电磁法基本原理(1)
瞬变电磁原理
瞬变电磁法基本原理(2)
瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM), 利用不接地回线(线圈)向被测地质体发射 脉冲式电场作为场源(一次场),以激励被 测地质体产生二次场,在发射脉冲的间隙利 用接收回线(线圈)接收二次场随时间变化 的响应。从接收的二次场数据中分析出地质 体异常导电体的位置,从而达到解决地质问 题的目的。
在t=0时刻,将电流突然关断,由该电 流产生的磁场也立即消失。一次场的剧烈变 化通过空气传至回线周围的地质体中,并在 地质体中激发出感应电流以维持发射电流断 开之前存在的磁场不会立即消失。
瞬变电磁原理
均匀大地瞬变电磁响应过程(3)
由于介质的欧姆损耗,这一感应电流将迅速衰 减,由它产生的磁场也随之迅速衰减,这种迅速衰 减的磁场又在其周围介质感应出新的强度更弱的涡 流。这一过程继续下去,直至地质体的欧姆损耗将 磁场能量消耗殆尽。这便是地质体中的瞬变电磁过 程,伴随这一过程的地磁场就是地质体的瞬变电磁 场。
V d t
2
0t (5-3-3)
从式(5-3-1)到式(5-3-3)可以看出:感应涡流扩散的速 度与地质体电导率和磁导率有关。导电性和磁导率越好,扩 散速度越慢,在导电性和导磁性较好的地质体上,能在更长 的延时后观测到大地瞬变电磁场。
瞬变电磁原理
矿井瞬变电磁法特点(1)
• 从烟圈效应的观点看,早期瞬变电磁场是由近地 表的感应电流产生的,反应浅部电性分布,晚期 瞬变电磁场是由深部的感应电磁场产生的,反映 深部的电性分布。因此,观测和研究大地瞬变电 磁场随时间的变化规律,可以探测大地电位的垂 向变化,这便是瞬变电磁测深的原理。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (3)
任一时刻地下涡旋电流在地表产生的磁场可以 等效为一个水平环状线电流的磁场。在发射电流刚 关断时,该环状线电流紧接发射回线,与发射回线 具有相同的形状。随着时间的推移,该电流环向下 、向外扩散,并逐渐变形为圆电流环。附图示意了 发射电流关断后不同时刻地下等效电流环的分布。 从图中可以看到,等效电流环很像从发射回线中“吹 ”出的一系列“烟圈” 。
瞬变电磁原理
均匀大地瞬变电磁响应过程(4)
在瞬变过程早期阶段,高频谐波占主导地位。 由于高频的趋肤效应,涡旋电流主要集中在导电介 质的表层附近且阻碍电磁场向地质体深处传播。所 以早期阶段主要反映地质体断面上部地质信息。
随着时间的推移,高频成分被导电介质吸收, 从而低频成分占主导地位。它在导电地质体中激发 出很强的涡旋电流。然而由于热损耗,这些涡旋电 流场很快就消失了。
在瞬变过程的晚期,局部地质体中的涡流实际 上全部消失,而在各个地层中的涡流磁场之间连续 的相互作用使场均匀化和使电流均匀分布,晚期场 将依赖于断面的总纵向电导。
瞬变电磁原理
均匀大地瞬变电磁响应过程(4)
决定瞬变过程状态的基本参数是场的瞬 变时间。瞬变时间t依赖于地质体的导电性和 发—收距离。在近区和高阻岩石区,瞬变时 间很短——几十~几百毫秒。在断面中赋存 着良导地质体时这一过程变缓。在远区,瞬 变时间可达到几十秒,而在良导地质体上有 时达到一分钟或更长。
(2)高阻地质体感应二次场衰减速度较快,二次场 电压较小。
根据二次场衰减曲线的特征,就可以判断被测地质体 的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号 是二次涡流场的电动势(即二次电位),因此,瞬变电磁作 为一种时间域的人工源地球物理电磁感应探测方法,是根据 地质构造本身存在的物性差异来间接判断相关地质现象的一 种有效的地质勘探手段。
由此可见,研究电磁场的瞬变过程可得 到不同电导率地层系列的地质信息及总纵向 电导,也可以分离出断面中的高导电带。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (1)
瞬变电磁法物理基础是电磁感应原理,据此理 论,在电导率和磁导率均匀的地质体上,敷设输入 阶跃电流的回线,当发送回线中电流突然断开时, 在下半空间就要被激励起感应涡流场以维持在断开 电流前存在的磁场,此瞬间的电流集中在回线附近 的地质体表面,并按指数规律衰减。随后,面电流 开始扩散到地质体下半空间中,在切断电流后的任 意晚期时间里,感应涡流呈多个层壳的环带状,随 着时间的延长,涡流场将向下及向外扩散。感应涡 流场在地质体表面引起的磁场为整个“环带”各个涡 流层的总效应,这种效应可以用一个简单的电流环 等效,表现为一系列与发送线圈同形状并且向下向 外扩散的电流环,通常称之为“烟圈”。
瞬变电磁原理
瞬变电磁法的“烟圈”理论 (4)
“烟圈”的半径r、深度d的表达式分别为:
r 8c2t/0(a25-3-1)
d4 t/0 (5-3-2)
式中:a为发射线圈半径,c2(8/)20.546479 当发射线圈半径对于“烟圈”半径很小时,可得 tanθ=d/r≈1.07,θ≈47°,故“烟圈”将沿47°倾斜锥面扩散, 其向下传播的速度为:
瞬变电磁法特点就基于Байду номын сангаас两个可分性。
瞬变电磁原理
瞬变电磁响应过程(1)
在导电率为s、磁导率为μ的均匀地质体表面敷设面积为S 的矩形发射回线中供以阶跃电流。
It
1 0
t t
0 0
在电流断开之前(t<0时),发射电流在回线周围
的地质体和空间中建立起一个稳定的磁场。
瞬变电磁原理
均匀大地瞬变电磁响应过程(2)
瞬变电磁原理
瞬变电磁法基本原理(3)
瞬变电磁原理
瞬变电磁法基本原理(4)
前面提到测量数据是在脉冲间隙中得到 的,理论上不存在一次场源的干扰,这称之 为时间上的可分性。
根据傅立叶变换理论可知,方波脉冲可 视为许多不同频率的组合,不同延时观测的 主要频率成分不同,相应时间的场在地质体 中的传播速度不同,调查深度也就不同,这 称之为空间的可分性。