变压器突发短路故障的缺陷分析(最新版)
变压器突发短路故障的缺陷分析通用版

解决方案编号:YTO-FS-PD222变压器突发短路故障的缺陷分析通用版The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.标准/ 权威/ 规范/ 实用Authoritative And Practical Standards变压器突发短路故障的缺陷分析通用版使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。
文件下载后可定制修改,请根据实际需要进行调整和使用。
引言近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。
变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。
以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。
这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。
北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。
实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。
1 分析项目1.1 变压器油中溶解气体色谱分析用于判断变压器内是否发生过热或者放电性故障。
该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。
实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。
变压器短路事故分析

变压器短路事故分析变压器短路事故是指变压器内部绝缘系统出现故障,导致两个或多个绕组之间出现直接短路或接近短路的故障。
这种事故在发电厂、变电站、工矿企业等大型电力设施中经常发生。
本文通过分析变压器短路事故的原因、后果以及防范措施,对这类事故进行详细探讨。
首先,变压器短路事故的主要原因包括硬件故障和操作失误。
硬件故障主要指电气元件的老化、损坏等,如绝缘材料老化、接线端子松动、导线断裂等,这些故障导致电流过大、短路电流增大,最终引发短路事故。
操作失误方面,主要包括操作人员的误操作、疏忽等,如接线错误、保护装置设置不当等,这些操作失误也会导致短路事故的发生。
其次,变压器短路事故的后果非常严重。
首先是设备的损坏,短路电流的冲击会导致变压器内部绕组和绝缘材料的损坏,甚至烧毁变压器。
其次是停电事故,变压器的短路会导致电力系统的一部分或全部停电,给用户带来不便。
再次是人身伤亡事故,变压器短路时可能引发火灾,造成人员伤亡。
最后,短路事故还会造成电力系统的连锁故障,引发更大的事故。
为了防范变压器短路事故的发生,应采取以下措施。
首先是加强维护保养,定期检查变压器的绝缘材料和接线端子等,确保其处于良好的工作状态。
其次是合理设置保护装置,对变压器进行过载、短路等故障的保护,及时切除故障,保护变压器的安全运行。
再次是加强操作人员的培训,提高其操作技能和安全意识,减少操作失误的发生。
最后是加强监控系统的建设,使用传感器、监测装置等对变压器进行实时监测,及时发现故障并采取措施修复。
总之,变压器短路事故是一种严重的电力事故,可能导致设备损坏、停电、人员伤亡等后果。
通过加强设备维护、合理设置保护装置、提高操作人员技能和安全意识以及加强监控系统建设等措施,可以有效地预防和减少变压器短路事故的发生。
只有不断完善电力设备管理,提高安全意识,才能构建安全可靠的电力系统。
变压器运行中短路损坏的常见部位与分析

变压器运行中短路损坏的常见部位与分析摘要:近年来,我国电力工业发展迅速,取得了一系列成绩,但随着时代的进步,电力系统的供电需求也越来越高。
对于电流互感器的现状,仍然存在许多问题。
短路故障严重影响电力系统运行的稳定性和安全性。
因此,短路故障的处理变得越来越重要。
关键词:变压器运行;短路;损坏;分析前言在整个电力系统当中,变压器是保证入户端电力能源电压稳定的关键,也是当前电网体系的核心之一,这一设备的性能不仅关系着电力系统的安全性同时也关系着用户的利益,但电力能源重要性大幅提升的当代,也就更需要强化变压器部件的抗短路能力,从而推动电力系统运行稳定性的提升。
1 短路故障的成因以及危害电力系统需要保持长时间、不间断的运行,这也就会让电力系统当中的组件都处在负荷状态下,并且各种电力系统组件所处的环境存在差异,环境因素的异常也可能给电力系统组件带来影响,因此在电力系统运行中会对变压器设备产生影响的成因较多。
而从各种干扰因素危害程度来看,绝缘结构损坏是对变压器设备运行稳定性构成影响的关键因素,当变压器中的线路出现损坏之后,也就会导致变压器设备的运行出现故障。
其次,在对变压器设备进行维护的时候未能及时的发现设备故障、未能落实故障维护操作、在变压器设备设计方案存在不足或者是安装阶段操作存在问题都有可能是导致变压器设备绝缘结构破损的成因。
短路故障对于变压器设备造成的实际损坏程度不一,短路故障发生的时候,电流值越大、短路故障持续时间越长则对于设备所造成的损坏也就越强。
短路故障中出现电流往往带有巨大的毁灭力量,一旦变压器设备当中的导线以及其他部件没有良好的稳定性以抗短路能力,那么就难以有效的应对变压器故障。
而在一些短裤故障当中,由于短路故障的电流能量过高,所以即便电流持续的时间较短,但也会在瞬间让设备以及导体结构的温度被加热到较高的条件,直接导致绝缘层的损坏,并且还可能造成部分金属出现退火的情况,最终导致金属出现变形或者是损坏。
变压器故障分析论文:变压器短路故障存在的问题及分析

34382010EXPLORATION 变压器短路故障存在的问题及分析■ 张奇 重庆市电力公司沙坪坝供电局中图分类号:TM4文献标识:A 文章编号:1006-7833(2010) 08-343-02摘 要 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。
因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。
但由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于众多方面的原因。
如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。
同时,部分工作人员业务素质不高、技术水平不够或违章作业等,都会造成事故或导致事故的扩大,从而危及电力系统的安全运行……关键词 电力变压器 变压器故障一、变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。
内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相问短路、绕组的线匝之间发生的匝问短路、绕组或引出线通过外壳发生的接地故障等。
外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的短路,引出线之间发生相问故障等而引起变压器内部故障或绕组变形等。
变压器的内部故障从性质上一般又分为热故障和电故障两大类。
热故障通常为变压器内部局部过热、温度升高。
根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。
电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。
根据放电的能量密度不同,电故障又分为局部放电、火花放电和高能电弧放电三种故障类型。
变压器运行中短路损坏的原因分析(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention.(安全管理)单位:___________________姓名:___________________日期:___________________变压器运行中短路损坏的原因分析(最新版)变压器运行中短路损坏的原因分析(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。
显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。
根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其损坏主要有以下几种特征及产生的原因。
1.1轴向失稳这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形,该类事故占整个损坏事故的32.9%。
1.1.1线饼上下弯曲变形这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
1.1.2绕组或线饼倒塌这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。
如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。
端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。
1.1.1绕组升起将压板撑开这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。
1.2辐向失稳这种损坏主要是在轴向漏磁产生的辐向电磁力作用下,导致变压器绕组辐向变形,占整个损坏事故的21.2%。
1.2.1外绕组导线伸长导致绝缘破损辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。
变压器突发短路故障的缺陷分析

变压器突发短路故障的缺陷分析在电力系统中,变压器是一种重要的电力设备,主要用于调节电压、传输电能等。
然而,由于长期的运行和使用,变压器在使用过程中难免会出现各种各样的故障,其中最常见的就是短路故障。
本文就对变压器突发短路故障的缺陷进行分析,以期提高变压器的运行效率和可靠性。
什么是变压器突发短路故障?变压器突发短路故障指的是变压器在运行中突然出现一种短路故障,一般是指绕组短路故障。
这种故障会导致变压器停机,甚至可能造成严重的火灾和人身伤害。
变压器突发短路故障的原因很多,可能是由于设计缺陷、制造缺陷、老化磨损、电气环境恶劣等原因引起的。
下面我们就分别来介绍一下这些原因。
设计缺陷变压器的设计是非常重要的,设计缺陷会导致变压器在运行过程中出现各种各样的问题。
设计缺陷可能包括以下几点:1.绕组连接不良在变压器绕组的制造和安装中,如果存在连接不良现象,就会导致绕组发生短路故障。
这种情况一般是由于绕组连接开裂、接触面积不足、接触压力不足等原因引起的。
2.保护装置设计不当变压器的保护装置是为了保障变压器的安全运行,一旦出现故障可以及时切断变压器电源。
如果保护装置设计不当,就会导致变压器在故障时无法及时停机,从而加剧了故障的严重程度。
制造缺陷制造缺陷可能是由于制造工艺不当、材料质量不达标等原因引起的。
具体来说,制造缺陷可能包括以下几点:1.绕组绝缘缺陷绕组绝缘是保障变压器安全运行的关键之一。
如果绕组绝缘存在缺陷,就会导致电压集中,电弧击穿和短路故障的产生。
2.磁芯质量不良磁芯是变压器重要的组成部分,质量只有达标才能保证变压器的安全运行。
如果磁芯存在问题,就会导致变压器产生磁通不平衡,从而导致电流集中和短路故障的产生。
老化磨损变压器在长期的运行中,会经受各种各样的电磁力作用和热磨损,绕组绝缘的老化、磨损也不可避免。
长时间的运作可能导致绕组绝缘材料的老化和损坏,绕组的电流密度增高,绕组加热,导致绝缘介质的退化和热度膨胀,从而加剧了短路故障的发生。
电力变压器故障缺陷原因分析及措施

电力变压器故障缺陷原因分析及措施摘要:科学技术的发展迅速,电力行业的发展也突飞猛进。
电力变压器指的是电力系统一次回路中供输、配、供电用的变压器。
电力变压器结构繁杂,运行环境相对较差,如果发生故障事故的话,对电网波动和供电的可靠性也有较大的影响,所以需要对于具体状况采取对应措施。
因为变压器是连续运行,在实际工作中可能出现各种故障,重大事故不仅会导致变压器自身出现损坏,还会造成电力供应的中断,给工厂造成一定的生产经济损失。
因此日常点检和维护变压器在工作中占很大的作用,更重要的是值班人员应当对变压器可能出现故障的处理措施进行学习运用。
关键词:电力变压器;故障缺陷;原因分析;措施引言随着我国智能电网的不断发展,电网技术得到了较快发展,不断扩大电网的容量和范围,同时也增加了线路短路的几率,对电路的抗短路能力提出了更高的要求。
220kV变压器作为目前输电网中一种非常重要且应用广泛的设备,对电网用电安全起着重要作用。
电网若不能稳定运行,将导致在电网上其他的用电设备发生故障。
随着社会经济的不断发展,用电需求日益增加,同时国家出台了相关的政策措施,鼓励智能变压器的发展,因此智能变压器受到了广泛关注。
电网对于大型电力变压器的需求也随之增加,同时要求变压器具备更好的安全性、供电可靠性、电能质量以及对环境的影响小等特点。
变压器的安全稳定运行,对于社会经济的发展具有重要作用,因此研究如何提高变压器的性能具有重要意义。
1变压器主体结构简介油浸式变压器主要由变压器器身、油箱、降温装置、出线装置和保护装置构成。
变压器的器身包括了铁芯夹件、绕组、线圈、绝缘结构等;油箱包括了油箱及其所有附件;降温装置是散热片和吹风装置;出线装置则为高低压套管;保护装置包括了油枕、油表安全气道、呼吸器、净油器继电器和测温元件等。
油浸式变压器的铁芯和绕组都浸没在绝缘油里,变压器的油兼有散热、绝缘、防止内部元件和材料老化、以及在内部发生故障时起到熄灭电弧的作用。
变压器短路故障分析和解决

7.辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。
对于变压器的出口短路现象,笔者根据长时间的经验和总结,认为主要有以下几种可能原因,并需要我们针对性的提出解决方案:
1.线饼上下弯曲变形。这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。
2绕组或线饼倒塌。这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。 端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。
变压器短路故障分析和解决
变压器是当今电气化生产中一样十分常用的电机,其在电网中发挥着重要作用,主要保证电网安全、可靠运行和人们生产及生活用电的稳定。变压器是一种静止电机,利用电磁感应原理,可将一种电压的电能转换为另一种电压的电能(一般是交流电),从而实现电能的分配等。因此我们可以发现变压器的稳定持续使用是需要保证的,然而在日常工作生产中,总是会有各种各样的问题导致变压器损坏或不能正常使用,其中变压器的短路就是十分常见的一种,所以本文主要探讨关于短路故障的一些分析和解决方法。
5.采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器突发短路故障的缺陷分
析(最新版)
Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.
( 安全管理 )
单位:______________________
姓名:______________________
日期:______________________
编号:AQ-SN-0137
变压器突发短路故障的缺陷分析(最新版)
引言
近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。
变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。
以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。
这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。
北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。
实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。
1分析项目
1.1变压器油中溶解气体色谱分析
用于判断变压器内是否发生过热或者放电性故障。
该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。
实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。
1.2绝缘电阻试验
变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。
如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。
1.3绕组直阻试验
直阻试验检查导电回路中分接开关接触是否良好、引线接头焊接或接触是否良好、绕组是否断股、匝间有无短路等缺陷,可配合多种试验共同确定缺陷,被1997年的部颁预试规程确定为变压器最重要的电气试验项目。
由于电网短路容量越来越大,短路事故在直阻方面的反映往往很明显。
如北土城变电站110kV原#2变压器事故后,通过绕组变形试验发现低压绕组异常,但绝缘电阻正常,色谱分析结果表明发生了涉及绝缘部位的放电,最后依靠低压三相直阻不平衡的试验结果分析出:低压绕组明显变形且绕组严重受损,须进行大修。
大修时发现几乎所有的绕组都已经扭曲变形,内部结构严重损坏。
1.4绕组变形试验
它是通过各线圈在高频下的响应特性来判断其结构和周围状况是否发生明显变化的新型试验项目。
如220kV怀柔变电站#1变压器1997年3月发生套管爆炸事故,由于不知线圈内部状况,不能决定是否更换线圈,后根据绕组变形试验结果正常的结论确定不再更换线圈。
在大短路容量的电网中近年变压器发生出口短路事故比率较
高(例如华北电网1998年的4起变压器事故中3起源于短路冲击),而绕组变形是其中常见的严重缺陷,所以该项目是现场决定变压器是否投运的主要依据,有其它试验项目不可替代的作用。
220kV老君堂变电站原#2变压器短路事故后所有电气和色谱试验均正常,但绕组变形试验表明绕组已经变形并在大修时被确认。
该项试验在北京供电局已经开展4年,共进行229台次,其中事故后试验46台次,发现缺陷10起,没有一起判断错误的情况。
近3年来,共进行了40余次事故抢修,依照上述“四项分析”分析无一误判。
可见,这套分析方法比较适于现场,但必须强调:“四项分析”要综合起来使用,方能得出正确的结论。
2应用实例
例1:1998-10-1,110kV林河变电站一台10kV开关速断保护动作掉闸,重合失败,7s后#2变压器(SFZ—40000/110,1996-11投运)本体轻、重瓦斯,闸箱重瓦斯,差动保护均动作,变压器高、低压侧开关掉闸,退出运行。
油色谱分析表明:总烃含量急剧增加,CO、CO2增加较少,结论
为变压器内部存在突发性的裸金属部位的放电。
电气试验分析表明:绕组直流电阻试验正常;绕组变形试验发现低压绕组略有疑点;绝缘电阻试验发现低压绕组对高压绕组、铁心及地的绝缘仅有25MΩ。
进行分解试验以查找缺陷位置:高压绕组对低压绕组、铁心以及地绝缘电阻正常;铁心对高、低压绕组及地绝缘电阻正常。
判断结果是:低压绕组非线圈部位对地部位的绝缘有问题。
综合分析:变压器内部发生突发性的裸金属部位放电,但绕组变形、直流电阻试验又未发现明显缺陷,故线圈本身有缺陷的可能性很小;低压绕组有微弱的变形,对地绝缘只有25MΩ,故低压绕组接近变压器箱体的部位(尤其是出线处——即低压绕组对地部位)因短路冲击而放电的可能性最大;低压绕组出线处的手孔可以打开,故可方便地在现场检查。
变压器内部检查发现:低压内部引线铜排的多个木夹板中,有两处没有包扎铜排的辅助绝缘,其中低压引线上部木夹件处铜排有相间短路放电痕迹,木夹件表面烧黑,引发相邻部位铜排相间发生油间隙电弧放电。
变压器内部散落放电后的铜渣少许,油中炭素较
多,线圈上部垫块多处松动。
证明试验对于故障部位的判断基本正确,该变压器现场处理后投入运行。
例2:1996-10-28,吕村#2变压器(SFPSZ9—120000/220,1992年投运)110kV侧B相套管爆炸,套管芯子向上窜起30cm,套管整体上移10cm,根部严重喷油,故障录波器、差动保护、轻重瓦斯、防爆筒均动作。
试验分析:拔掉高压、中压侧所有套管后,做电气试验结果正常。
鉴于套管爆炸从未发生过,上级单位决定该变压器返厂大修。
但变压器运输要经过一座高速公路桥,工期不允许。
最后,根据试验人员的建议,先进行绕组变形试验,结果正常,之后进行局部放电试验,结果正常。
投运后运行正常。
XXX图文设计
本文档文字均可以自由修改。