毛细管电泳和毛细管电色谱

合集下载

色谱5--HPCE

色谱5--HPCE

- - - - - - -
- - - -
石英表面 负电荷
++ +- +- +- +- +-
+ ++ + + + + - - - - - - - - - - - EOF
- - - - -
水合阳 离子在 表面积 聚
电场作用下 向负极运动

- -
电渗流的一个独特性质是其具有平面
流型,推动液体流动的力在毛细管内 均匀分布,平面流型的优点是对谱带 的扩散没有直接作用。
热称为焦耳热。受毛细管尺寸、溶液电导、 外加电压等影响。 不均匀的温度梯度和局部的黏度变化会引 起区带展宽。温度变化1℃→黏度变化 2%~3% →淌度变化2%~3% 。 进样塞长度——在进样过程中减少样品塞 长度非常重要。对进样长度的限制是低于 毛细管总长度的(1~2)%。例 70cm长 的毛细管,进样量应小于7mm。
溶质与管壁相互作用——可能导致峰拖
尾 或发生对溶质的完全吸附。对多肽和 蛋白质来说,这种吸附特别严重。可采 用多种方法来减少相互作用: 增加缓冲液浓度以降低有效表面电荷; 在极端pH值下进行分离,使石英表面 硅羟基以不带电的形式存在; 对毛细管壁进行涂层处理。 电分散作用——样品区带与操作缓冲液 的电导差异可产生峰型畸变。

表面活性剂

在毛细管电泳中常添加表面活性剂, 作为疏水性溶质的增溶剂、与溶质形 成离子对,或作为毛细管内壁的改性 剂等,以改善分离效率。常用表面活 性剂有 : 阴离子—十二烷基硫酸钠(SDS) 阳离子---十六烷基三甲基溴化铵 (CTAB) 两性离子---N,N’二甲基胺-3-丙烷-1磺酸
化合物 HCl NaCl 甘氨酸 柠檬酸 细胞色素C 人血红蛋白 烟草花叶病毒
扩散系数D 3.05 1.48 1.06 0.66 0.11 0.069 0.0046

第五章 高效毛细管电泳和电动色谱

第五章 高效毛细管电泳和电动色谱
4
1.40 1.60 1.80 2.00 t/min 2.20 2.40 2.60 2.80
36
35
34 32 33
31
30
29
28
27
26
25
24
23
22
20
21
19
18 17 16
15
14
9
13 10
11
12
786
5 2
3Leabharlann 101三、毛细管凝胶电泳
毛细管凝胶电泳 CGE):按照试样中各个组 分相对分子质量的大小进行分离的方法。 用途:常用于蛋白质、寡聚核苷酸、核糖核 酸、DNA片段的分离和测序及聚合酶链反应产 物的分析。CGE能达到CE中最高的柱效。
• 毛细管等电聚焦是基于不同蛋白质或多肽之 间等电点的差异进行分离的电泳技术。 • 毛细管等电聚焦最具特色的应用是测定蛋白 质的等电点。在异构酶鉴定、单克隆抗体、 多克隆抗体、血红蛋白亚基等研究中,经常 用毛细管等电聚焦。
五、亲和毛细管电泳
亲和毛细管电泳是利用配体与受体之间存在特异性 相互作用,可以形成具有不同荷-质比的配合物而达 到分离目的。
梯度升压方式对毛细管电泳分离的影响 A. 2kV至25kV,0min,一步升压;B.2kV至25kV,5min,线性梯度 升压. 样品:β-乳球蛋白A,溶菌酶,细胞色素C,肌红蛋白,微白蛋白
二、毛细管及其温度控制
毛细管电泳柱作为分离分析的载体,其材料、 形状、内径、柱长、温度对分离度和重现性都 有影响。
缓冲液中加入添加剂,并让缓冲液与毛 细管充分平衡.如加入阳离子表面活性剂 十四烷基三甲基溴化铵(tetradecyl trimethyl ammonium bromide ,TTAB), 能在内壁形成物理吸附层,使EOF反向. 添加剂还有聚乙烯亚胺、甲基纤维素 (MC)、十六烷基溴化铵(CTAB)等。

毛细管技术

毛细管技术

大。

(1)高效塔板数目在105-106 片/m 间,当采用CGE 时
系统和数据处理系统。

定性,pH在4-10之间,硅醇基的解离
间过短,峰面积太小,分析误差
作用力的协同作用。

这种相
5)某些质谱技术可以给出多电荷离子,对分析大分子如糖
芯片和微流控分析芯片)。

1994年始,美国橡树岭国家实验室Ramsey等在M
药物合成中带入的杂质和药物的降解产物通常与药物有相似
向和课题。

可喜的是,这方面的工作已开始启动,CE一HPLC、CE一MS联用己取得高效率、高质量的分析成果。

经过科学工作者的不懈努力,一个药物分析领域的新技术快速发展时期即将到来。

毛细管电泳和毛细管电色谱

毛细管电泳和毛细管电色谱
用于水体、土壤、空气等环境 样品中污染物和农药残留的检 测,有助于环境保护和治理。
其他领域
毛细管电泳还应用于食品分析 、冶金、地质等领域,可用于 金属离子、矿物成分等的分离
和检测。
02 毛细管电泳技术
CHAPTER
进样技术
压力进样
通过施加压力使样品进 入毛细管,适用于大体
积样品。
电动进样
利用电场力驱动样品进 入毛细管,适用于低粘
电解质浓度
影响电场强度和离子迁移率。
温度
影响分子热运动和扩散系数。
毛细管材料和内壁处理
影响样品在毛细管内的吸附和分离效 果。
03 毛细管电泳实验
CHAPTER
实验流程
安装毛细管
选择合适的毛细管,将其插入 仪器,确保密封良好。
运行实验
设定合适的实验参数,如电压、 温度、检测波长等,开始实验。
准备毛细管电泳仪
进系统
用于将样品注入到毛细管中。
实验材料
毛细管
具有微米级内径的玻璃或石英管,是电泳的分离通道。
电解质溶液
用于提供电泳所需的离子环境。
样品
待测物质,需进行适当预处理。
清洗液
用于清洗毛细管和仪器,保持实验的准确性。
04 毛细管电色谱简介
CHAPTER
定义与原理
定义
毛细管电色谱(CEC)是一种将高效电泳分离与高效液相色谱的固定相相结合 的分离技术。
亲和电泳
利用特异性亲和作用进行分离 ,如抗体-抗原、酶-抑制剂等

检测方法
紫外可见光谱
利用紫外可见光谱检测分离出的组分。
电化学检测
利用电化学方法对分离出的组分进行检测。
荧光检测
利用荧光物质标记待测组分,通过荧光信号 进行检测。

毛细管电泳

毛细管电泳
• 后来,Mikkers等首先从理论上研究了电 场聚焦现象及其对分离区带扩展的影响, 随后在实验上用200μm内径的聚四氟乙烯 管实现了高效电泳分离,这项研究成为 CZE发展史上的第一个重大突破。
• 从二十世纪八十年代初开始,Jorgenson 等使用更细的毛细管及内径为75μm的熔 融石英管做CZE,在30kV电压下每米毛 细管的效率高达4×105的理论塔板数, 这一开创性的成果成为毛细管电泳发展
3.应用领域的不断扩展
• 与传统电泳一样,CE的主要应用领域是生命科 学,分离对象涉及氨基酸,多肽,蛋白质,核 酸等生物分子,对蛋白质结构分析具有重要意 义的肽图,对人体基因工程具有决定性作用的 DNA测序等许多当代生命科学中分离分析难题, CE都已涉及。
• 在应用于生命科学的同时,CE近年来已迅速扩 展到其它领域,包括食品化学,药物化学,环 境化学,毒物学,医学和法医学等,特别是在 手性分子和生物大分子的分离方面,CE具有独 特的优势。
以电场力驱动产生的EOF,与HPLC 中靠外部泵压产生的液流不同。EOF 的流型属扁平流型或称“塞流”。扁 平型的塞子流不会引起样品区带的增 宽,是毛细管电泳高效的重要原因 。
HPLC的流型则是抛物线状的 层流,它在壁上的速度为零,中心 速度为平均速度的2倍。
Van Deemter方程:
HAB/u Cu
• 目前,CE的研究热点包括:DNA的高速 测序,蛋白质的高效分离,糖类分析, 细胞分析,手性拆分等等。此外,毛细 管电泳还可用于物理化学常数的测定, 生产工程控制等。
历史的简单回顾
• 瑞典科学家Tiselius在1937年首先提出电泳,创 造了Tiselius电泳仪,并建立了移动界面电泳方 法。1948年他获得了诺贝尔化学奖。

武汉大学《分析化学》(第5版)(下册)课后习题(毛细管电泳和毛细管电色谱) 【圣才出品】

武汉大学《分析化学》(第5版)(下册)课后习题(毛细管电泳和毛细管电色谱)  【圣才出品】

第21章 毛细管电泳和毛细管电色谱21-1 什么是电渗流?它是怎样产生的?答:(1)电渗流是指当在毛细管两端施加高压电场时,双电层中溶剂化的阳离子向阴极运动,通过碰撞作用带动溶剂分子一起向阴极运动,即形成电渗流。

(2)电渗流的产生过程:由于多孔介质材料、微通道壁或其他流体管道材料表面带负电荷,液体中的正离子被吸引附着于通道壁上,最靠近通道壁的正离子被吸引的力量最强,距离通道壁越远,正离子所受的吸引力越弱。

水分子因具偶极性而吸附于正离子上,当在通道两端施加电压时,距离通道壁较远的正离子(受壁的吸引力较弱,可自由移动)游向负极,正离子带着吸附于其上的水分子以及因为摩擦力牵引着其他水分子一起游向负极,此即为电渗效应。

21-2 毛细管的总长为25cm ,进样端到检测器的柱长为21cm ,分离电压为20kV ,采用硫脲作为标记物,其出峰时间为1.5min ,试计算电渗流的大小。

解: 根据题给条件:U =20000V ,由1021,25, 1.5min 90,d L cm L cm t s ====可得电渗流为0d t eo L L t Uμ=⋅21142112125 2.92109020000eo cm V s cm V s μ-----⨯=⋅⋅=⨯⋅⋅⨯21-3 在毛细管区带电泳中,指出下列物质的出峰顺序。

溴离子,硫脲,铜离子,钠离子,硫酸根离子答:在毛细管区带电泳中,上述物质的出峰顺序依次为:钠离子,铜离子,硫脲,硫酸根离子,溴离子。

21-4 为什么pH会影响毛细管电泳分离氨基酸?答:pH会影响毛细管电泳分离氨基酸是因为pH决定弱电离组分的有效淌度,同时还影响电流的大小和方向。

氨基酸是两性物质,因此氨基酸的电离受到溶液pH的影响,当pH接近氨基酸的等电点时,氨基酸对外显示电中性,电泳过程中不移动。

21-5 毛细管电泳的检测方法有哪些?它们分别有何优缺点?答:毛细管电泳又称高效毛细管电泳,是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。

毛细管电泳的分离原理

毛细管电泳的分离原理

毛细管电泳的分离原理
毛细管电泳(CE)是一种基于电动力和色谱分离原理的分析技术。

它利用毛细管中载带电荷的离子在电场作用下的迁移速率的差异来实现分离。

在毛细管电泳中,首先将样品注入到一条非常细的毛细管内,然后通过使毛细管两端施加电场来产生电动力。

当电场施加到毛细管上时,带电的分析物会受到电场力的作用而在毛细管内迁移。

不同的物质由于自身的特性,比如大小、电荷等,会以不同的速率迁移。

具体来说,有两种常用的毛细管电泳模式:
1. 毛细管凝胶电泳(CGE):在该模式下,毛细管内填充了哑离子聚合物凝胶,通过凝胶的孔道来实现分离。

样品中的离子在电场作用下,根据尺寸的不同,在凝胶中迁移速度也不同,从而实现分离。

2. 毛细管毛细管区带电泳(CZE):在该模式下,毛细管内不填充任何分离介质。

样品中的离子自行在毛细管中迁移,根据大小和电荷的不同,迁移速度也不同,从而实现分离。

总的来说,毛细管电泳的分离原理是利用样品中离子在电场作用下的迁移速率差异,根据大小和电荷特性,在毛细管中实现分离。

第七章 毛细管电泳法

第七章  毛细管电泳法



近似通用,常规应用 灵敏,但试样通常要衍生 高灵敏度,价格昂贵,要衍生化 通用性 选择性,灵敏度高,微量 仪器复杂,可获结构信息, 质量灵敏度高 灵敏度高,操作有特殊要求
放射
10-9-10-11
第七章 高效毛细管电泳 分析法
high performance capillary electrophoresis,HPCE
电场强度
第7章 毛细管电泳
7-1 毛细管电泳的原理
2 电泳和电渗

1. 2.
电渗流的意义
3.
电泳过程中,伴随着电渗现象 电渗流的速度比电泳速度快5-7倍 利用电渗流可将正、负离子或中性分子一起向同 一方向,产生差速迁移,在一次电泳操作中同时 完成正、负离子的分离分析
分情况而论
电渗流是毛细管电泳分离的重要参数 控制电渗流的大小和方向,可提高毛细管电 泳分离的效率、重现性、分离度。
第7章 毛细管电泳
7-2 分离模式
5 毛细管等电聚焦 CIEF: 建立在不同蛋白质或多肽之间等 电点(pI值)差异基础上的分离方 法。 蛋白质的等电点(pI): 指蛋白质分子的表观电荷数为零 时的pH值。
第7章 毛细管电泳
5 毛细管等电聚焦 方法:
1.
2.
3.
进样-等电聚焦-检测 先将脱盐的试样(蛋白质)以≥1%的浓度与两性电 解质溶液混合,用压力进样充入毛细管柱(阳极端), 置于阳极电解质溶液如H3PO4中,检测端为阴极端,置 于阴极电解质如NaOH中。 施加电压,进行电泳实验。两性电解质离子形成pH的 位置梯度,而蛋白质在迁移时会在其等电点的pH区域 内停止移动。这样pI不同的蛋白质各组分会在毛细管 内很窄的不同pH区域内聚焦. 在阳、阴极电解液中加入盐如NaCI或NaOH,破坏pH梯 度,使各组分蛋白质重新带电,在电场力作用下发生 迁移、检测,使不同组分的蛋白质得到分离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毛细管电色谱(capillary electrochromatography; CEC)是毛细管电泳与液相色谱相结合形成的一种高效、 快速微分离分析技术。
3.1. 毛细管电泳和毛细管电色谱的基本理论
3.1.1. 双电层和Zeta电势
3.1.2. 电泳
在电解质溶液中,带电粒子在电场作用下,以不同的速度 或速率向其所带电荷相反电场方向迁移的现象叫作电泳。阴 离子向正极方向迁移,阳离子向负极方向迁移,中性化合物 不带电荷,不发生电泳运动。
3.1.5. 分离原理
毛细管电色谱由于引入了色谱机制,其保留机理包括两个 方面:
其一,如同HPLC,基于溶质在固定相和流动间分配过程; 其二,如同CE,基于溶质电迁移过程。CEC容量因子可 用下式表示:
k k 'k ' (ep / eo ) ep / eo
由于CEC既能分离电中性溶质,又能分离带电溶质,对 复杂的混合样品显示出强大的分离潜力。
度量电渗流大小是单位电场下的电渗流速率即电渗淌度
(eo)或电渗速率(ueo),可用Smoluchowski 方程表示:
eo

o
w
ueo

eo
E

o w E
u eo

Ld t0
eo

ueo E

Ld t0
1 Eຫໍສະໝຸດ Ld to Lt U
3.1.3. 电渗流
以电场力驱动产生的溶液EOF,与高效液相色谱中由高压 泵产生的液体流型不同:
毛细管电泳(capillary electrophoresis;CE)是一类以 高压直流电场为驱动力,毛细管为分离通道,依据样品中 各组分之间淌度和分配行为的差异而实现分离的新型液相 分离分析技术。
毛细管电泳是分析科学中继高效液相色谱之后的又一 重大进展,它使分析科学从微升水平得以进入纳升水平, 并使单细胞分析成为可能。
1 高压电源;2 毛细管;3 检测器;4 电极;5 缓冲液瓶;6 恒温系统;7 记录仪
3.2.2. 进样系统
毛细管分离通道十分细小,整个柱体积一般只有4~5μL, 所需的样品区带只有几纳升。
毛细管电泳的进样方式一般是将毛细管的一端从缓冲液移 出,放入试样瓶中,使毛细管直接与样品接触,然后由重力、 电场力或其他动力来驱动样品流入管中。进样量可以通过控 制驱动力的大小或时间长短来控制。CE进样技术均适用于 CEC。
3.1.5. 分离原理
电泳和电渗流并存,在不考虑相互作用的前提下,粒子在 毛细管内电介质中的迁移速率是两种速率的矢量和:
u uep ueo (e p eo)E
令µapp=µep + µeo,称之为表观淌度,即从毛细管电泳测量 中得到的淌度为粒子自身的电泳淌度和由电渗引起的淌度之
检测窗口部位的外涂层剥离。
焦耳热效应产生径向温度梯度,还会导致分离重现性差。 商品仪器大多有温度控制系统,主要采用风冷和液冷两 种方式。
和,并有
app

e p
eo
u/E

Ld tr
Lt U
在典型的毛细管电泳分离中,溶质的分离基于溶质间电泳
速率的差异。电渗流的速率绝对值一般大于粒子的电泳速率,
并有效地成为毛细管电泳的驱动力。溶质从毛细管的正极端 进样,带正电的粒子最先流出,中性粒子次之,带负电的粒
子在中性粒子之后流出。溶质依次通过检测器,得到与色谱 图极为相似的电泳分离图谱。
3.1.6. 柱效和分离度
与色谱相同,CE和CEC的柱效一般也用塔板数N或塔板高
度H来表示。实际应用中,可根据以下公式计算:
N

5.54
tR 2t1/ 2
2
从理论上分析,CE分离的柱效可表示为
D为扩散系数,样品相对分子质量越大,扩散系数越小, 柱效越高,所以毛细管电泳比色谱更适合于生物大分子分离 分析。
目前有三种方法可以让样品直接进入毛细管:
电动法、压力法和浓差扩散法。
3.2.3. 电源及其回路
电流回路系统包括高压电源、电极、电极槽、导线和电 解质缓冲溶液等。CE和CEC一般采用0 ~ ±30 kV连续可 调的直流高压电源。理想的电源应具备: 1.能输出单极直流高压(一端接地); 2.电压、电流、功率输出模式任意可选; 3.能控制电压、电流或电功率的梯度; 4.电压输出精度应高于1%。 CE的电极通常由直径0.5~l mm的铂丝制成。 电极槽,即缓冲液瓶,通常是带螺口的小玻璃瓶或塑料 瓶(1~5mL不等),要便于密封。缓冲液内含电解质,充于 电极槽和毛细管中,通过电极、导线与电源连通,一同 构成整个电流回路。
3.1.6. 柱效和分离度
类似于HPLC,CEC的柱效可用vanDeemter方程表征:
作为一种重要的分离分析手段,CE和CEC仍沿用分离度R 作为衡量分离程度的指标,并定义如下:
R 2(tR2 tR1 ) (W2 W1 )
3.2. 毛细管电泳和电色谱仪器装置
21.2.1.仪器基本结构
电渗是CE的基本现象之一,它可以控制组分的迁移速率和 方向,进而影响CE的分离效率和重现性,所以电渗流控制 是CE中的关键问题或技术之一。
3.1.4. 电渗流的控制
影响电渗流的因素很多,直接影响因素有: 1. 电场强度 2. 温度 3. pH值 4. 缓冲液溶剂 5. 离子强度 6. 添加剂 7. 管壁涂层
在充满自由溶液开口管中球形粒子的电泳速率公式为:
vep

e 6
E
电泳淌度(μep)定义为单位场强下离子的平均电泳速率, 即
ep

vep E
3.1.3. 电渗流
电渗是毛细管中整体溶剂或介质在轴向直流电场作用下发 生的定向迁移或流动。
电渗的产生和双电层有关,当在毛细管两端施加高压电场
时,双电层中溶剂化的阳离子向阴极运动,通过碰撞作用带 动溶剂分子一起向阴极移动,形成电渗流(EOF)。
3.2.4. 毛细管及其温度控制
熔融石英毛细管在CE中应用最广泛,熔融石英拉制得 到的毛细管很脆,易折断,一般在外表面涂有聚酰亚胺 保护层,使之变得富有弹性,不易折断。
内径越小,表面积/体积比越大,散热效果越好。内径 小,样品负载小,检测、进样、清洗等操作困难。
一般使用的毛细管柱内径在25 ~100 μm之间,目前最常 用的是50μm和75μm两种。
相关文档
最新文档