商品利润最大问题
人教版数学九年级上册:22.3 第2课时 最大利润问题 (含答案)

第2课时最大利润问题1.将进货价为每件70元的某种商品按每件100元出售时每天能卖出20件,若这种商品每件的售价在一定范围内每降低1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________,所以每件降价________元时,每日获得的利润最大,为________元.2.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150 B.160 C.170 D.1803.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()A.y=x2+a B.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)24.[2019·丹东] 某服装超市购进单价为30元/件的童装若干件,物价部门规定其销售单价不低于30元/件,不高于60元/件.销售一段时间后发现:当销售单价为60元/件时,平均每月的销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元/件,平均月销售量为y件.(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当销售单价为多少时,销售这种童装每月可获利1800元?(3)当销售单价为多少时,销售这种童装每月获得的利润最大?最大利润是多少?5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=-x+60(30≤x≤60,且x 为整数).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少元/个时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不能高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少元/个?6. 某商店销售某种商品所获得的利润y(元)与所卖件数x(件)之间满足关系式y=-x2+1000x -200000,则当0<x≤450时的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某种工艺品的进价为每件100元,当标价135元出售时,每天可售出100件.根据销售统计,该工艺品每件的价格每降低1元,每天可多售出4件.要使每天获得的利润最大,则每件需降价()A.5元B.10元C.15元D.20元8.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量y(件)与销售单价x(元/件)之间的关系符合一次函数y=-x+140.(1)直接写出x的取值范围:__________;(2)若销售该服装获得的利润为W元,试写出利润W与销售单价x之间的关系式:________________________________________________________________________.9.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数关系,部分数据如下表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果想每天获得160元的利润,那么销售单价应定为多少元/袋?(3)设每天的利润为w元,当销售单价定为多少元/袋时,每天的利润最大?最大利润是多少元?10.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图22-3-9所示.(1)求y与x之间的函数解析式(不要求写出自变量的取值范围);(2)如果规定每天漆器笔筒的销售量不低于240件,那么当销售单价为多少时,每天获取的利润最大,最大利润是多少?图22-3-911.十一黄金周期间,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另外公司平均每日的各项支出共4800元.设公司每日租出x(0≤x≤20)辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加__________元,此时每辆车的日租金为__________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司的日收益最多?最多是多少元?答案1.(30-x) (20+x) -x 2+10x +600 5 6252.A [解析] 设利润为w 元,则w =(x -100)(200-x)=-x 2+300x -20000=-(x -150)2+2500(100≤x≤200), 故当x =150时,w 有最大值.3.D4.解:(1)由题意得y =80+20×60-x 10, ∴y 与x 之间的函数关系式为y =-2x +200(30≤x≤60).(2)由题意得(x -30)(-2x +200)-450=1800,解得x 1=55,x 2=75(不符合题意,舍去).答:当销售单价为55元/件时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w 元.由题意得w =(x -30)(-2x +200)-450=-2(x -65)2+2000.∵-2<0,∴当x≤65时,w 随x 的增大而增大.∵30≤x≤60,∴当x =60时,w 取最大值,w 最大=-2(60-65)2+2000=1950.答:当销售单价为60元/件时,销售这种童装每月获得的利润最大,最大利润是1950元.5.解:(1)w =()x -30·y =(x -30)·(-x +60)=-x 2+90x -1800(30≤x≤60,且x 为整数).(2)w =-x 2+90x -1800=-()x -452+225.∵-1<0,∴当x =45时,w 有最大值,最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润是225元.(3)当w =200时,可得方程-()x -452+225=200,解得x 1=40,x 2=50. ∵50>42,∴x =50不符合题意,舍去.答:销售单价应定为40元/个.6.B [解析] 因为抛物线的对称轴为直线x =500,在对称轴左侧,y 随x 的增大而增大,因此在0<x≤450的范围内,当x =450时,函数有最大值为47500.7.A8.(1)60≤x≤90 (2)W =-x 2+200x -8400[解析] (1)∵规定试销期间销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤90.(2)∵单件利润为(x -60)元,销售量为y =-x +140,∴销售该服装获得的利润W =(x -60)(-x +140)=-x 2+200x -8400.9.解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =280,5.5k +b =120,解得⎩⎪⎨⎪⎧k =-80,b =560.则y 与x 之间的函数关系式为y =-80x +560(3.5≤x≤5.5). (2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x≤5.5,∴x =4.答:如果想每天获得160元的利润,那么销售单价应定为4元/袋.(3)由题意,得w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240.∵3.5≤x≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元/袋时,每天的利润最大,最大利润是240元.10.解:(1)设y 与x 之间的函数解析式为y =kx +b.由题意得⎩⎪⎨⎪⎧40k +b =300,55k +b =150, 解得⎩⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数解析式为y =-10x +700.(2)由题意,得-10x +700≥240,解得x≤46.设每天获得的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x-50)2+4000.∵-10<0,∴当x<50时,w随x的增大而增大.∴当x=46时,w最大=-10×(46-50)2+4000=3840.答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元.11.解:(1)50(20-x)(-50x+1400)(2)由题意,得y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.∵-50<0,∴函数图象开口向下,函数有最大值,即当x=14时,在0≤x≤20范围内,y有最大值5000.答:当每日租出14辆时,租赁公司的日收益最多,最多是5000元.。
初三下数学课件(北师大)-商品利润中的取值问题

【规范解答】(1)最高销售单价为 50(1+40%)=70 元,设 y 与 x 的函数关系
式为 y=kx+b,则6700kk+ +bb= =430000 ,解得kb= =-100100 ,∴y 与 x 之间的函数 关系式为 y=-10x+1000,x 的取值范围是 50≤x≤70; (2)w=(x-50)y=(x-50)(-10x+1000)=-10x2+1500x-50000=-10(x -75)2+6250,a=-10<0,图象开口向下.对称轴为直线 x=75,自变量 的取值范围是 50≤x≤70,在此条件下,y 随 x 的增大而增大,所以,当 x =70 时,w 最大值=-10(70-75)2+6250=6000 元.当销售单价定为 70 元时, 所获得的利润有最大值,最大值为 6000 元. 【方法归纳】这里不能说 x=75 时,w 有最大值 6250,应该考虑 x 的取值 范围.
解:(1)根据题意得,y=250-10(x-25)=-10x+500(30≤x≤38);
(2)设每天扣除捐赠后可获得利润为 w 元.w=(x-20-a)(-10x+500)=- 10x2+(10a+700)x-500a-10000(30≤x≤38),对称轴为 x=35+12a,且 0 <a≤6,则 35<35+21a≤38,则当 x=35+12a 时,w 取得最大值,∴(35+ 12a-20-a)[-10(35+12a)+500]=1960,∴a1=2,a2=58(不合题意舍去), ∴a=2.
知识点:利用二次函数求利润的取值问题
求解最大利润问题的基本步骤: (1)引入自变量,用含自变的代数式分别表示 单件利润 及 销售量 ; (2)建立关于 销售利润 的函数表达式; (3)根据 函数关系式 求出最大值及取得最大值时的 自变量 的值.
二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a
;
当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,
当
x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)
商品利润最大问题

涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
单件利润(元) 销售量(件) 每星期利润(元)
正常销售
20
300
6000
涨价销售
20+x
300-10x y=(20+x)(300-10x)
建立函数关系式:y=(20+x)(300-10x),
即:y=-10x2+100x+6000.
∵1200<1250
∴售价x是55元时,获利最大,最大利润是1250元.
(2)若该商店销售该商品所获利润不低于1218元,试
确定该商品的售价x的取值范围;
解:①当40≤x≤50时, ∵Q最大= 1200<1218,
∴此情况不存在.
60x-1800
(
Q=
40≤x≤50 )
-2(x-55)2 + 1250 ( 50≤x≤70)
又∵a =-2<0, 1242
∴当51≤x≤53时 ,
Q随x的增大而增大
∴当x最大 = 53时,Q最大= 12420 51 53 55
x
∴此时售价x应定为53元,
利润最大,最大利润是1242元.
建立函数 关系式
总利润=单件利润×销 售量或总利润=总售价-
总成本.
最大利 确定自变量 润问题 取 值 范 围
可以,故180-10x ≥0,因此自变量的取值范围是x ≤18.
③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+80x+1800 =-10(x-4)2+1960. 当x=4时,即销售单价为34元时,y取最大值1960元.
答:当销售单价为34元时,该店在一个月内能获得最 大利润1960元.
九年级数学上册二次函数【商品利润最大问题】专项训练

九年级数学上册二次函数【商品利润最大问题】专项训练1、某旅馆有30个房间供旅客住宿。
据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。
该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。
当房价定为每天多少时,该旅馆的利润最大?解:设每天的房价为60+5x元,则有x个房间空闲,已住宿了30-x个房间.∴度假村的利润y=(30-x)(60+5x)-20(30-x),其中0≤x≤30.∴y=(30-x)•5•(8+x)=5(240+22x-x²)=-5(x-11)²+1805.因此,当x=11时,y取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大。
2、最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。
某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。
经市场调查发现,该产品每天的销售量w(千克)与销售量x(元)有如下的关系:w=-2x+80。
设这种产品每天的销售利润为y(元)。
(1)求y与x之间的函数关系式;解:y=(x-20)w=(x-20)(-2x+80)=-2x²+120x-1600,∴y与x的函数关系式为:y=-2x²+120x-1600;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?解:y=-2x²+120x-1600=-2(x-30)²+200,∴当x=30时,y有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?解:当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.3、与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。
九下数学(北师版)课件-商品利润的最值问题

C.y=-10x2+350x
D.y=-10x2+350x-7350
1.某公司的生产利润原来是 a 万元,经过连续两年的增长达到了 y 万元,
如果每年增长的百分率都是 x,那么 y 与 x 的函数关系是( D )
A.y=x2+a
B.y=a(x-1)2
C.y=a(1-x)2
D.y=a(1+x)2
2.将进货单价为 70 元的某种商品按零售价每个 100 元出售时,每天能卖出
12.(扬州中考)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔 筒,成本为 30 元/件,每天销售量 y(件)与销售单价 x(元)之间存在一次函数 关系,如图所示.
(1)求 y 与 x 之间的函数关系式; (2)如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时, 每天获取的利润最大,最大利润是多少?
且售价 x 的范围是 1≤x≤3,则最大利润是( C )
A.16 元
B.21 元
C.24 元
D.25 元
9.某种商品每件进价为 20 元,调查表明:在某段时间内若以每件 x 元 (20≤x≤30,且 x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的 售价应为 25 元. 10.某种工艺品利润为 60 元/件,现降价销售,该种工艺品销售总利润 w(元) 与降价 x(元)的函数关系如图,则这种工艺品的销售量为(60+x) 件(用含 x 的代数式表示).
7.一件工艺品进价为 100 元,标价 135 元售出,每天可售出 100 件.根据
销售统计,一件工艺品每降价 1 元出售,则每天可多售出 4 件,要使每天获
得的利润最大,每件需降价的钱数为( A )
A.5 元
B.10 元
22.3.1商品利润最大的问题(教案)

-利用一元一次不等式表示商品利润,并求解最大利润;
-分析不同情况下的利润问题,如:固定成本、变动成本等。
本节课将结合实际案例,让学生在实际问题中运用所学的数学知识,提高他们的数学应用能力。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生的数学抽象能力,使其能够从实际情境中抽象出一元一次不等式,理解并解决商品利润问题。
其次,在小组讨论环节,学生们表现得相当积极,提出了很多有见地的观点。但同时,我也注意到有些学生在讨论中显得有些迷茫,可能是因为他们对问题的理解不够深入。为此,我决定在今后的教学中,加强对学生的个别辅导,引导他们更好地参与到小组讨论中来。
此外,实践活动环节,学生们通过计算和比较不同售价下的利润,对一元一次不等式的应用有了更直观的认识。但我也发现,有些学生在操作过程中对利润的计算方法掌握不够熟练。针对这一点,我计划在接下来的课程中,增加一些类似的练习题,让学生们有更多的机会进行实践操作,提高他们的运算能力。
五、教学反思
在今天的课堂中,我们探讨了一元一次不等式在商品利润问题中的应用。课后,我对自己教学的过程进行了深入的思考。
首先,我发现学生们对一元一次不等式的概念和应用有了基本的理解,但在实际操作中,部分学生仍然感到困惑。我意识到,在讲解理论知识时,我应该更加注重与实际生活的联系,用更多具体的例子来说明,这样有助于学生更好地消化吸收。
a.利用图形辅助,通过绘制不等式的图像来直观展示利润与售价之间的关系。
b.分步骤解析求解过程,从简单情况入手,逐步过渡到复杂情况。
c.设计具有启发性的练习题,让学生在解答过程中自主发现和解决问题。
d.鼓励学生进行小组讨论,通过合作学习,共同攻克难点。
人教九年级数学上册- 最大利润问题(附习题)

即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商品利润最大问题
1 •经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.
2 •会运用二次函数求实际问题中的最大值或最小值.
3•能应用二次函数的性质解决商品销售过程中的最大利润问题.
一、情境导入
红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?
二、合作探究
探究点一:最大利润问题
【类型一】利用解析式确定获利最大的条件
为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工
厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件•生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.
解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的
变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数X 每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.
解:设该厂生产第x档的产品一天的总利润为y元,则有y = [10 + 2(x—1)][76 —4(x —1)] =—8x + 128X+ 640 = —8( x—8) + 1152.当x= 8 时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大•建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)
【类型二】利用图象解析式确定最大利润
. 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y*元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2= mx—8m灶n,其变化趋势如图②所示.
(1) 求y2的解析式;
(2) 第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
y 2 的图象经过两点(3 , 6) , (7 , 7) ,••• 9m —24m ^n — 6,解
49 m- 56m+ n = 7,
1 m
8,
得
• y 2的解析式为y 2
63 n
= T
4k + b = 11,
⑵设 y1 = kx + b,.•函数 y1 的图象过两点(4 , 11) , (8 , 10) ,• 8k
+ b = 10,
1 k =— -,
1
4
•- y 1的解析式为y 1 = — 4X +12(1 w x < 12).设这种水果每千克所获得的利润为 b = 12.
(1 W X W 12),•当x = 3时,w 取最大值 ¥,•••第 大,最大利润是¥元/千克.
三、板书设计
r
利用解析乂 \
「
利用阁象确
定星丿用制
•»
J (凰优
教学过程中,强调学生自主探索和合作交流, 经历将实际问题转化为函数问题, 并利用函数
的性质进行决策.
解:(1)由题意可得,函数
=8x 2 — x + 63(1 w X W 12) •
解得
元•则 w = y i — y 2= ( - 4x + 12) — ( $ - x + 63)
1 2
3 33 1 2 =—8x + 4x + T ,• k 8(x - 3)
+N
2
21
3月销售这种水果,每千克所获的利润最。