电气化铁路scott接线变压器牵引供电方式设计1
牵引变压器接线及其电气量分析(包含SCOTT接线变压器的详细计算分析)

牵引变压器接线及其电气量分析牵引供电系统的构成LG TM TM牵引变电所概述我国现行的牵引变电所供电方式绝大多数为三相-两相制式,即其原边取自电力系统的110kV或220kV三相电压,次边向两个单相供电臂馈电,其母线额定电压为27.5kV或55kV(2×27.5kV)。
对于三相YNd11或Vv接线的牵引变电所,次边两相电压的相别是原边三个相(或线)电压相别三中取二的某种组合;而对于平衡变压器,经变压器的变换,次边形成大小相等而相位相互垂直的两相电压。
从广义的角度上讲,牵引变压器原次边之间除了有电压的变换外,还有电流和阻抗变换,可称为系统变换,如⇔A B Cοαβ....通过系统变换,可以获得一次侧的牵引变压器、牵引负荷的等值电路模型,或二次侧的电力系统、牵引变压器等值电路模型。
这两个等值电路模型对于牵引供电系统的电气分析十分方便、有用,如用于电压损失,故障分析,电能计量,负序含量,谐波水平等计算。
三相YNd11接线牵引变电所目前在三相牵引变电所中多采用的是110kV油浸风冷式变压器,该牵引变压器的接线采用标准联结组,即YNd11,必要时原边中性点可实施大电流接地。
备用方式有移动备用和固定备用两种,实用中大多采用固定备用。
对于直接供电或BT供电方式,变压器次边输出电压为27.5kV,比牵引网标准电压(网压)25kV高10%。
一、YNd11接线原理电路图及展开图绕组(ax),(cz)为负荷相绕组;绕组(by)则被称为自由相绕组,括号内符号为端子号,大写为原边,小写为次边。
接供电臂接供电臂(z)(x)(y)(c)(a)(b)(C)(A)(B)(Z)(X)(Y)为分析的直观与方便,更常见使用YNd11接线牵引变压器的展开图。
画展开图有如下约定:(1) 为施工和运行安全起见,统一规定次边绕组的(c)端子接钢轨和地;(2) 原、次边对应绕组在图中相互平行;(3) 原、次边对应(相)绕组的同名端放在同一侧;接供电臂接供电臂(z)(x)(y)(c)(a)(b)(C)(A)(B)(Z)(X)(Y)展开图(C)(A)(B)(c)(b)(a)(C)(B)(A)(c)(a)(b)二、电压、电流相量的规格化定向在牵引供电系统分析中,对所有牵引变压器均都采用规格化定向(又称为减极性定向,即在这种定向下,原次边绕组磁势相互抵消)。
(整理)牵引变电所I电气主接线设计

目录第1章设计思路 (2)1.1 设计的目的 (2)1.2 设计的要求 (2)1.3 设计的依据 (2)1.4 设计方案 (3)1.4.1 设计方案比较 (3)1.4.2 备用的选择 (4)第2章牵引变压器的选择 (5)2.1 参数的定义 (5)2.2 牵引变压器容量计算 (5)2.3 中期变压器容量估算 (5)2.4 牵引变压器的电压损失计算 (6)第3章牵引变电所主接线设计 (7)3.1 主接线要求 (7)3.2 变电所110kV侧主接线设计 (8)3.3 变电所27.5kV侧主接线设计 (9)第4章短路电流的计算 (9)第5章设备的选择 (12)5.1 110kV侧进线的选择 (12)5.2 27.5kV侧母线的选择 (13)5.3 开关设备的选择 (13)5.3.1 110kV侧开关设备的选择 (13)5.3.2 27.5kV侧开关设备的选择 (15)5.4 电流互感器的选取 (17)第6章继电保护拟定 (18)6.1 继电保护的任务 (18)6.2 继电保护的要求 (19)6.3 继电保护配置 (19)第7章并联无功补偿装置 (20)第8章变电所防雷设计 (22)第9章设计结论 (22)参考文献 (23)第1章设计思路1.1 设计的目的通过对牵引变电所I电气主接线的设计,可以初步掌握电气化铁道牵引变电所电气主接线的设计步骤和方法。
基本掌握变电所主接线图的绘制方法,锻炼自己综合运用所学知识的能力,熟悉有关设计规范,将所学的理论知识与实际设计相结合,建立一个对牵引变电所的供电系统的概念模型,为今后进行工程设计奠定良好基础。
1.2 设计的要求(1)确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行时的运行方式。
(2)确定牵引变压器的容量、台数及接线方式。
(3)确定牵引负荷侧电气主接线的形式。
(4)对变电所进行短路计算,并进行电气设备选择。
(5)设置合适的过电压保护装置、防雷装置以及提高接触网功率因数的装置。
电气化铁路scott接线变压器牵引供电方式设计1.

黑龙江交通职业技术学院毕业设计(论文)题目电气化铁路scott接线变压器牵引供电方式设计专业班级姓名学号2017年月日摘要随着我国铁路跨越式发展战略的逐步实施,我国铁路已逐步向高速客运专线的方向发展,电气化铁道接触网作为整个电力供电系统的重要组成部分,其牵引负荷的供电要求相以前的常规铁路已发生较大变化,对接触网系统的供电质量要求也越来越高。
牵引供电系统的供电质量好与坏?弓网是否有良好的受流质量?这与高速铁路供电系统方式有着密不可分关系,因为供电方式的不同将直接影响接触网的电压、电流等参数,最终影响受流质量。
目前,铁道部加快了重载高速电气化铁路的建设。
重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。
如此大的负荷对供电系统的功率传输能力提出了新的要求。
因此,对高速铁路接触网供电方式研究是十分关键的。
关键词:变压器,斯科特,供电目录第1章绪论 (1)1.1 选题目的和意义 (1)1.2 国内外研究现状 (1)1.3 牵引变压器 (2)1.4 本文主要内容 (2)第2章斯科特变压器 (4)2.1 AT供电方式 (4)2.2 斯科特变压器特点 (4)2.3 斯科特变压器供电方式 (6)2.4 高压侧主接线 (7)2.5 馈线侧主接线设计 (8)第3章斯科特计算 (10)3.1 变压器计算容量 (10)3.2 变压器校核容量 (10)3.3 短路计算 (11)3.3.1 短路点的选取 (11)3.3 备用方式选择 (11)3.4 绘制电气主接线图 (12)第4章我国采用斯科特变压器的线路 (14)4.1 哈大铁路客运专线 (14)4.2 京沪高速铁路 (14)4.3 京沈客运专线 (15)第5章结论 (16)参考文献 (17)第1章绪论1.1 选题目的和意义我国自1961年8月15日建成开通宝鸡至凤州91km第一段山区电气化铁路、实现电气化铁路零的突破以来,到2005年末,电气化开通营业里程已突破2万km。
课程设计报告—AT供电方式下斯科特接线牵引变电所设计

课程设计报告—AT供电方式下斯科特接线牵引变电所设计电气化铁道供电系统与设计课程设计报告班级:电气***学号: **********姓名: **** **指导教师: ******2011 年 07 月 18 日目录1、题目 (1)2 题目分析及解决方案框架确定 (1)3 设计过程 (1)3.1 牵引变电所110kV侧主接线设计 (2)3.2 牵引变压器主接线设计 (3)3.3 牵引变电所馈线侧主接线设计 (3)3.3.1 55kV侧馈线的接线方式 (3)3.3.2动力变压器及其自用电变压器接线 (5)3.4 绘制电气主结线图 (5)3.5 牵引变压器容量计算 (6)3.6 牵引变压器类型选择 (8)3.7导线选择 (8)3.7.1 室外110kV进线侧母线的选择 (8)3.7.2 室外27.5kV进线侧母线的选择 (9)3.7.3 室外10kV馈线侧母线的选择 (9)3.8 开关设备的选择 (9)3.8.1 高压断路器的选择 (9)3.8.2 高压熔断器的选择 (11)3.8.3 隔离开关的选择 (12)3.9 仪用互感器的选择 (12)3.9.1电流互感器的选择 (12)3.9.2电压互感器的选择及作用 (13)4 小结 (14)参考文献 (14)附表1 钢芯铝绞线的物理参数及载流量 (15)附图1 牵引变电所电气主结线图 (16)AT供电方式下斯科特接线牵引变电所设计1、题目某牵引变电所戊采用AT供电方式向复线区段供电,牵引变压器类型为110/27.5kV,SCOTT接线,两供电臂电流归算到27.5kV侧电流如表1所示。
本次设计主要做了变电所AT供电方式下,从电源进线到向供电臂供电的所有接线设计和此种接线方式下变电所的容量计算。
表1 原始数据2 题目分析及解决方案框架确定分析题目提供的资料可知,该牵引变电所要担负向区段安全可靠的供电任务,题目要求采用110/55kV、SCOTT接线牵引变压器,AT 供电方式向复线区段供电的方式,此供电方式可减轻对邻近通信线路的干扰影响,大大降低牵引网中的电压损失,扩大牵引变电所间隔,减少牵引变电所的数目。
电气化铁道干式斯科特联接变压器-标准编制说明

广东省电气行业协会团体标准《电气化铁道干式斯科特联接变压器》编制说明一、标准制定背景目前,国内的27.5 kV和55 kV 级电气化铁道采用将供电电源的三相电源变成两相电源,提供两相电源,保证供电的三相电源平衡的斯科特(Scott)变压器,或将供电电源的两相电源变成三相电源,提供三相电源,保证供电的两相电源平衡的逆斯科特(Inverse Scott)变压器,这是一种特种变压器,主要用作27.5 kV、55 kV电压等级的电气化铁道作三相电压和两相电压相互变换的变压器。
多为油浸式斯科特或逆斯科物联接变压器,油浸式产品存在易燃、易爆、渗漏油、体积大、散热差等不足,随着电力系统无油化的发展趋势,为了便于铁道维护保养、使用安全可靠,避免油浸产品的缺点,电气化铁道干式斯科特联接变压器应运而生。
由于国内只有《电气化铁道27.5 kV、55 kV 级油浸式斯科特联接变压器技术条件》标准,而电气化铁道干式斯科特联接变压器与油浸式电气化铁道干式斯科特联接变压器由于绝缘介质的不同而要求和性能上存在差异,为了规范干变电气化铁道干式斯科特联接变压器的试验与验收,特制定了本标准。
二、标准任务来源2020年2月,根据广东省电气行业协会《关于<35kV及以上油绝缘站用电压互感器>等2项团体标准立项的公告》(粤电协字[2020]第2号)要求,《电气化铁道干式斯科特联接变压器》正式列入广东省电气行业协会团体标准制修订计划。
三、起草单位《电气化铁道干式斯科特联接变压器》由广东四会互感器厂有限公司、广安电气检测中心(广东)有限公司、广东恒电电器试验有限公司等单位共同起草,广东省电气行业协会主持制定。
其中广东四会互感器厂有限公司作为牵头单位和执笔单位,主要负责标准具体的编制工作、试验方法研究以及试验数据的汇总和分析;广东省电气行业协会负责各次会议的组织、专家召集,并对标准形式和技术上把关;广安电气检测中心(广东)有限公司、广东恒电电器试验有限公司负责组织专家进行技术问题的讨论和分析,对专家意见进行汇总和分析,对标准中框架的确定起到了重要作用;广安电气检测中心(广东)有限公司、广东恒电电器试验有限公司为标准编制过程中的试验数据记录提供了统一数据模板,并对标准附录中的原始记录及案例的编制提供了重要支持,并对标准中的试验合理性分析提供了技术支撑,对标准中评估流程图最终的确定起到了关键作用。
斯科特牵引变电所课程设计.

牵引供电课程设计目录第1章课题设计任务要求 (1)1.1 设计任务 (1)1.2 设计的基本要求 (1)1.3 设计的基本依据 (1)第2章设计方案分析和确定 (1)2.1方案主接线的拟定 (1)2.2年运量和供电距离的分析 (2)2.3变压器与配电装置的一次投资和和折旧维修 (3)2.4供电方式的优缺点 (3)第3章变压器台数和容量的选择 (3)3.1牵引变压器备用方式的选择 (3)3.2牵引变压器台数和容量的选择 (4)第4章主接线设计 (7)4.1电源侧主接线 (7)4.2牵引变压器接线 (7)4.3牵引侧主接线 (8)4.4倒闸操作 (9)第5章牵引变电所的短路计算 (9)5.1短路计算的目的 (9)5.2短路点的选取 (9)5.3短路计算 (9)第6章电气设备的选择 (11)6.1室外110kV进线侧母线的选择 (11)6.2室外27.5kV进线侧母线的选择 (12)6.3高压断路器的选择 (12)6.4隔离开关的选择 (13)6.5电压互感器的选取 (14)6.6电流互感器的选取 (14)第7章电压水平的改善 (15)7.1 接触网功率因数低的主要原因 (15)7.2 串联电容补偿 (15)第8章继电保护 (16)8.1继电保护的任务 (16)8.2继电保护基本要求 (16)8.3继电保护的拟用 (16)第9章防雷保护装置 (17)第10章总结 (17)参考文献 (18)第1章 课题设计任务要求1.1 设计任务SCOTT 接线牵引变电所电气主接线设计,对双线路供电经过本次设计,对所学的专业知识得到相当的运用和实践,这将使自己所学的理论知识提升到一定的运用层次,为以后完成实际设计奠定扎实的基本功和基本技能,最终达到学以致用的目的。
1.2 设计的基本要求(1)确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行方式下的运行方式。
(2)确定牵引变压器的容量、台数及接线形式。
(3)确定牵引负荷侧电气主接线的形式。
2.第二章牵引变压器接线及其电气量分析

列写电流和磁势平衡关系 式
原边电流:I•
A
•
IB
•
IC
0
若副边两相牵引负荷电流
相等时,且M、T两供电
臂功率因数相等时,
A B C
•
IA
ω1
(M) D
•
Iβ
ω2
•
Uβ
•
IB
•
ω1
IC
*(T)
*
•
ω2
Iα
•
Uα
以
•
I
为参考相量:
列磁势平衡方程:
•
I
I0
•
I I90
•
I
A
1
2
•
I
B
1
2
•
I
2
•
•
I C 1 I 2
等( 2 2 )。
2
(M)座变压器变比:
KM
1 2
(T)座变压器变比:
•
•
U
U CD
3
•
U
AB
2
KT 90
1
3 2
1
2 2
•
U 90
3 2 KM
KT
3 2
KM
由于(M)与(T)两变压器原边电压的关系对应于等边
三角形底边和高的关系,故通常称M座为底变压器,
T座为高变压器。
(2)原、次边电流关系
(3)Scott变压器容量利用率
达到额定输出时,即 I I Ie ,
此时:
IA IB IC
2 3KM
Ie
变压器额定输出容量:Se UI UI 2UIe
变压设计容量:
Sb
UCD IC
电气化铁路scott接线变压器牵引供电方式设计1

黑龙江交通职业技术学院毕业设计(论文)题目电气化铁路scott接线变压器牵引供电方式设计专业班级姓名学号2017年月日摘要随着我国铁路跨越式发展战略的逐步实施,我国铁路已逐步向高速客运专线的方向发展,电气化铁道接触网作为整个电力供电系统的重要组成部分,其牵引负荷的供电要求相以前的常规铁路已发生较大变化,对接触网系统的供电质量要求也越来越高。
牵引供电系统的供电质量好与坏?弓网是否有良好的受流质量?这与高速铁路供电系统方式有着密不可分关系,因为供电方式的不同将直接影响接触网的电压、电流等参数,最终影响受流质量。
目前,铁道部加快了重载高速电气化铁路的建设。
重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。
如此大的负荷对供电系统的功率传输能力提出了新的要求。
因此,对高速铁路接触网供电方式研究是十分关键的。
关键词:变压器,斯科特,供电目录第1章绪论 (1)1.1 选题目的和意义 (1)1.2 国内外研究现状 (1)1.3 牵引变压器 (2)1.4 本文主要内容 (2)第2章斯科特变压器 (4)2.1 AT供电方式 (4)2.2 斯科特变压器特点 (4)2.3 斯科特变压器供电方式 (6)2.4 高压侧主接线 (7)2.5 馈线侧主接线设计 (8)第3章斯科特计算 (10)3.1 变压器计算容量 (10)3.2 变压器校核容量 (10)3.3 短路计算 (11)3.3.1 短路点的选取 (11)3.3 备用方式选择 (11)3.4 绘制电气主接线图 (12)第4章我国采用斯科特变压器的线路 (14)4.1 哈大铁路客运专线 (14)4.2 京沪高速铁路 (14)4.3 京沈客运专线 (15)第5章结论 (16)参考文献 (17)第1章绪论1.1 选题目的和意义我国自1961年8月15日建成开通宝鸡至凤州91km第一段山区电气化铁路、实现电气化铁路零的突破以来,到2005年末,电气化开通营业里程已突破2万km。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江交通职业技术学院毕业设计(论文)题目电气化铁路scott接线变压器牵引供电方式设计专业班级姓名学号2017年月日摘要随着我国铁路跨越式发展战略的逐步实施,我国铁路已逐步向高速客运专线的方向发展,电气化铁道接触网作为整个电力供电系统的重要组成部分,其牵引负荷的供电要求相以前的常规铁路已发生较大变化,对接触网系统的供电质量要求也越来越高。
牵引供电系统的供电质量好与坏弓网是否有良好的受流质量这与高速铁路供电系统方式有着密不可分关系,因为供电方式的不同将直接影响接触网的电压、电流等参数,最终影响受流质量。
目前,铁道部加快了重载高速电气化铁路的建设。
重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。
如此大的负荷对供电系统的功率传输能力提出了新的要求。
因此,对高速铁路接触网供电方式研究是十分关键的。
关键词:变压器,斯科特,供电目录第1章绪论 (1)选题目的和意义 (1)国内外研究现状 (1)牵引变压器 (2)本文主要内容 (2)第2章斯科特变压器 (4)AT供电方式 (4)斯科特变压器特点 (4)斯科特变压器供电方式 (6)高压侧主接线 (7)馈线侧主接线设计 (8)第3章斯科特计算 (10)变压器计算容量 (10)变压器校核容量 (10)短路计算 (11)短路点的选取 (11)备用方式选择 (11)绘制电气主接线图 (12)第4章我国采用斯科特变压器的线路 (14)哈大铁路客运专线 (14)京沪高速铁路 (14)京沈客运专线 (15)第5章结论 (16)参考文献 (17)第1章绪论选题目的和意义我国自1961年8月15日建成开通宝鸡至凤州91km第一段山区电气化铁路、实现电气化铁路零的突破以来,到2005年末,电气化开通营业里程已突破2万km。
电气化铁路所具有的牵引力大、速度快、能耗低、效率高、污染小的优越性,使电气化铁路从山区到平原,从重载到客运专线,形成了遍布全国的电气化铁路网。
目前,铁道部加快了重载高速电气化铁路的建设。
重载高速电气化铁路的重要特点是牵引负荷较以往电气化铁路有很大幅度的提高,如大秦线2亿t扩能改造工程,单列车牵引质量由1万t增加到2万t,牵引功率也由原来的12800kW增加至25600kW;高速客运专线速度为350km/h时,列车牵引功率可达到22000~25000kW,是普通速度客运机车功率的4~5倍。
如此大的负荷对供电系统的功率传输能力提出了新的要求。
我国电气化铁路绝大多数采用110kV作为牵引变电所的受电电压,均保证了安全、可靠的供电;但对于重载高速线路,需电网输电容量达到126~180MVA,要保证输送如此大的功率,则应当考虑采用更高等级的电压作为受电电压。
国内外研究现状斯科特平衡变压器,包括两台单相变压器,分别为M变和T变,M变包括第一高压绕组、结构对称的第一低压绕组和第二低压绕组,T变包括第二高压绕组、结构对称的第三低压绕组和第四低压绕组。
由于M变和T变分别提供两组结构对称的低压绕组,通过低压绕组的串联连接和并联连接方式,可以实现电源电压的三相变两相和三相变四相,能够同时满足电气化铁路直供方式和AT供电方式。
既可以满足电气化铁路牵引供电系统近期规划的直供方式,也可以满足远期规划的AT供电方式,无需更换变压器,能够减少变压器投资,节约资源。
斯科特(Scott)变压器,是一种特种变压器。
它能将供电电源的三相电变成两相电(两个相位差90°的单相),提供两相电源,保证供电的三相电源平衡。
一般斯科特变压器大多用在电气化牵引铁路中;该变压器原边有两个绕组,接成倒T形,它的底部绕组(称为底绕组)接入高压系统的两相间电压(如A,C相间),另一绕组(称为高绕组)则连接于底绕组中心点和高压三个电压中的另一相(如B相),底绕组和高绕组的匝数比为1:√3/2;次边匝数相同的两个单相绕组,在空间结构上分别与倒T形原边绕组相对应、构成互成π∕2相位差的两相次边电压Uα,Uβ,分别向两侧不同的接触网分段供电。
当两馈电分段电流为Iα,Iβ时,通过电流变比和相位转换,可得原边三相电流IA=IB=IC且相位是对称的,使原边三相负荷实现了平衡,是其优点。
牵引变压器牵引变压器是将三相电力系统的电能传输给二个各自带负载的单相牵引线路。
二个单相牵引线路分别给上下行机车供电。
在理想的情况下,二个单相负载相同。
所以,牵引变压器就是用作三相变二相的变压器。
本文主要内容研究内容:本文主要的研究目的是通过对斯科特变压器的研究,加强对斯科特变压器以及AT供电方式的了解,发现其中存在的问题,进而提出将斯科特变压器发展方向。
拟从以下几个方面进行研究:1.首先介绍斯科特变压器的结构组成,分析斯科特变压器的发展背景,及其应用在牵引供电上的重大意义;2.分析AT供电方式供电的使用、效果以及存在问题,分析使用AT供电对于高速铁路的有利影响;3.介绍对斯科特变压器对于高速铁路发展的意义,重点分析其对供电的三相平衡,突出设计的主题;4.分析牵引供电中存在的制约因素,以及这些制约因素对我国牵引供电所带来的危害和影响;5.结合前文的综合论述,进行总结,同时重申论文的研究目标以及对斯科特变压器的展望。
研究方法:结合本文的特点,本文的研究会用到以下几种方法1 文献检索法本文的研究需要首先阅读大量的文献成果,才能总结出现在该论题的研究进展情况,找出以前研究的不足和避免研究内容的重复性;2比较分析法在论文中将对牵引供电方式进行分析,需要对技术指标方面进行比较,总结出不同的特点,看出牵引供电方式存在的差距。
3 理论联系实际的方法对现有线路进行分析,结合理论分析我国电气化铁路发展的现状以及AT供电方式发展的必要性。
第2章斯科特变压器AT供电方式斯科特变压器使用在自耦变压器供电方式(简称AT供电方式),自耦变压器供电方式(简称AT供电方式),是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,其中性点与钢轨相连。
自耦变压器将牵引网的供电电压提高一倍,而供给电力机车的电压仍为25千伏,如下图所示。
电力机车由接触网受电后,牵引电流一般由钢轨流回,由于自耦变压器的作用,经钢轨流回的电流,经自耦变压器绕组和正馈线流回变电所。
当自耦变压器的一个绕组流过机车电流时,其另一个绕组感应出电流供给电力机车,因此,当机车负荷电流为I时,由接触网和正馈线供给的电流为,另外的负荷电流由自耦变压器感应电流供给。
这种供电方式的牵引网阻抗很小,电压损失小,电能损耗低,供电能力大,供电距离长,可达40~50km。
由于牵引负荷电流在接触网和正馈线中的方向相反,因而对邻近的通信线路干扰很小。
斯科特变压器特点斯科特变压器实际上也是由两台单相变压器按规定连接而成。
一台单相变压器的原边绕组两端引出,分别接到三相电力系统的两相,称为座变压器;另一台单相变压器的原边绕组一端引出,接到三相电力系统的另一相,另一端到M座变压器原边绕组的中点O,称为T座变压器。
这种结线型式把对称三相电压变换成相位差为 的对称两相电压,用两相中的一相供应一边供电臂,另一相供应另一边供电臂。
M 座变压器原边绕组匝数,电压分别用 表示,两端分别接入电力系统的B ,C 相;副边绕组匝数,电压分别用 表示,向左边供电臂供电。
T 座变压器原边绕组匝数,电压分别为 ,一端接在M 座变压器原边绕组的中点O ,另一端接到接到电力系统的A 相;副边绕组匝数,电压分别为 ,向右边供电臂供电。
T 座和M 座副边匝数相同,都是 ,原边匝数不同,T 座原边匝数是M 座的 。
实际中,通常把两台单相变压器绕组装配在一个铁芯上,安装在一个油箱内。
图2-1中M 座变压器原边绕组匝数、电压分别用1ω、M 1U 表示,两端分别接入电力系统的B 、C 相;副边绕组匝数、电压分别用2ω、M 2U 表示,向左边供电臂供电。
T 座变压器原边绕组匝数、电压分别为231ω、T 1U ,一端接到M 座变压器原边绕组的中点O ,另一端接到电力系统的A 相;副边绕组匝数、电压分别为2ω、T 2U ,向右边供电臂供电。
原、副边电流如图中标示。
由图可知,T 座和M 座副边匝数相同,都是2ω;但原边匝数不相同,T 座原边匝数是M 座的23倍。
实际中,通常把两台单相变压器绕组装配在一个铁芯上,安装在一个油箱里。
图2-1 斯科特变压器原理电路图由于该牵引变电所采用直接供电方式向双线区段供电,牵引变压器类型为110/,SCOTT接线。
因此,其动力变压器及其自用电变压器可采用逆斯科特变压器,逆斯科特变压器接线如图2-2所示。
图2-2 逆斯科特接线斯科特变压器供电方式单线AT牵引网图2-3为单线AT牵引网,仅由接触网,轨道,正馈线构成。
图2-3双线AT牵引网如图2-4所示,c,d为双线AT牵引网,除了接触网,轨道,正馈线之外,还有保护线、横向连接线和(双线)横向连接线。
图2-4高压侧主接线牵引变电所高压侧(电源进线侧)的主接线设计可以分为三类:母线型接线、桥式接线、双T接线。
对于大型变电所来说,母线型接线是中心牵引变电所110kV 电源侧电气主接线的核心;通过式牵引变电所110kV电源侧一般采用桥式接线;分接式牵引变电所110kV电源侧采用双T接线。
根据题目要求及分析已知条件可知:待设计变电所为一中等容量的通过式牵引变电所。
所以我们选取结构比较简单且经济性能高的桥式接线。
桥式接线又分为内桥和外桥两种接线形式。
图2-5内桥接线图2-6 外侨接线图2-5内桥接线,连接在靠近变压器侧,其特点是适用于线路长,线路故障高,而变压器不需要频繁操作的场合,这种接线形式可以很方便地切换或投入线路。
图2-6为外桥接线,本设计采用的是外桥接线,连接在靠近线路侧,其特点是适用于输电距离较短,线路故障较少,而变压器需要经常操作的场合,这种接线方式便于变压器的投入以及切除。
为了配合牵引变电所在出现主变压器故障时备用变压器的自动投入,选择采用外桥接线便于备用变压器的投入以及故障主变压器的切除。
馈线侧主接线设计直接供电方式向双线区段供电,牵引变压器类型为直接供电方式的馈电线包括接触网(T)和正馈线(F)两根线,断路器和隔离开关均为双线;另外有中线馈出,不设断路器和隔离开关。
当牵引变压器(SCOTT接线变压器)副边线圈无中点抽头时,在变电所内还应另设自耦变压器。
一般将自耦变压器设在馈电线外侧,当相邻变电所越区供电时,可作为末端的自耦变压器使用。
双线铁路一般为四回馈电线,每两回同相馈电线设一组备用断路器,如图2-7所示。