平面向量综合练习题

合集下载

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。

5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。

三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。

7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。

8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。

四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。

10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。

答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。

3 B。

2 C。

1 D。

02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。

-4 B。

-1 C。

1 D。

43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。

1 B。

5/3 C。

3/5 D。

7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。

-4 B。

-2 C。

2 D。

45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。

充分必要条件 B。

必要不充分条件 C。

充分不必要条件 D。

既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。

$\frac{8}{3}$ B。

$\frac{26}{9}$ C。

$\frac{2}{3}$ D。

$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{6}$ B。

$\frac{\pi}{4}$ C。

$\frac{\pi}{3}$ D。

$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。

18 B。

平面向量综合题答案

平面向量综合题答案

1、已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[).,0(+∞∈++=λλ则P 点的轨迹一定通过△ABC 的(A )A .重心B .垂心C .内心D .外心3、已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( C ) A. 等腰三角形 B. 等边三角形 C. 直角三角形D. 等腰直角三角形【方法】选择基底;数量积公式4、非零向量OA a =,OB b =,若点B 关于OA 所在直线的对称点为1B ,则向量1OB OB +为( A )A 、22(a b )aa⋅ B 、2(a b )aa⋅ C 、2(a b )aa⋅ D 、(a b )a a⋅【方法】待定系数法;向量三角形法则5、如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与线段AB交于圆内一点D ,若OC xOA yOB =+,则( C ) A .01x y <+< B .1x y +>C .1x y +<-D .10x y -<+<6、定义平面向量的正弦积为||||sin 2a b a b θ⋅=,(其中θ为a 、b 的夹角),已知△ABC 中,AB BC ⋅=BC CA ⋅,则此三角形一定是( A )A .等腰三角形B . 直角三角形C . 锐角三角形D . 钝角三角形7、已知四边形ABCD的对角线相交于一点,()1,3 AC=,()3,1BD=-,则AB CD⋅的取值范围是()A.()2,0B.(]4,0C.[)0,2-D.[)0,4-【答案】C.【解析】取(0,0)A,则(1,3)C;设11(,)B x y,22(,)D x y,则21213,1.x xy y⎧-=-⎪⎨-=⎪⎩所以()()1122,3,1AB x y x y==+-,()221,3CD x y=--,求得22223131()()2222AB CD x y-+⋅=++--≥-,当1131,231,2xy⎧+=⎪⎪⎨-⎪=⎪⎩且2231,231,2xy⎧-+=⎪⎪⎨+⎪=⎪⎩时,AB CD⋅取到最小值2-,此时四边形ABCD的对角线恰好相交于一点,故选C.9、已知点OAOQOPAyxyxyxyxP(sin),0,3(,13211294:),(∠⎪⎩⎪⎨⎧≤--≤-+≥-+则设的坐标满足为坐标原点)的最大值为 510、如图,已知1||=→OA,3||=→OB,0=⋅→→OBOA点C在线段AB上,且AOC∠=030,设→→→+=OBnOAmOC,)(Rnm∈,则mn等于 311、已知→→ba,为平面向量,若→→+ba与→a的夹角为3π,→→+ba与→b的夹角为4π,则→→||||ba=【解】图解法12、已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为 2或2-13、设O 为ABC ∆的外心,且543=++ ,则ABC ∆的内角C 的值为4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA15、设P 为ABC ∆所在平面内一点,且→→→→=--025AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比等于 15【方法】图解法;向量平行四边形法则16、在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是 ]1,222[- 【方法】建立坐标系18、在ABC ∆中,点D 在线段BC 的延长线上,且→→=CD BC 3,点O 在线段CD 上(与点C 、D 不重合),若→→→-+=AC x AB x AO )1(则x 的取值范围是 1(,0)3-【方法】选择基底;向量相等19、在△ABC 中,E 、F 分别为AB ,AC 中点.P 为EF 上任一点,实数x ,y 满足PA +x PB +y PC =0.设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,1S ,2S ,3S ,记11S S λ=,22SS λ=,33S Sλ=,则当λ2·λ3取最大值时,2x +y 的值为220、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解析】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλAB AC AC AB AC AB ,选D21、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλ,选D 22、已知点G 是ABC ∆的重心,AB μλ+=(λ, R ∈μ ),若0120=∠A ,2-=⋅AC AB3223、在矩形ABCD P若→→→+=AD AB AP μλ,24、P 是ABC ∆所在平面上一点,满足→→→→=++AB PC PB PA 2,若12ABC S ∆=,则PAB ∆的面积为4【解析】由()22PA PB PC AB PB PA ++==-,得3PA PB PC CB =-=,所以PABC ,且13PA BC=,ABC∆的边AB上的高是ABP∆边AB上的高的3倍,所以13ABPABCSS∆∆=,由12,4ABC ABPS S∆∆=∴=25、已知点O为ABC∆内一点,且→→→→=++0OCOBOA则:ABC BOCS S∆∆=________3:1.【解】330OA OB OC OA OA AB OA AC OA AB AC OA AD++=++++=++=+=,即3AO AD=,又12AE AD=,所以有21,33AO AE OE AE==即,则:ABC BOCS S∆∆=3:1AE OE=:.26、已知菱形ABCD的边长为a,∠DAB=60°,2EC DE=,则.AE DB的值为32a-.27、如图,∆AOB为等腰直角三角形,1OA=,CO为斜边AB的高,点P在射线CO上,则AP⋅OP 的最小值为18-.【解析】如图所示,AP =OP -OA ,设0t OP =≥.∴()2AP ⋅OP =OP -OA ⋅OP =OP -OA ⋅OP2222112488t t t⎛⎫=-=--≥- ⎪ ⎪⎝⎭,当24t =时取等号,∴AP ⋅OP 的最小值为18-.28、在长方形ABCD 中,,,12==AD AB 点N M 、分别是CD BC 、边上的点,且._________,的取值范围是则AN AM CDCN BCBM ⋅=2),(4329、在ABC ∆中,若D 是AB 的中点,P 在线段CD 上移动,当222CP BP AP ++最小时,求:PC PD 的比值为 230、在ABC ∆中,D 是BC 上一点,→→-=DB DC 2,若2||=→AB ,3||=→AC ,则||→AD 的取值范围为 .)37,31(31、已知平面向量)(,βαβα≠满足2=α,且α与αβ-的夹角为120°,t R ∈,则βαt t +-)1( 的取值范围是 ),3[+∞.32、 设点M 是线段BC 的中点,点A 在直线BC 外,ABC ∆中BC 边上的高为h ,且216BC =||||→→→→-=+AC AB AC AB 则h 的最大值为_____________2.平面向量8.O 是ABC ∆所在平面内一点,动点P 满足(),0sin sin AB AC OP OA AB BAC Cλλ=++>,则动点P 的轨迹一定通过ABC ∆的 ( C )(A) 内心 (B) 外心 (C) 重心 (D) 垂心10.如图放置的正方形, 1.,ABCD AB A D =分别在x 轴、y 轴的正半轴(含原点) 上滑动,则OC OB ⋅的最大值是 ( D ) (A) 1 (B)2(C) 3 (D) 2ABOC第10题图13.已知正△ABC 的边长为1,点G 为边BC 的中点,点,D E 是线段,AB AC 上的动点,DE 中点为F .若AD AB λ=,(12)AE AC λ=-()λ∈R ,则FG 的取值范围为 17,24⎡⎤⎢⎥⎣⎦.14@.如图,//AB MN ,且2OA OM =,若OP xOA yOB =+,(其中,x y R ∈),则终点P 落在阴影部分(含边界) 时,21y x x +++的取值范围是 4[,4]3 .16.已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4316.已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=,(02)k <<,则cos()αβ-的最大值是 12-.14.已知向量,a b 满足:||13a =,||1b =,|5|12a b -≤,则b 在a 上的投影的取值范围是 5113[,].8.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选B 。

(完整版)平面向量练习题(附答案)

(完整版)平面向量练习题(附答案)

平面向量练习题一.填空题。

1.AC DB CD BA 等于________.2.若向量a=( 3,2), b=(0,-1),则向量2b-a的坐标是________.3.平面上有三个点A( 1,3),B( 2,2),C( 7,x),若∠ ABC =90°,则 x 的值为 ________.4.向量 a、b 知足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量 a=( 1, 2), b=( 3, 1),那么向量 2a-1b 的坐标是 _________.26.已知 A(- 1, 2),B( 2, 4), C(4,- 3), D ( x,1),若AB与CD共线,则 | BD |的值等于 ________.7.将点 A( 2, 4)按向量 a=(- 5,- 2)平移后,所获得的对应点A′的坐标是 ______.8.已知 a=(1, -2), b =(1,x), 若 a⊥b,则 x 等于 ______9.已知向量 a, b 的夹角为120,且 |a|=2,| b |=5,则( 2a- b)· a=______10.设 a=(2, - 3), b =(x,2x), 且 3a· b =4, 则 x 等于 _____11.已知 AB( 6,1), BC ( x, y), CD ( 2, 3), 且 BC ∥DA,则x+2y的值为_ ____12.已知向量a+3 b, a-4 b 分别与 7a-5 b,7a-2 b 垂直,且 |a|≠ 0,| b |≠ 0,则 a 与 b 的夹角为 ____uuur uuur uuur13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则OA OB OC 的最小值是.14.将圆x2y 2 2 按向量v=(2,1)平移后,与直线 x y0 相切,则λ的值为.二.解答题。

15.设平面三点A( 1, 0), B( 0,1), C( 2, 5).(1)试求向量 2 AB+AC的模;(2)试求向量AB 与 AC 的夹角;(3)试求与BC垂直的单位向量的坐标.16.已知向量a=( sin,cos)(R ),b=(3,3 )(1)当为什么值时,向量a、b 不可以作为平面向量的一组基底1(2)求 |a -b|的取值范围17.已知向量 a 、 b 是两个非零向量,当 a+tb(t ∈R)的模取最小值时,(1)求 t 的值(2)已知 a 、 b 共线同向时,求证b 与 a+tb 垂直18. 设向量 OA (3,1), OB ( 1,2) ,向量 OC 垂直于向量 OB ,向量 BC 平行于 OA ,试求 OD OA OC 时,OD 的坐标 .19.将函数 y= - x 2 进行平移, 使获得的图形与函数 y=x 2- x - 2 的图象的两个交点对于原点 对称 .(如图 )求平移向量 a 及平移后的函数分析式 .20.已知平面向量 a( 3, 1), b (1, 3).若存在不一样时为零的实数k 和 t,使2 2x a (t 23)b, y ka t b, 且 x y.( 1)试求函数关系式 k=f ( t )( 2)求使 f ( t )>0 的 t 的取值范围 .21 11. 02.(- 3,- 4)3.74.90°5.( 2 , 3 2 ).6.73 . 7.(- 3, 2).8.- 29.12110. 311.012. 90 ° 13.214.1或 515. ( 1)∵AB =( 0- 1, 1-0)=(- 1, 1), AC =( 2- 1, 5- 0)=( 1,5).∴ 2 AB + AC = 2(- 1, 1)+( 1, 5)=(- 1, 7).∴ |2AB + AC |= ( 1)2 72 = 50.(2)∵ | AB |=( 1)212= 2 .|AC |= 12 52 = 26 ,AB ·AC =(- 1)× 1+ 1×5= 4.AB AC4 2 13∴ cos = | AB | | AC | = 226= 13 .(3)设所求向量为m =( x , y ),则 x 2+ y 2= 1. ①又 BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m ,得 2 x + 4 y = 0.②x 2 5x -2555y5 . y5 .2 55 2 555 55)或(- 55)即由①、②,得 5 或 ∴ ( ,-,为所求.16.【解】(1)要使向量 a 、 b 不可以作为平面向量的一组基底,则向量 a 、 b 共线3sin3 cos30 tan∴3k(k Z ) k(kZ ) 故6,即当6基底时,向量 a 、b 不可以作为平面向量的一组(2) | a b | (sin 3) 2 (cos 3)2 13 2( 3 sin3cos )而 2 33 sin3cos2 3∴ 2 3 1 | a b | 2 3 1317.【解】(1)由 ( a tb) 2| b |2 t 22a bt| a |2t2a b| a |cos(是a与b的夹角)当2 | b |2| b |时 a+tb(t ∈ R)的模取最小值| a |t(2)当 a、 b共线同向时,则0,此时| b |∴ b (a tb) b a tb2b a | a ||b | | b || a | | a || b | 0∴b⊥ (a+tb)18.解:设OC(x, y),OC OB OCOB 0 2 y x0①又BC // OA,BC(x1, y2)3( y 2)( x 1) 0即:3y x7②x14,联立①、②得y710分OC(14,7),于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入 y x2,获得y k( x h) 2 .即 y x22hx h 2k ,把它与 y x 2x2联立,y x 22hx h 2k得yx 2x 2设图形的交点为(x1, y1),( x2, y2),由已知它们对于原点对称,x1x2即有:y1y2 由方程组消去y得:2x2(12h) x 2 h 2k 0.4x 1 x 21 2h且x 1x 20得h1 . 由22又将(x 1, y1 ),( x 2, y 2 )分别代入①②两式并相加,得: y 1 y 2x 12 x 22 2hx 1 x 2 h 2 k 2.0 (x 2x 1 )( x 2x 1 ) (x 1x 2 ) 1 k 2k9.a ( 1 , 9)4. 解得42 4 .xx12y y9x2得: yx 2平移公式为:4 代入 yx2 .解法二:由题意和平移后的图形与y x 2x2交点对于原点对称,可知该图形上全部点都能够找到对于原点的对称点在另一图形上,所以只需找到特点点即可.y x2x2的极点为(1, 9)1 , 924 ,它对于原点的对称点为 ( 2 4 ),即是新图形的极点 .因为新图形由 yx 2h1 0 1, k 99平移获得, 所以平移向量为22 44 以下同解法一 .20.解:( 1)xy, x y 0.即[( at 2 3)b]( k a tb)0.a b0, a 221,4k t(t23) 0,即k1t(t 23).4,b1t (t 24( 2)由 f(t)>0, 得3) 0,即t (t3)(t3)0,则3t 0或t3.45。

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题一. 平面向量综合题1. 已知向量AB = 3i - 2j,向量AC = -4i + 3j,求向量BC。

解: 由向量相减得到向量BC = AC - AB。

BC = (-4i + 3j) - (3i - 2j)= -4i + 3j - 3i + 2j= -7i + 5j所以向量BC = -7i + 5j。

2. 已知向量AB = 2i + 3j,向量AC = 5i - j,求向量BA 和向量CA。

解:向量BA = -AB = -(2i + 3j) = -2i - 3j向量CA = -AC = -(5i - j) = -5i + j所以向量BA = -2i - 3j,向量CA = -5i + j。

二. 数列函数综合题1. 给定数列 {an} 的通项公式为 an = 3n + 2,计算前5项的和 Sn。

解:数列的前5项分别为 a1 = 3(1) + 2 = 5, a2 = 3(2) + 2 = 8, a3 = 3(3) + 2 = 11, a4 = 3(4) + 2 = 14, a5 = 3(5) + 2 = 17。

前5项的和 Sn = a1 + a2 + a3 + a4 + a5 = 5 + 8 + 11 + 14 + 17 = 55。

所以前5项的和 Sn = 55。

2. 给定数列 {bn} 的通项公式为 bn = 2n^2 + n,计算前4项的乘积Pn 和后4项的平均数 Mn。

解:数列的前4项分别为 b1 = 2(1^2) + 1 = 3, b2 = 2(2^2) + 2 = 10, b3 =2(3^2) + 3 = 21, b4 = 2(4^2) + 4 = 36。

前4项的乘积 Pn = b1 * b2 * b3 * b4 = 3 * 10 * 21 * 36 = 22680。

数列的后4项分别为 b5 = 2(5^2) + 5 = 55, b6 = 2(6^2) + 6 = 90, b7= 2(7^2) + 7 = 147, b8 = 2(8^2) + 8 = 232。

(完整word版)《平面向量》综合测试题

(完整word版)《平面向量》综合测试题

《平面向量》综合测试题一、选择题1. 若A (2,-1),B (-1,3),则AB 的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (54,k k-) D.(5k , -4k ) 3. △ABC 中,BC =a , AC =b ,则AB 等于 ( ) A.a+b B.-(a+b ) C.a-b D.b-a 4.化简52(a -b )-31(2a +4b )+152(2a +13b )的结果是 ( ) A.51a ±51b B.0 C. 51a +51b D. 51a -51b 5.已知|p |=22,|q |=3, p 与q 的夹角为4π,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( )A.15B.15C. 16D.146.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥AB ,则k 的值为 ( ) A.109-B.109C.1019-D.1019 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( )A. P 在△ABC 的内部B. P 在△ABC 的外部C. P 是AB 边上的一个三等分点D. P 是AC 边上的一个三等分点 8.在△ABC 中,AB =c , BC = a , CA =b ,则下列推导中错误的是 ( ) A.若a ·b <0,则△ABC 为钝角三角形 B. 若a ·b =0,则△ABC 为直角三角形 C. 若a ·b =b ·c ,则△ABC 为等腰三角形 D. 若c ·( a +b +c )=0,则△ABC 为等腰三角形9.设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( )A.300B.450C.600D.750二、填空题11.在△ABC,4=且,8=⋅AC AB 则这个三角形的形状是 .12.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .13. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c ,则c= . 14.给出下列命题:①若a 2+b 2=0,则a =b =0;②已知A ),,(11y x B ),(22y x ,则);2,2(212121y y x x ++= ③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 . 三、解答题15.如图,ABCD 是一个梯形,CD AB ,//=, M 、N 分别是AB DC ,的中点,已知=AB a ,=AD b ,试用a 、b 表示,DC BC 和.MN16设两个非零向量e 1、e 2不共线.如果AB =e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线;⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.17.已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量AD 的坐标.18.已知二次函数f (x ) 对任意x ∈R,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2), b =(2sin x ,21),ABNMDCc =(cos2x ,1),d =(1,2)。

平面向量复习综合练习题及答案

平面向量复习综合练习题及答案
A. B. C. D.4
10、(全国2 理5)在?ABC中,已知D是AB边上一点,若 =2 , = ,则?=
(A) (B) (C) - (D) -
11、(北京理4)已知 是 所在平面内一点, 为 边中点,且 ,那么
A. B. C. D.
12、(福建理4文8)对于向量,a、b、c和实数 ,下列命题中真命题是
A.(2,14)B.(2,- )C.(-2, )D.(2,8)
答案:选B
16.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b= mq-np,下面说法错误的是( )
A.若a与b共线,则a⊙b =0B.a⊙b =b⊙a
C.对任意的 R,有( a)⊙b = (a⊙b)D.(a⊙b)2+(a·b)2= |a|2|b|2
求 。
31、已知A(2,0),B(0,2),C(cos ,sin ),且0< <
(1)若|OA+OC|= ,求OB与OC的夹角;
(2)若AC⊥BC,求tan 的值。
32、
求证:(1)A、B、D三点共线.
33、已知 之间有关系 ,其中k>0,
(1)k表示 ;(2)求 的最小值,并求此时 夹角的大小。
20.P是圆C: 上的一个动点,A( ,1),则 的最小值为______2( -1)
21.已知 =(3,2), =(-1,0),向量 + 与 -2 垂直,则实数 的值为_________1
22.在直角三角形 中, ,点 是斜边 上的一个三等分点,则
23、(江西理15)如图,在 中,点 是 的中点,过点 的直线分别交直线 , 于不同的两点 ,若 , ,则 的值为.
(1)求角 的大小;

期末专题01 平面向量综合学生版

期末专题01 平面向量综合学生版

期末专题01平面向量综合一、单选题1.(2022春·江苏泰州·高一统考期末)已知向量a =1,t ,b =3,-6 ,且a ⎳b ,则实数t =()A.-12B.-2C.12D.22.(2022春·江苏扬州·高一统考期末)已知向量a =2,4 ,b =1,x ,且a ⎳b,则x =()A.2B.-2C.8D.-83.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)已知向量|a |=2,b 在a 方向上的投影向量为-2a ,则a⋅b =()A.4B.8C.-8D.-44.(2022春·江苏南通·高一统考期末)在△ABC 中,已知D 是AB 边上一点,且3CD =CA +2CB ,则()A.AD =2BDB.AD =12DBC.AD =2DBD.AD =13AB5.(2022春·江苏南通·高一统考期末)已知向量a ,b 满足a +b = a -b =233a,则a +b ,a=()A.5π6B.2π3C.π3D.π66.(2022春·江苏徐州·高一统考期末)在△ABC 中,BD =2DA ,若CB =λCA +μCD ,则λμ的值为()A.-23B.-32C.23D.327.(2022春·江苏无锡·高一统考期末)已知△ABC 的外接圆圆心为O ,且2AO =AB +AC ,|OA |=|AB|,则向量BA 在向量BC上的投影向量为()A.14BCB.34BCC.12BCD.-34BC8.(2022春·江苏无锡·高一统考期末)已知向量a =(1,0),b =(1,1),若a +λb 与λa +b共线,则实数λ的值为()A.-1B.1C.±1D.09.(2022春·江苏常州·高一统考期末)已知非零向量a ,b 满足b =2a ,且a +b ⊥a ,则a +b 与b 的夹角为()A.π6 B.π3C.2π3 D.5π610.(2022春·江苏盐城·高一统考期末)在△ABC 中,AB =AC =2,∠A =120°,点M 满足AM =λAB+μAC ,λ+2μ=1,则AM 的最小值为()A.217B.2114C.2D.111.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知i ,j 是平面内互相垂直的单位向量,且a=i +2j ,b =-3i +4j ,则a 与b 夹角余弦值为()A.55B.12C.58D.1512.(2022春·江苏镇江·高一统考期末)某人向东偏北60°方向走50步,记为向量a;向北偏西60°方向走100步,记为向量b ;向正北方向走200步,记为向量c .假设每步的步长都相等,则向量c可表示为()A.23a +bB.a +23bC.2a +3bD.3a+2b 13.(2022春·江苏宿迁·高一统考期末)在△ABC 中,BO =2OC ,过点O 的直线分别交直线AB ,AC 于M ,N两个不同的点,若AB =mAM ,AC =nAN,其中m ,n 为实数,则m 2+4n 2的最小值为()A.1B.4C.92D.514.(2022春·江苏南通·高一统考期末)已知两个单位向量a ,b 的夹角为60°,若2a -b +c =0,则c=()A.3B.7C.3D.115.(2022春·江苏南通·高一金沙中学校考期末)如图,矩形ORTM 内放置5个边长均为1的小正方形,其中A ,B ,C ,D 在矩形的边上,且E 为AD 的中点,则AE +BC ⋅BD=()A.-7B.-5C.5D.7二、多选题16.(2022春·江苏南京·高一南京市中华中学校考期末)如果a ,b是两个单位向量,则下列结论中正确的是()A.a =bB.a=±bC.a 2=b2 D.a=b17.(2022春·江苏常州·高一统考期末)设向量a ,b 满足a =b =1,且a-3b =13,则下列结论正确的是( ).A.a ,b =13πB.a +b =12C.a -b=3D.a+3b =718.(2022春·江苏徐州·高一统考期末)设向量a ,b 满足a +b =a -b=1,则()A.a 与b的夹角为60°B.a 2+b 2=1C.a +2b ⋅2a +b=2D.a ⊥b19.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)下列说法错误的是()A.零向量没有方向B.共线向量是同一条直线上的向量C.若向量e 1 与向量e 2 共线,则有且只有一个实数λ,使得e1=λe 2D.|a ⋅b |≤|a |⋅|b |20.(2022春·江苏南通·高一统考期末)向量是近代数学中重要和基本的概念之一,它既是代数研究对象,也是几何研究对象,是沟通代数与几何的桥梁.若向量a ,b 满足a = b =2,a +b=23,则()A.a ⋅b=-2 B.a 与b 的夹角为π3C.a -b <a +bD.a -b 在b 上的投影向量为12b21.(2022春·江苏泰州·高一统考期末)如图,已知菱形ABCD 的边长为6,E 为BC 中点,CF =2FD,下列选项正确的有()A.EF =12AD -23ABB.若∠BAD =60°,则AF=213C.若∠BAD =60°,则AC ⋅EF=9 D.-21<AE ⋅EF<-922.(2022春·江苏苏州·高一校考期末)如图所示,四边形ABCD 为梯形,其中AB ⎳CD ,AB =2CD ,M ,N 分别为AB ,CD 的中点,则结论正确的是()A.AC =AD +12ABB.CM =12CA +12CBC.MN =AD +14ABD.BC =AD +12AB23.(2022春·江苏常州·高一校联考期末)如图所示设Ox ,Oy 是平面内相交成θθ≠π2 角的两条数轴,e 1 ,e 2 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系,若OM =x e 1 +y e 2,则把有序数对x ,y 叫做向量OM 的反射坐标,记为OM =x ,y .在θ=23π的反射坐标系中,a =1,2 ,b =2,-1 .则下列结论中,错误的是()A.a -b=-1,3B.a=3C.a ⊥bD.a 在b 上的投影向量为-3714b 24.(2022春·江苏宿迁·高一统考期末)下列说法中错误的是()A.若a ∥b ,b ∥c ,则a ∥cB.若a ⋅b =a ⋅c .且a≠0,则b =cC.已知|a |=6,|b |=3,a ⋅b =12,则a 在b 上的投影向量是43bD.三个不共线的向量OA ,OB ,OC 满足OA ⋅AB |AB |+CA |CA | =OB ⋅BA |BA |+CB|CB |=OC ⋅BC |BC |+CA|CA |=0,则O 是△ABC 的外心25.(2022春·江苏淮安·高一统考期末)我国古代数学家早在几千年前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为作注时给出的,被后人称为赵爽弦图.赵爽弦图是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若直角三角形的直角边的长度比为1:2,则下列说法正确的是()A.5AE =2DCB.AC ⊥EGC.AE ⋅DC =45BC2 D.AF =35AB +45AD26.(2022春·江苏南通·高一金沙中学校考期末)直角△ABC 中,斜边AB =2,P 为△ABC 所在平面内一点,AP =12sin 2θ⋅AB +cos 2θ⋅AC(其中θ∈R ),则()A.AB ⋅AC的取值范围是(0,4) B.点P 经过△ABC 的外心C.点P 所在轨迹的长度为2D.PC ⋅(PA +PB )的取值范围是-12,0三、填空题27.(2022春·江苏南通·高一统考期末)已知向量a =0,5 ,b =1,2 ,则a 在b 上的投影向量的坐标为.28.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,若AP ⋅AC=6,则AP =.29.(2022春·江苏宿迁·高一统考期末)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 平行,则实数k =.30.(2022春·江苏无锡·高一统考期末)点P 是边长为2的正三角形ABC 的三条边上任意一点,则|PA +PB+PC|的最小值为.31.(2022春·江苏南通·高一金沙中学校考期末)如图,正八边形ABCDEFGH 中,若AE =λAC+μAFλ,μ∈R ,则λ+μ的值为.32.(2022春·江苏南通·高一统考期末)如图,P 为矩形ABCD 边AB 中点,M ,N 分别在线段EF 、CD 上,其中AB =4,BC =3,AE =BF =1,若PM ⋅PN =4,则PM +PN的最小值为.四、解答题33.(2022春·江苏扬州·高一期末)在平面直角坐标系中,已知向量a (1,1),b (2, 1).(1)求|3a -b|;(2)若m =2a -b ,n =ta +b ,m ⊥n ,求实数t 的值.34.(2022春·江苏常州·高一校联考期末)已知向量a=(2,-1),b =(1,x ).(Ⅰ)若a ⊥(a +b),求|b |的值;(Ⅱ)若a +2b =(4,-7),求向量a 与b夹角的大小.35.(2022春·江苏常州·高一统考期末)已知a ,b 为平面向量,且a =1,-2 .(1)若a ⊥b,且b =25,求向量b 的坐标;(2)若b =-3,2 ,且向量ka -b 与a +2b 平行,求实数k 的值.36.(2022春·江苏连云港·高一统考期末)已知向量a ,b 满足a =1,b =3,a -b=3,-1 .求:(1)a +b ;(2)a +b 与a -b的夹角.37.(2022春·江苏苏州·高一江苏省昆山中学校考期末)已知平面向量a ,b ,满足a=2,b =1.(1)若a +b ⋅b =0,求向量a 与b的夹角;(2)若a ⋅b =32,函数f x =sin xa +cos xb ,求f π8的值.38.(2022春·江苏南通·高一统考期末)已知向量a =3,1 ,a ⋅b=4.(1)当b =4,求a +b ;(2)求b 的最小值,并求此时向量a ,b 的夹角大小.39.(2022春·江苏南通·高一统考期末)已知向量a=2cos x ,sin x +2sin θ ,b =2sin x ,-cos x +2cos θ .(1)若a ∥b ,求cos x +θ ;(2)若θ=π4,函数f x =a ⋅b x ∈0,π ,求f x 的值域.40.(2022春·江苏无锡·高一统考期末)平面直角坐标系中,O 为坐标原点,已知e 1 ,e 2为两个夹角成60°的单位向量,OA =e 1 +3e 2 ,OB =5e 1 +e 2 .(1)求|AB |;(2)设OC =t e 1 ,问是否存在实数t ,使得△ABC 是以AB 为斜边的直角三角形?若存在,求t 的值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列命题中正确的是( )A.-=OA→ OB → AB → B.+=0AB→ BA → C .0·=0AB → D.++=AB→ BC → CD → AD → 考点 向量的概念题点 向量的性质答案 D解析 起点相同的向量相减,则取终点,并指向被减向量,-=;,是一对OA→ OB → BA → AB → BA → 相反向量,它们的和应该为零向量,+=0;0·=0.AB → BA → AB→ 2.已知A ,B ,C 三点在一条直线上,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为( )A .-13B .9C .-9D .13考点 向量共线的坐标表示的应用题点 已知三点共线求点的坐标答案 C解析 设C 点坐标(6,y ),则=(-8,8),=(3,y +6).AB → AC→ ∵A ,B ,C 三点共线,∴=,∴y =-9.3-8y +683.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,=(1,-2),=(2,1),AB → AD→ 则·等于( )AD→ AC → A .5 B .4 C .3 D .2考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 A解析 ∵四边形ABCD 为平行四边形,∴=+=(1,-2)+(2,1)=(3,-1),∴·AC → AB → AD → AD→ =2×3+(-1)×1=5.AC→4.(2017·辽宁大连庄河高中高一期中)已知平面向量a =(1,-3),b =(4,-2),a +λb 与a 垂直,则λ等于( )A .-2 B .1C .-1D .0考点 向量平行与垂直的坐标表示的应用题点 已知向量垂直求参数答案 C解析 a +λb =(1+4λ,-3-2λ),因为a +λb 与a 垂直,所以(a +λb )·a =0,即1+4λ-3(-3-2λ)=0,解得λ=-1.5.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( )A .2 B .4C .6D .12考点 平面向量模与夹角的坐标表示的应用题点 利用坐标求向量的模答案 C解析 因为a ·b =|a |·|b |·cos 60°=2|a |,所以(a +2b )·(a -3b )=|a |2-6|b |2-a·b=|a |2-2|a |-96=-72.所以|a |=6.6.定义运算|a ×b |=|a |·|b |·sin θ,其中θ是向量a ,b 的夹角.若|x |=2,|y |=5,x·y =-6,则|x ×y |等于( )A .8B .-8C .8或-8D .6考点 平面向量数量积的概念与几何意义题点 平面向量数量积的概念与几何意义答案 A解析 ∵|x |=2,|y |=5,x·y =-6,∴cos θ===-.x·y|x|·|y|-62×535又θ∈[0,π],∴sin θ=,45∴|x ×y |=|x |·|y |·sin θ=2×5×=8.457.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设=a ,=b ,=x a +y b ,则(x ,y )为( )AB → AC → AF→A.B.(12,12)(23,23)C.D.(13,13)(23,12)考点 平面向量基本定理的应用题点 利用平面向量基本定理求参数答案 C解析 令=λ.BF → BE→ 由题可知,=+=+λAF → AB → BF → AB → BE→=+λ=(1-λ)+λ.AB → (12AC → -AB → )AB → 12AC → 令=μ,CF → CD → 则=+=+μAF → AC → CF → AC → CD →=+μ=μ+(1-μ).AC → (12AB → -AC → )12AB → AC → 因为与不共线,AB→ AC → 所以Error!解得Error!所以=+,故选C.AF → 13AB → 13AC→ 二、填空题8.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________.考点 平面向量数量积的应用题点 已知向量夹角求参数答案 238解析 由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos60°-5×4=0,解得m =.2389.若菱形ABCD 的边长为2,则=________.|AB → -CB → +CD → |考点 向量加、减法的综合运算及应用题点 利用向量的加、减法化简向量答案 2解析 ====2.|AB →-CB → +CD → ||AB → +BC → +CD → ||AC → +CD → ||AD → |10.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=,则|b |=________.10考点 平面向量数量积的应用题点 利用数量积求向量的模答案 32解析 因为向量a ,b 夹角为45°,且|a |=1,|2a -b |=.10所以=,4a 2+b 2-4a ·b 10化为4+|b |2-4|b |cos 45°=10,化为|b |2-2|b |-6=0,2因为|b |≥0,解得|b |=3.211.已知a 是平面内的单位向量,若向量b 满足b·(a -b )=0,则|b |的取值范围是________.考点 平面向量数量积的应用题点 利用数量积求向量的模答案 [0,1]解析 b·(a -b )=a·b -|b |2=|a||b |cos θ-|b |2=0,∴|b |=|a |cos θ=cos θ (θ为a 与b 的夹角,θ∈),[0,π2]∴0≤|b |≤1.三、解答题12.(2017·四川宜宾三中高一月考)如图,在△OAB 中,P 为线段AB 上一点,且=x +y .OP → OA → OB → (1)若=,求x ,y 的值;AP→ PB → (2)若=3,||=4,||=2,且与的夹角为60°,求·的值.AP → PB → OA → OB → OA → OB → OP→ AB → 考点 平面向量数量积的概念与几何意义题点 平面向量数量积的概念与几何意义解 (1)若=,则=+,AP → PB → OP → 12OA → 12OB→ 故x =y =.12(2)若=3,AP → PB → 则=+,OP → 14OA → 34OB → ·=·OP → AB → (14OA → +34OB →)(OB →-OA → )=-2-·+214OA → 12OA → OB → 34OB → =-×42-×4×2×cos 60°+×22141234=-3.13.若=(sin θ,-1),=(2sin θ,2cos θ),其中θ∈,求||的最大值.OA → OB → [0,π2]AB→ 考点 平面向量模与夹角的坐标表示的应用题点 利用坐标求向量的模解 ∵=-=(sin θ,2cos θ+1),AB→ OB → OA → ∴||=AB→ sin2θ+4cos2θ+4cos θ+1=3cos2θ+4cos θ+2=,3(cos θ+23)2+23∴当cos θ=1,即θ=0时,||取得最大值3.AB→ 四、探究与拓展14.在△ABC 中,点O 在线段BC 的延长线上,且||=3||,当=x +y 时,BO → CO → AO → AB → AC→ x -y =________.考点 向量共线定理及其应用题点 利用向量共线定理求参数答案 -2解析 由||=3||,得=3,BO → CO → BO → CO→ 则=,BO → 32BC → 所以=+=+=+(-)AO → AB → BO → AB → 32BC → AB → 32AC→ AB → =-+.12AB → 32AC → 所以x =-,y =,所以x -y =--=-2.1232123215.已知=(1,0),=(0,1),=(t ,t )(t ∈R ),O 是坐标原点.OA → OB → OM→ (1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,·取到最小值?并求出最小值.MA→ MB → 考点 向量共线的坐标表示的应用题点 利用三点共线求参数解 (1)=-=(-1,1),AB→ OB → OA → =-=(t -1,t ).AM→ OM → OA → ∵A ,B ,M 三点共线,∴与共线,AB→ AM → ∴-t -(t -1)=0,∴t =.12(2)∵=(1-t ,-t ),=(-t,1-t ),∴·=2t 2-2t =22-,故当t =时,MA → MB → MA → MB → (t -12)1212→MB→1 2·取得最小值-. MA。

相关文档
最新文档