七年级数学上册第四章知识点练

合集下载

新浙教版七年级上册数学第四章代数式知识点及典型例题

新浙教版七年级上册数学第四章代数式知识点及典型例题

新浙教版七年级上册数学第四章《代数式》知识点及典型例题关于代数式分类的拓展 代数式用字母表示数 代数式如用“a+b=b+a ”表示加法的交换律就非常地简洁明了 意义:能把数和数量关系一般化地、简明地表示出来举例 概念:由数、表示数的字母和运算符号组成的数学表达式称为代数式,这里的运算是指加、减、乘、除、乘方和开方。

特别规定:单独一个数或者一个字母也称为代数式 整式 合并同类项 同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项 单项式 意义:代数式可以简明地、具有普遍意义地表示实际问题中的量 列代数式:特别注意找规律这种类型的题目 代数式的值 直接代入法 整体代入法 多项式 定义:由数与字母或字母与字母相乘组成的代数式叫做单项式。

特别规定:单独一个数或一个字母也叫单项式 系数:单项式中的数字因数叫做这个单项式的系数 次数:一个单项式中,所有字母的指数的和叫做这个单项式的的次数 多项式定义:由几个单项式相加组成的代数式叫做多项式 多项式的项:在多项式中,每个单项式叫做多项式的项 多项式的次数:次数最高的项的次数就是这个多项式的次数 常数项:不含字母的项叫做常数项 多项式的命名:几次几项式 合并同类项:把多项式中的同类项合并为一项的过程叫做合并同类项合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母与字母的指数不变 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前是“—”,把括号和它前面的“—”号去掉,括号里各项都改变符号 整式加减的步骤:先去括号,再合并同类项整式的加减 关于整式加减的简单应用:如求图形的面积等 ⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧)(被开方数含有字母无理式分式多项式单项式整式有理式代数式将考点与相应习题联系起来考点一、关于代数式的书写是否正确的问题 1、下列代数式书写规范的是( ) A .512ab 2 B .a b ÷c C .a-cbD .m ·3 2、下列代数式书写规范的是( ) A .a ÷3 B .8×a C .5a D .212a 考点二、关于去括号的问题 1、下列运算正确的是( )A .-3(x-1)=-3x-1B .-3(x-1)=-3x+1C .-3(x-1)=-3x-3D .-3(x-1)=-3x+3 2、下列去括号中错误的是( ) A .2x 2-(x-3y)= 2x 2-x+3y B .13x 2+(3y 2-2xy)=13x 2-2xy +3y 2 C .a 2-4(-a+1)= a 2-4a-4 D .- (b-2a)-(-a 2+b 2)= - b+2a+a 2-b 23、下列去括号,错误的有( )个① x 2+(2x-1)= x 2+2x-1,② a 2-(2a-1)= a 2-2a-1,③ m-2(n-1)=m-2n-2,④ a-2(b-c)=a-2b+c A. 0 B. 1 C. 2 D. 34、去括号:-[-(1-a)-(1-b )]=考点三、关于代数式中与概念有直接关系的题目1、单项式中-27πa 2b 的系数和次数分别是( ) A .-27,4 B .27,4 C .-27π,3 D .27π,32.下列代数式中,不是整式的是( ) A.13a 2+12a+1 B. a 2+1b C. m+12 D. 2006x +y 3.下列说法正确的是( ) A. x 2-3x 的项是x 2,3x B.3a b 是单项式 C. 12,πa ,a 2+1都是整式 D. 3a 2bc-2是二次二项式 4、若m ,n 为自然数,则多项式x m-y n-2m+n的次数是( )A. mB. nC. m+nD. m ,n 中较大的数 5、下列各项式子中,是同类项的有( )组 ① -2xy 3与5y 3x ,② -2abc 与5xyz ,③ 0与136,④ x 2y 与xy 2,⑤ -2mn 2与mn 2,⑥ 3x 与-3x 2A. 2B. 3C. 4D. 56、若A 和B 都是三次多项式,则A+B 一定是( )A. 六次多项式B. 次数不高于三次的多项式或单项式C. 三次多项式D. 次数不低于三次的多项式或单项式0或27、已知-6a 9b 4和5a 4m b n是同类项,则代数式12m+n-10的值为 8、多项式2b-14ab 2-5ab-1中次数最高的项是 ,这个多项式是 次 项式 9、若2a 2m-5b 与mab 3n-2的和是单项式,则m 2n 2=考点四、关于代数式求值的问题,主要有先化简再直接代入、整体代入、稍作变形后再代入(把整式的加减也归入这一类)1、若代数式x2+3x-3的值为9,则代数式3x2+9x-2的值为()A、0B、24C、34D、442、已知a-b=2,a-c=12,则代数式(b-c)2+3(b-c)+94的值为()A、-32B、32C、0D、973、若a+b=3,ab=-2,则(4a-5b-3ab)-(3a-6b+ab)=4、已知a2-ab=15,b2-ab=10,则代数式3a2-3b2的值为5、先化简,再求值-12a-3(2a-23a2) -6(32a+13a2) -1,其中a=-26、先化简,再求值(1)3a2-5b2+12ab-5a2-b2-12ab+4a2,其中a=112,b= -12(2)5(x-y)3-3(x-y)2+7(x-y)-5(x-y)3+(x-7)2-5(x-y),其中x-y=1 37、有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1,小明把x=12错抄成x= -12,但他的计算结果也是正确的,请你帮他找出原因。

人教版(2024数学七年级上册第四章 小结与复习

人教版(2024数学七年级上册第四章 小结与复习
2. 单项式的系数:单项式中的数字因数叫作这个单项 式的系数.
3. 单项式的次数:一个单项式中,所有字母的指数的 和叫作这个单项式的次数.
4. 多项式:几个单项式的_和___叫作多项式. 5. 其中,每个单项式叫作多项式的项,不含字母 的项叫作 常数项 . 6. 多项式的次数:多项式里次数最高项的次数, 叫做这个多项式的次数. 7. 整式:___单__项__式__与__多__项__式____统称整式.
二次二项式
返回
考点2:同类项
例2 若 5xm+1y2 与 -x6yn 是同类项,则 m + n 的值为 ( B )
A. 6
B. 7
C. 8
D. 9
分析:由题意,得 m + 1 = 6,n = 2, 所以 m = 5,n = 2, 所以 m + n = 7.
练一练
2. (平凉期末) 如果单项式 3xa+3y2 与单项式 -4xyb-1 的
D. (-c) - (b - a) = -c - b + a = a - b - c,
练一练 3. (台江期末) 计算:
化简:
解:原式
= -x - y.
返回
考点4:整式的加减运算与求值
例4 先化简,再求值:6y3 + 4(x3 - 2xy) - 2(3y3 - xy), 其中 x = -2,y = 3. 解:原式 = 6y3 + 4(x3 - 2xy) - 2(3y3 - xy)
是同类项;(2) 只有同类项才能合并,如 x2+x3 不能合并.
三、整式的加减 一般地,几个整式相加减,如果有括号就先
_去__括__号___,然后再__合__并__同__类__项___. + (a - b) = a - b - (a - b) = -a + b

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。

将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。

将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。

结论:射线是直线的一部分,线段是射线和直线的一部分。

2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理过两点有且只有一条直线,简称两点确定一条直线。

4、线段的比较线段的比较有叠合比较法和度量比较法。

5、线段公理连接两点的线段是最短的,叫做这两点的距离。

6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。

例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。

2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。

3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。

二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。

角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)一、选择题1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南D解析:D【分析】 如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .2.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .3.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π C解析:C【分析】 根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.6.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1A解析:A【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④B 解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.8.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.9.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+ 4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.12.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________. 【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.15.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.( 取3.14)16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.18.若∠B 的余角为57.12°,则∠B=_____°_____’_____”5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.3或4或6【分析】分三种情况下:①∠AOP =35°②∠AOP =20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.解析:(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE =180°,∴∠COE =180°-110°=70°,(3)∵∠COE =70°,OD 平分∠COE ,∴∠COD =35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 24.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.25.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=.故答案为:12,9,23,6,MC,9,6,15.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM,线段的比得出MC是解题关键.26.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.27.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.28.如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=°,∠COB+∠BOD=①所以∠AOC=.②因为∠AOC=40°,所以∠BOD=°.在上面①到②的推导过程中,理由依据是:.解析:90,90,∠BOD,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB=90 °,∠COB+∠BOD=90 ° -﹣﹣﹣①所以∠AOC=∠BOD .﹣﹣﹣﹣②-因为∠AOC=40°,所以∠BOD=40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.。

部编版数学七年级上册23-第四章点、线、面、体

部编版数学七年级上册23-第四章点、线、面、体

解析 (1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶 点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点. (2)例如:三棱锥被切去一块,如图所示,所得到的几何体有5个面、9条棱、6个顶点.
(3)f+v-e=2.
10.(2019甘肃兰州三校联考,2,★☆☆)如图4-1-2-9,将直角三角形绕一条边所在直 线旋转一周后形成的几何体不可能是 ( )
图4-1-2-9 答案 C 将直角三角形绕较长直角边所在直线旋转一周后形成的几何体如图1.
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体如图2.
将直角三角形绕斜边所在直线旋转一周后形成的几何体如图3.故选C.
形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个
三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过
程中,能形成一个球体.其中正确的是 ( )
A.①②③④ B.①②③
C.②③④
D.①③④
答案 B ①一点在平面内运动的过程中,能形成一条线段是正确的;
②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;
,面与面相交都是曲线的是
.
解析 利用构成立体图形的面的特点解题,在纸上作出几何体的示意图,观察组成 每个几何体的各个平的面或曲的之间的关系,得出面与面的交线的情况.
答案 (1)①②⑤;⑥;③④ (2)⑥;④;③;⑤;①② (3)①②⑤;③④
经典例题全解
题型 平面图形旋转成几何体 例 图4-1-2-2中的几何体分别是由图4-1-2-1中哪个平面图形绕虚线旋转后得到的?
柱,请回答下列问题:
(1)这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状、面积完全相

(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)

(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)

一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。

其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑? 解析:蜗牛需41天才爬到树顶不下滑. 【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答. 【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40° 【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠,∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =. (1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =,∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠,即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠,即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.11.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.12.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。

人教版(2024新版)七年级数学上册第四章习题练课件:4.1 课时2 多项式及整式

人教版(2024新版)七年级数学上册第四章习题练课件:4.1 课时2 多项式及整式

项数是3,多项式的次数为多项式中次数最高的项的次数,故次数为
3 + 5 = 8.
4.教材P94T3变式多项式4 4
− 2 3 2
+
3 3
− 5 −
1
中,它的项分别为
2





_____,________,_____,_______,____,这个多项式为____次____项式.
4.1 整式
课时2 多项式及整式
习题练
知识点1 多项式的概念
1.[2024廊坊期末]下列各式中是多项式的是( D )
1
A.
2
B.2
1
C.
2
D. 2 − 2
知识点2 多项式的项与次数
2.[2024深圳龙华区期末]多项式− 2 + 3 − 5的二次项系数是( B
A.− 2
B.−1
C.3
项的系数互为相反数,所以 = −3.故 + = −3 + 4 = 1.
素养提升
11.抽象能力教材P94T9变式[2024咸阳实验中学期中]在某次综合与实践活
动中,小聪同学了解到鞋号(码)与脚长 mm 的对应关系如表:
鞋号/码

33
34
35
36
37

脚长/mm

215
220
225
230
235
2 + + ,共2个;整式有6,,1,3, − ,
2 + + ,共6个.故D项的说法正确.
9.如果一个多项式的各项次数都相同,那么这个多项式叫作齐次多项
式.如 3 + 3 2 + 4 + 2 3 是3次齐次多项式.若 +3 2 − 6 3 2 是齐

人教版七年级上册数学 第四章 几何图形初步 习题

人教版七年级上册数学 第四章 几何图形初步 习题

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形基础题知识点1 认识立体图形1.(丽水中考)下列图形中,属于立体图形的是(C)A B C D2.下列物体中,最接近圆柱的是(C)3.下面几何体中,既不是柱体,又不是锥体的是(C)4.请写出图中的立体图形的名称.(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.5.如图,把下列物体和与其相似的立体图形连接起来.解:如图.知识点2 认识平面图形6.以下图形中,不是平面图形的是(C)A.线段B.角C.圆锥D.圆7.【关注社会生活】如图是交通禁止驶入标志,组成这个标志的几何图形有(A)A.圆、长方形B.圆、线段C.球、长方形D.球、线段8.如图所示的是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形9.如图是由平面图形正方形和半圆构成的.10.下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.易错点忽视柱体上、下底面“平行且相等”这一条件而致错11.如图所示的立体图形中,不是柱体的是(D)中档题12.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中立体图形有m个,平面图形有n 个,则m-n的值为(D)A.3B.2C.1D.013.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中三角形有4个,圆有6个.14.在如图所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.15.指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.16.如图,有7种图形,请你选用这7种图形中的若干种(不少于两种)构造一幅画,并用一句话说明你的构想是什么?举例:如图,左框中就是一个符合要求的图案,请你在右框中画出一个与这个不同的图案,并加以说明.一辆汽车解:答案不唯一,略.综合题17.【注重动手操作】动手剪拼:下边的三幅图都是不规则图形,你能把它们各剪一刀,分成两部分,然后拼成正方形吗?试试看. 解:如图.第2课时立体图形与平面图形的相互转化基础题知识点1 从不同的方向观察立体图形1.(绍兴中考)如图的几何体是由五个相同的小立方体搭成,它从正面看到的平面图形是(A)A B C D2.有一种圆柱体茶叶筒如图所示,从正面看得到的平面图形是(D)3.如图所示的几何体,从左面看得到的平面图形是(B)A B C D4.如图是小李书桌上放的一本书,从上往下看得到的平面图形是(A)A B C D5.图中的两个圆柱体底面半径相同而高度不同,关于从不同的方向看这两个圆柱体得到的平面图形,说法正确的是(B)A.从正面看得到的平面图形相同B.从上面看得到的平面图形相同C.从左面看得到的平面图形相同D.从各个方向看得到的平面图形都相同6.下列几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2 立体图形的展开图7.如图所示的立体图形,它的展开图是(C)A B C D8.(常州中考)下列图形中,是圆锥的侧面展开图的是(B)9.(陕西中考)如图是一个几何体的表面展开图,则该几何体是(C)A.正方体B.长方体C.三棱柱D.四棱锥10.(无锡中考)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)中档题11.(广安中考)如图所示的几何体,从上面看得到的平面图形是(D)12.(龙东中考)由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是(A)13.(绵阳中考)把图中的三棱柱展开,所得到的展开图是(B)14.(教材P123习题T10变式)(河南中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我15.(连云港中考)由6个大小相同的正方体搭成的几何体如图所示,比较它从三个不同方向看到的平面图形的面积,则(C)A.一样大B.从正面看到的平面图形的面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小16.如图是由一些相同的小正方体搭成的几何体从三个不同方向看到的图形,搭成这个几何体的小正方体的个数是4.17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.综合题18.如图是一个长方体的展开图,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在长方体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.小专题(十一)正方体的展开与折叠——教材P122习题T7、P123习题T10的变式与应用类型1 判断正方体的展开图教材母题:(教材P122习题T7)如图,这些图形都是正方体的展开图吗?如果不能确定,折一折,试一试.你还能再画出一些正方体的展开图吗?解:第一排第3个图不能,其余都能折成正方体.正方体的展开图可总结为如下图所示“一四一”“二三一”“三三”“二二二”四种类型,共11种情况. 1.一四一型2.二三一型3.三三型4.二二二型若小正方形摆成的平面图形呈“”“”“”型,则不能折成正方体.若出现“”型,则另两面必须在两侧.1.(长春中考)下列图形中,可以是正方体表面展开图的是(D)A B C D2.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3B.3或4或5C.4或5或6D.1或2或6类型2 找正方体的相对面或相邻面3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利4.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7B.8C.9D.104.1.2 点、线、面、体基础题知识点1 点、线、面、体1.面与面相交,形成的是(B)A.点B.线C.面D.体2.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于的实际运用是(B)A.点动成线B.线动成面C.面动成体D.都不对3.下面现象能说明“面动成体”的是(A)A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹4.长方体有6个面,12条棱,8个顶点;圆柱有3个面,其中有2个平面,1个曲面.5.如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.知识点2 由平面图形旋转而成的立体图形6.(长沙中考)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(D)7.【易错】现有一个长为4 cm,宽为3 cm的长方形,绕它的一边旋转一周,得到的几何体的体积是36π cm3或48π cm3.中档题8.(教材P120练习T2变式)将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是(B)A B C D9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(B)A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.下面图1是正方体木块,若用不同的方法,把它切去一块,可以得到如图2、图3、图4、图5不同形状的木块.图1 图2 图3 图4 图5(1)我们知道,图1的正方体木块有8个顶点,12条棱,6个面.请你观察,将图2、图3、图4、图5中木块的顶点数a、棱数b、面数c填入下表:图顶点数a 棱数b 面数c1 8 12 62 6 9 53 8 12 64 8 13 75 10 15 7(2)观察这张表,请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系,这种数量关系是:a+c -b=2(用含a,b,c的一个等式表示).4.2 直线、射线、线段第1课时直线、射线、线段基础题知识点1 直线1.下列可近似看作直线的是(D)A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列图示中,直线表示方法正确的有(D)A.①②③④B.①②C.②④D.①④3.如图,下列说法错误的是(D)A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.5.如图,完成下列填空:(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线 b上,在直线 a外;(3)点A既在直线a上,又在直线b上.知识点2 射线6.(教材P126练习T1变式)如图所示,A,B,C是同一直线上的三点,下面说法正确的是(C)A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线7.如图,能用O,A,B,C中的两个字母表示的不同射线有7条.知识点3 线段8.下列表示线段的方法中,正确的是(B)A.线段AB.线段ABC.线段abD.线段Ab9.按语句“画出线段PQ的延长线”,画图正确的是(A)10.(柳州中考)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条11.如图,直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们表示出来.解:直线有3条,分别为直线AB,直线AC,直线BC;线段有6条,分别为线段AB,线段AC,线段AD,线段BD,线段CD,线段BC;射线有14条,可以表示的射线有8条,分别为射线AB,射线AC,射线BA,射线BC,射线CA,射线CB,射线DB,射线DC.易错点三个点的位置不确定,考虑不周全12.平面上有三个点,可以确定直线的条数是1条或3条.中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)14.下列关于作图的语句中,一定正确的是(D)A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm15.延长线段AB到点C,下列说法中正确的是(B)A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线AB的延长线上16.如图,下列叙述不正确的是(C)A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线17.(教材P126练习T2变式)如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC,BD相交于点F.解:如图所示.18.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?解:(1)是一条射线,表示为射线OB.(2)负数和零(非正数).(3)线段,表示为线段AB.19.【易错】往返于甲、乙两地的客车,中途有三个站(如图).其中每两站的票价不同.问:(1)有多少种不同的票价?(2)要准备多少种车票?解:根据线段的定义:可知图中的线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条. (1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票. 综合题 20.如图:(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时 比较线段的长短基础题 知识点1 用尺规作一条线段等于已知线段 1.尺规作图的工具是 (D )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规 2.已知:线段a ,b.求作:线段AB ,使得AB =a +2b. 小明给出了四个步骤: ①在射线AM 上画线段AP =a ; ②则线段AB =a +2b ;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为正确的顺序是(B)A.①②③④B.④①③②C.④③①②D.④②①③3.如图,已知线段a,b,作一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)解:如图,AC即为所求线段.知识点2 线段的长短比较及和差4.如图所示,比较线段a和线段b的长度,结果正确的是(B)A.a>bB.a<bC.a=bD.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法(A)A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC中,比较线段AC和AB长短的方法可行的有(C)①凭感觉估计;②用直尺度量出AB和AC的长度;③用圆规将线段AB叠放到线段AC上,观察点B的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3个D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①AB=12AC ;②AB=BC ;③AC=2AB ;④AB+BC =AC ,其中能表示点B 是线段AC 的中点的有(C )A.1个B.2个C.3个D.4个 8.如图,点O 是线段AB 的中点,点C 在线段OB 上,AC =6,CB =3,则OC 的长等于(C )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若CB =2,则线段AB 的长为(C )A.6B.10C.14D.18 10.如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.易错点 由于点的位置不确定而出现漏解11.已知A ,B ,C 是直线MN 上的点,若AC =8 cm ,BC =6 cm ,点D 是AC 的中点,则BD 的长等于10 cm 或2 cm. 中档题12.已知线段AB =2 cm ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm13.【易错】已知点A ,B ,C 在同一条直线上,点M ,N 分别是AB ,AC 的中点.如果AB =10 cm ,AC =8 cm ,那么线段MN 的长度为(D )A.6 cmB.9 cmC.3 cm 或6 cmD.1 cm 或9 cm14.如图,C ,D 是线段AB 上的点,若AB =8,CD =2,则图中以A ,C ,D ,B 为端点的所有线段的长度之和等于(D )A.24B.22C.20D.2615.如图,点C ,D ,E 都在线段AB 上,已知AD =BC ,点E 是线段AB 的中点,则CE =DE.(填“>”“<”或“=”)16.如图,点M 是线段AB 的中点,点C 在线段AB 上,且AC =4 cm ,点N 是AC 的中点,MN =3 cm ,求线段CM 和AB 的长.解:因为点N 是AC 的中点,AC =4 cm , 所以NC =12AC =12×4=2(cm ).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm ). 所以AM =AC +CM =4+1=5(cm ). 因为点M 是AB 的中点, 所以AB =2AM =2×5=10(cm ).17.如图,已知线段AB =20 cm ,点M 是线段AB 的中点,点C 是AB 延长线上一点,AC =3BC ,点D 是线段BA 延长线上一点,AD =12AB.(1)求线段BC 的长; (2)求线段DC 的长;(3)点M 还是哪些线段的中点?解:(1)因为AC =AB +BC ,AC =3BC , 所以3BC =AB +BC ,即AB =2BC. 因为AB =20 cm , 所以BC =10 cm.(2)因为AD =12AB ,AB =20 cm ,所以AD =10 cm.所以DC =AD +AB +BC =10+20+10=40(cm ). (3)因为点M 是线段AB 的中点, 所以AM =MB =10 cm. 所以DM =20 cm ,MC =20 cm. 所以点M 还是线段DC 的中点. 综合题18.已知线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP∶PB=2∶3,点Q 将AB 也分成两部分,AQ∶QB=4∶1,且PQ =3 cm.求AP ,QB 的长. 解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.第3课时关于线段的基本事实及两点间的距离基础题知识点1 关于线段的基本事实1.(随州中考改编)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间,线段最短B.两点确定一条直线C.直线比曲线短D.经过一点有无数条直线2.【关注社会生活】下面现象,可以用两点之间线段最短来解释的是(D)A.平板弹墨线B.建筑工人砌墙C.会场把茶杯摆直D.弯河道改直3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.解:点P的位置如图所示.作法:连接AB交直线l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.知识点2 两点间的距离4.(滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为(B)A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-25.如图,线段AB=8 cm,延长AB到点C.若线段BC的长是AB长的一半,则A,C两点之间的距离为(D)A.4 cmB.6 cmC.8 cmD.12 cm中档题6.(新疆中考)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.已知A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A,C两点间的距离是(D)A.8 cmB.9 cmC.10 cmD.8 cm或10 cm8.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC,BD的交点即为P点的位置,如图.综合题9.(教材P130习题T11变式)如图所示,有一个圆柱形纸筒,一只虫子在点B处,一只蜘蛛在点A处,蜘蛛沿着纸筒表面准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?解:如图所示,蜘蛛沿线段AB爬行,能最快地捉住虫子.小专题(十二)线段的计算类型1 中点问题(整体思想)【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ;(2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b2cm ;(3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点, 所以MC =12AC ,CN =12BC.又因为MN =MC +CN ,所以MN =12(AC +BC )=12AB =m2 cm.(4)猜想:MN =12AB =n2cm.结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点, 所以CM =12AC.因为点N 是BC 的中点, 所以CN =12BC.所以MN =CM +CN =12(AC +BC )=12AB.所以AB =2MN =2k cm.【变式2】 若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由. 解:MN =m2cm 成立.当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC.又因为MN =MC -CN ,所以MN =12(AC -BC )=12AB =m2 cm.如图,只要点C 在线段AB 所在直线上,点M ,N 分别是AC ,BC 的中点,那么MN =12AB.图1 图2 图31.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则线段MN 的长为2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长. 解:(1)因为AB =24,CD =10, 所以AC +DB =14.因为M ,N 分别为AC ,BD 的中点, 所以CM =12AC ,DN =12BD.所以MC +DN =12(AC +DB )=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =a -b.所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算3.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取线段AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度. 解:(1)如图.(2)因为BC =2AB ,且AB =4, 所以BC =8.所以AC =AB +BC =8+4=12. 因为D 为AC 中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.类型3 方程思想4.如图,已知B ,C 两点把线段AD 分成2∶5∶3三部分,点M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 则AD =AB +BC +CD =10x cm. 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm.所以BM =AM -AB =5x -2x =3x cm. 因为BM =6 cm , 所以3x =6.解得x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).5.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ). 因为EF =10 cm , 所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.类型4 分类讨论思想6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1,图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ); 当点C 在线段AB 的延长线上时,如图2,图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ). 所以CD 的长度为20 cm 或40 cm.7.课间休息时小明拿两根木棒玩,小明说:“较短木棒AB 长40 cm ,较长木棒CD 长60 cm ,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E 和点F ,则点E 和点F 间的距离是多少?你说对了我就给你玩.”聪明的你请帮小华求出此时两根木棒的中点E 和F 间的距离是多少?解:如图1,当AB 在CD 的左侧且点B 和点C 重合时,图1因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =BE +CF =20+30=50(cm ). 如图2,当AB 在CD 上且点B 和点C 重合时,图2因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =CF -BE =30-20=10(cm ).所以此时两根木棒的中点E 和F 间的距离是50 cm 或10 cm.类型5 动态问题8.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值;(3)【分类讨论思想】当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上,如图所示:此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8.(3)PQ =|OP -OQ|=|(OA +AP )-OQ|=|(10+t )-2t|=|10-t|. 因为PQ =12AB ,所以|10-t|=2.5. 解得t =7.5或t =12.5.4.3 角 4.3.1 角基础题知识点1 角的定义及表示方法 1.下列说法中,正确的是(C ) A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 2.图中角的表示方法正确的有(B )A.1个B.2个C.3个D.4个 3.如图所示,下列表示角的方法错误的是(D )A.∠1与∠AOB 表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB ,∠AOC,∠BOCD.∠AOC 也可用∠O 来表示4.如图,∠1,∠2表示的角用大写字母分别表示为∠ABC,∠BCN;∠A 也可表示为∠BAC,还可以表示为∠MAN .5.如图所示,能用一个字母表示的角有2个,以A 为顶点的角有3个,图中所有的角有7个(小于平角).知识点2 角的度量6.(厦门中考)1°等于(C )A.10′B.12′C.60′D.100′ 7.下列各角中,是钝角的是(B )A.14周角B.23平角C.平角D.14平角8.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠3 9.计算:(1)12′=0.2°或720″; (2)360″=0.1°或6′; (3)57.18°=57°10′48″. 知识点3 钟面角10.某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的小于平角的角等于90°.易错点1 角的概念辨析有误 11.下列说法正确的是(C ) A.平角就是一条直线 B.小于平角的是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数为0° 易错点2 角度换算时出错12.(1)把124.24°化为度、分、秒的形式为124°14′24″; (2)若把36°36′36″化成以度为单位,则结果为36.61°. 中档题13.下列各式中,角度互化正确的是(D ) A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′14.【易错】一个20°的角放在10倍的放大镜下看是(A ) A.20° B.2° C.200° D.无法判断 15.如图,点O 在直线AB 上,则在此图中小于平角的角有(B )A.4个B.5个C.6个D.7个16.如图,有下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠OGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠ACB是同一个角.其中正确的有(B)A.1个B.2个C.3个D.4个17.(通辽中考)4点10分,时针与分针所夹的小于平角的角为(B)A.55°B.65°C.70°D.以上结论都不对18.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).解:(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.19.爸爸问小明:“一个方桌有四个角,如果锯掉一个角,还剩几个角?”小明回答:“还剩3个角.”并画出了如下图形.小明回答正确吗?若不正确,请说明理由,并画出图形.解:不正确,理由:除小明这种画法外还有如下两种画法,所以还剩3个或4个或5个角.画图如下:【变式】 n 边形剪去一个角,还剩(n -1)或n 或(n +1)个角. 综合题20.【类比探究】有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点.如图所示,如果过角的顶点:(1)在角的内部作1条射线,那么图中一共有3个角; (2)在角的内部作2条射线,那么图中一共有6个角; (3)在角的内部作3条射线,那么图中一共有10个角;(4)在角的内部作n 条射线,那么图中一共有(n +2)(n +1)2个角.【变式】 以直线l 外一点P 为端点,向直线l 上的n (n>1)个点作射线,则以点P 为顶点,以这些射线为边的角(小于180°)的个数为n (n -1)2.(用含有n 的式子表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 图形认识初步复习
§一【多姿多彩的图形】
1、把 的各种图形统称为几何图形.几何图形包括立体图形和平面图形. 各部分不都在同一平面内的图形是 图形;如 各部分都在同一平面内的图形是 图形。

如 ▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图) ▲知道并会画出常见几何体的表面展开图。

2、点、线、面、体组成几何图形,点是构成图形的
基本元素。

点、线、面、体之间有如图所示的联系: ▲知道由常见平面图形经过旋转所得的几何体的形状。

经过两点有一条直线, 一条直线简述为: .·两条不同的直线有一个 时,就称两条直线这个公共点叫它们的 .——把一条线段分成相等的两条线段的点,叫做线段的·如图,点M 是线段AB 的中点,则有AM=MB=2
1
AB 或 2AM=2MB=AB
用符号语言表示就是: ∵点M 是线段AB 的中点
∴AM=MB=
2
1
( 或 AM=2 =AB ) 类似的,把线段分成相等的三条线段的点,叫线段的
三等分点。

把线段分成相等的n 条线段的点,叫线段的n 等分点。

4、线段公理:两点的所有连线中,线段最短. 简述为: 之间, 最短。

·两点之间的距离的定义:连接两点之间的 , 叫做这两点的距离。

▲会结合图形比较线段的大小;会画线段的“和”“差”图[2]. ▲会根据几何作图语句画出符合条件的图形[3],会用几何语句描 述一个图形。

§三【角】的定义
名称 表示法 作法叙述 端点
直线 直线AB (BA ) (字母无序) 过A 点或B 点作 直线AB
无端点
射线 射线AB(字母有序)
以A 为端点作 射线AB
一个 线段
线段AB (BA )(字母无序) 连接AB
两个
[1]画出下列几何体的三视图 正面看 上面看
左面看

线
面点
体点
动 交


动 动 图形语言
(从构成上看)Ⅰ: 有 的两条 组成的图形叫做角.
(从形成上看)Ⅱ: 由一条射线 而形成的图形叫做角。

1、角的表示方法[4]
(1)用三个大写英文字母表示任意一个角;
(2)用一个大写英文字母表示一个独立..的角(在一顶点处只有一个....角); (3)加弧线、标数字表示一个角 (在一个顶点处有两个以上角时,建
议使用此法);
(4)加弧线、标小写希腊字母表示一个角。

2、角的度量
●1个周角=2个平角=4个直角=360° ●1°=60′=3600″
●用一副三角尺能画的角都是15°的整数倍。

3、角的平分线
-—从一个角的 出发,把这个角分成 的 两个角的 ,叫做这个角的平分线。

·如图,射线OB 是∠AOC 的平分线,则有
∠AOB=∠BOC=2
1
∠AOC 或 2∠AOB=2∠COB=∠AOC
用符号语言表示就是: ∵OB 平分 ∴∠AOB=∠BOC=
2
1
∠AOC (或 2∠AOB=2∠COB=∠AOC)
类似的,从一个角的顶点出发,把这个角分成相等的n 个角的 射线,叫做这个角n 等分线。

的n 条线段的点,叫线段的n 等分点. 4、角的比较与运算
●会结合图形比较角的大小[5] 。

●进行角度的四则运算[6]. 5、互余、互补
(1)如果两个角的和为90º,那么这两个角互为余角. ·锐角α的余角是
(2)如果两个角的和为180º,那么这两个角互为补角。

· 角α的补角是 。

(3)互余、互补的性质
同角(或等角)的余角(或补角)相等. 6、用角度表示方向:一般以正北、正南 为基准,用向东或向西旋转的角度表
示方向,如图所示,OA 方向可表示为
北偏西60º 。

图形语言
用你认为恰当的方法表示出下图
中的所有小于平角的角。

填空·计算。

①用度、分、秒表示37.26°= .
②用度表示52°9′36″= 。

③45°19′28″+26°40′32″ ④ 98°18′-56. 5°
写出图中所有角的大小关系,“和”及“差”。

60º
§四【冲刺练习】 〖直线、射线、线段〗 1. 判断下列说法是否正确
(1)直线AB 与直线BA 不是同一条直线( ) (2)用刻度尺量出直线AB 的长度 ( )
(3)直线没有端点,且可以用直线上任意两个字母来表示( ) (4)线段AB 中间的点叫做线段AB 的中点 ( ) (5)取线段AB 的中点M ,则AB-AM=BM ( ) (6)连接两点间的直线的长度,叫做这两点间的距离 ( ) (7)一条射线上只有一个点,一条线段上有两个点 ( )
2.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________ 3.电筒发射出去的光线,给了我们 的形象
4.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=_ ___
5.已知点A 、B 、C 三个点在同一条直线上,若线段
AB=8,BC=5,则线段AC=_________
6.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____
7.C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,求AC+AB 的长。

8.把一条长24cm 的线段分成三段,使中间一段的长为6cm ,求第一段与第三段中点的距离。

9.如图,点C 在线段AB 上,E 是AC 的中点,D 是BC 的中点,若ED=6,则AB 的长为( ). 〖角〗 1.填空:
(1)如图:已知∠AOB=2∠BOC,且OA⊥OC,则∠AOB=_________0 (2)已知有共公顶点的三条射线OA 、OB 、OC,若∠AOB=1200,∠BOC=300,则∠AOC=_________。

(3)如图所示:已知OE⊥OF 直线AB 若∠AOF=2∠A OE ,则∠BOF=___________
(4)2点302.选择题:
(1).如图,∠AOE=∠BOC,OD A .1对 B .2对
C .3对
D .4对(2).互为余角的两个角之差为 A .117.5° B .112.5° C (3).如图,由A 到B 的方向是(A .南偏东30° B.南偏东(4).. . . . A
B C
D
A
B
C D
C
A
B
E
D
A
O
B
C
O A
E
C
D B
B
(A)南偏东50º (B )西偏北50º (C )南偏东40º (D )东南方向 3.解答题:
(1)一个角的余角比它的补角29
还多1°,求这个角.
(2)已知互余两角的差为20 ,求这两个角的度数。

(3)如图,∠AOB=600
,OD 、OE 分别平分∠BOC、∠AOC,那么∠EOD= 0

(4)老师要求同学们画一个750
的角,右图是小红画出的图形.①检验小红画出的角是否等于750
;②利用我们常用的画图工具,你有哪些检验方法?③画此角的平分线OD;④解释图中几个角之间的相互关系. (4)如图,∠AOB=110°,∠COD=70°,OA 平分∠EOC,OB 平分∠DOF,求∠EOF 的大小。

相关文档
最新文档