薄膜太阳能电池及制造工艺解析
《薄膜太阳电池》课件

在光照下,光子被吸收 并传递给电子,电子和 空穴分别向导带和价带 跃迁,形成光生电流。 随后,电子和空穴分别 被传输到金属电极并收 集起来,形成输出电流 。
薄膜太阳电池的结构和 工作流程决定了其能量 转换效率、开路电压和 短路电流等性能参数。
03 薄膜太阳电池的 材料
硅基薄膜太阳电池
总结词
高效稳定,技术成熟
THANKS
感谢观看
随着移动设备的普及和能源需求的增长,移动能源系 统的发展前景广阔。
未来发展前景与挑战
随着技术的不断进步和应用领域的拓展,薄膜太阳电池的发展前景广阔。
未来,薄膜太阳电池将更加注重提高光电转换效率、降低成本、优化组件制造工艺等方面的 发展。
同时,薄膜太阳电池也面临着市场竞争力、政策支持、并网技术等方面的挑战,需要不断加 强技术创新和市场推广。
在薄膜太阳电池中,光子首先被 吸收并传递给电子,电子从价带
跃迁到导带,形成光生电流。
光电效应是薄膜太阳电池的基本 工作原理之一,它决定了电池的
能量转换效率。
光伏效应
光伏效应是指光生电压或电流的现象 ,即当光照射在半导体材料上时,半 导体的导电性能发生变化,产生电压 或电流。
光伏效应是薄膜太阳电池的基本工作 原理之一,它决定了电池的开路电压 。
真空沉积技术包括真空蒸镀、 电子束蒸镀和离子束溅射等。
真空沉积技术具有较高的沉积 速率和较好的大面积成膜质量 ,适用于制备高性能的薄膜太 阳电池。
化学气相沉积技术
化学气相沉积技术是通过化学反应将气态物质转化为固态薄膜的一种技术。
化学气相沉积技术包括常压化学气相沉积、等离子体增强化学气相沉积和金属有机 化学气相沉积等。
《薄膜太阳电池》PPT课件
CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池的结构
金属栅电极 减反射膜(MgF2) 窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底 高阻ZnO
低阻AZO
CIGS薄膜太阳能电池的结构
结构原理
减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
测试设备主要有:台阶仪,SEM,XRD, RAMAN、分度光透射仪、I-V 分析系统等
铜铟镓硒(CIGS)太阳电池制造工艺路 线
清洁—基膜—单元或多元磁控溅射—沉积—硒化—防护膜—随机检 测—印刷—切割—检测—组装—检测—包装。
CIGS薄膜太阳能电池的制备
• CIGS薄膜太阳能电池的底电极Mo和上电极n-ZnO一般采用磁控溅射的 方法,工艺路线比较成熟 • 最关键的吸收层的制备有许多不同的方法,这些沉积制备方法包括:蒸发 法、溅射后硒法、电化学沉积法、喷涂热解法和丝网印刷法
CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也增 加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最好。
CIGS薄膜太阳能电池介绍
二、铜铟硒(CIS)薄膜太阳能电池介绍 三、铜铟镓硒(CIGS)薄膜太阳能电池介绍
一、第三代太阳能电池
薄膜太阳能电池封装工艺简介

薄膜太阳能电池封装工艺简介概述薄膜太阳能电池作为一种高效、轻薄、柔性的太阳能电池,已经在能源领域得到广泛应用。
其中,薄膜太阳能电池封装工艺是整个生产过程中非常重要的一部分,它是将薄膜太阳能电池片与封装材料合理结合,以保护电池片,并提高电池的稳定性和效率的过程。
本文将介绍薄膜太阳能电池封装的基本工艺和流程。
薄膜太阳能电池封装工艺流程薄膜太阳能电池封装工艺包括以下几个主要步骤:1.准备工作:对薄膜太阳能电池片进行检查,确保其质量符合要求。
同时,准备好所需的封装材料,如背电极、背板、封装胶等。
2.封装背电极:将背电极粘贴在薄膜太阳能电池片的背面,以提供电流的传导和连接功能。
背电极的粘贴需要使用特殊的胶水,确保背电极与电池片之间无空隙。
3.安装背板:将背板固定在背电极上,以保护电池片,并提供良好的支撑。
背板通常采用耐候性较好的材料,如塑料或金属。
4.填充封装胶:在背板上涂覆一层封装胶,将封装胶均匀地涂抹在整个背板上,确保电池片能够被充分覆盖。
封装胶的材料可根据具体需求选择,常见的有有机硅、聚氨酯等。
5.封装胶固化:待封装胶涂覆完毕后,需要将其进行固化,以提高胶水的稳定性。
固化的方法可以是自然固化或烘箱固化,根据具体工艺和生产需求进行选择。
6.切割:将已固化的薄膜太阳能电池进行切割,得到所需尺寸的电池片。
切割时需要注意切口的平整和尺寸的一致性,以保证后续组装的顺利进行。
7.电池片测试:对切割好的电池片进行测试,检查其光电性能和其他关键指标是否符合要求。
测试的方法可以是电流-电压曲线测试、光谱响应测试等。
8.组装:根据具体的产品需求,将电池片与其他组件进行组装,如连接导线、安装支架等。
组装工艺需要严格控制每个环节的精度和质量,确保组装的稳定性和可靠性。
9.封装测试:对已组装好的薄膜太阳能电池组件进行全面的测试,包括电池组件的电性能、机械性能等。
测试结果将直接影响组件的质量和性能。
结论薄膜太阳能电池封装工艺是保护和提升电池性能的关键环节,它涉及多个步骤和工艺参数的控制。
CIGS薄膜太阳能电池简要介绍和发展现状

汇报人:XX
目 录
• CIGS薄膜太阳能电池概述 • CIGS薄膜太阳能电池发展历程 • CIGS薄膜太阳能电池制备技术 • CIGS薄膜太阳能电池性能评价 • CIGS薄膜太阳能电池应用领域拓展 • CIGS薄膜太阳能电池产业发展现状及挑战 • 总结与展望
01
CIGS薄膜太阳能电池概述
定义与基本原理
CIGS薄膜太阳能电池定义
CIGS是铜铟镓硒(CuInGaSe2)的缩写,是一种基于多元化合物半导体的薄 膜太阳能电池。
工作原理
CIGS薄膜太阳能电池利用光电效应,将光能转换为电能。当太阳光照射到电池 表面时,光子被吸收并激发出电子-空穴对,在内建电场作用下分离并收集到电 极上,从而产生电流。
优点
工艺简单,成本低,适用于大面积生产。
缺点
薄膜质量受喷涂工艺和热处理条件等因素影响, 难以控制。
不同制备方法比较
真空蒸发法与电化学沉积法比较
真空蒸发法制备的薄膜质量较高,但设备成本高;电化学沉积法设备简单,成本 低,但沉积速率较慢。
喷涂热解法与前两者比较
喷涂热解法工艺简单,成本低,适用于大面积生产,但薄膜质量相对较难控制。 在实际应用中,可根据具体需求和条件选择合适的制备方法。
器件结构
初步构建CIGS薄膜太阳能电池的 器件结构,研究各层之间的相互 影响。
实验室规模制备
在实验室规模下,制备出小面积 的CIGS薄膜太阳能电池,并对其 性能进行评估。
技术突破与产业化进程
01
02
03
大面积制备技术
突破大面积均匀制备CIGS 薄膜的技术难题,为产业 化奠定基础。
转换效率提升
通过优化材料组成、改进 制备工艺等方式,不断提 高CIGS薄膜太阳能电池的 转换效率。
CIGS薄膜太阳能电池材料的制备 结构及性能研究

三、玻璃基太阳能电池薄膜材料的性能研究
2、电学性能:薄膜材料的电学性能主要包括导电性能、电荷传输性能和接触 电阻等。这些性能直接影响着太阳能电池的电流和电压输出。因此,研究薄膜材 料的电学性能及其影响因素,有助于提高太阳能电池的电学性能和稳定性。
三、玻璃基太阳能电池薄膜材料的性能研究
3、稳定性:太阳能电池在长期使用过程中会受到环境因素的影响,如光照、 温度、湿度等。因此,研究薄膜材料的稳定性及其影响因素,有助于提高太阳能 电池的使用寿命和稳定性。
三、CIGS薄膜太阳能电池材料的性能研究
1、光学性能:CIGS薄膜具有较高的光学吸收系数,这使得其能够有效地吸收 太阳光并转化为电能。在可见光波段,CIGS薄膜的吸收系数大于10^4 cm-1,而 在红外波段,吸收系数则下降至3000-4000 cm-1。
三、CIGS薄膜太阳能电池材料的性能研究
三、CIGS薄膜太阳能电池材料的性能研究
4、环境友好性:CIGS太阳能电池在生产和使用过程中产生的环境污染较小, 且材料可回收再利用。这使得其成为一种具有可持续发展潜力的能源形式。
参考内容
内容摘要
随着全球对可再生能源需求的日益增长,薄膜太阳能电池作为一种清洁、高 效、可灵活制备的能源转换技术,受到了广泛。其中,铜、铟、镓、硒(CIGS) 薄膜太阳能电池是研究最为活跃的一类。CIGS太阳能电池具有高光电转换效率、 低成本、可柔性制备等优势,被认为是下一代薄膜太阳能电池的主流技术之一。 本次演示将对CIGS薄膜太阳能电池吸收层的制备工艺进行综述。
溶液处理法制备CIGS薄膜一般包括:溶液混合、薄膜沉积和硒化处理等步骤。 在制备过程中,各元素的化学计量比、溶液浓度、沉积温度和硒化条件等因素对 薄膜的结构和性能有重要影响。因此,优化制备工艺,实现CIGS薄膜的可控制备, 对于提高CIGS太阳能电池的光电转换效率具有重要意义。
薄膜太阳能电池及制造工艺

05
制造工艺的应用与发展趋势
在光伏产业中的应用
薄膜太阳能电 池的应用:在 光伏发电、建 筑一体化、便 携式电子设备 等领域的应用
制造工艺的发 展趋势:提高 转换效率、降 低成本、提高 稳定性和可靠
性
薄膜太阳能电 池的优势:轻 便、柔性、可 弯曲、易于安
装和维护
制造工艺的创 新:采用新型 材料、改进生 产工艺、提高 生产效率和降
封装材料:选择 耐高温、耐腐蚀 、密封性好的封 装材料
基底处理
清洗:去除基底表面的灰尘、油污等杂质 打磨:使基底表面平整,提高附着力 活化:增加基底表面的活性,提高薄膜太阳能电池的性能 镀膜:在基底表面沉积薄膜太阳能电池所需的功能层
薄膜制备
薄膜沉积:采用化学气相沉积、 物理气相沉积等方法,在基底
特点:轻便、柔性、可弯曲、 易于安装和携带
分类:硅基薄膜太阳能电池、 铜铟镓硒薄膜太阳能电池、钙 钛矿太阳能电池等
应用领域:建筑、汽车、电子 设备、航天等领域
工作原理
薄膜太阳能电池 主要由半导体材 料制成,如硅、 砷化镓等。
太阳光照射到半 导体材料上,产 生电子-空穴对。
电子-空穴对在半 导体材料内部运 动,形成电流。
电流通过外部电 路,产生电能。
优缺点
优点:轻便、可弯曲、可折叠、 可粘贴
优点:易于安装和维护
缺点:能量转换效率较低
缺点:对环境敏感,易受温度、 湿度等环境因素影响
03
制造工艺流程
原材料选择
硅片:选择高质 量的硅片,保证 电池性能
导电浆料:选择 导电性好、稳定 性高的导电浆料
背电极材料:选 择导电性好、耐 腐蚀的背电极材 料
所需的图案
薄膜钝化:采用化学气相沉积、 物理气相沉积等方法,在半导 体薄膜表面沉积钝化层,以提
非晶硅薄膜太阳能电池概要课件

定义与特性
定义
非晶硅薄膜太阳能电池是一种利 用非晶硅材料制成的太阳能电池 。
特性
具有轻便、柔韧、可折叠等优点 ,同时制造成本较低,适合大规 模生产。
工作原理
01பைடு நூலகம்
02
03
光吸收
非晶硅薄膜能够吸收太阳 光并将其转换为电能。
电极
通过电极将产生的电流导 出,实现电能的有效利用 。
染料敏化太阳能电池
非晶硅薄膜太阳能电池与染料敏化太 阳能电池相比,具有更高的光电转换 效率和更长的使用寿命,但制造成本 较高。
03
非晶硅薄膜太阳能 电池的制造工艺
硅烷气体选择
硅烷气体是制造非晶硅薄膜太阳能电池的关键原料之一,其纯度对电池的性能和稳 定性有着至关重要的影响。
选择高纯度的硅烷气体可以减少杂质和缺陷,提高非晶硅薄膜的质量和光电性能。
非晶硅薄膜太阳能电 池概要课件
目录
CONTENTS
• 非晶硅薄膜太阳能电池简介 • 非晶硅薄膜太阳能电池的优势与
局限 • 非晶硅薄膜太阳能电池的制造工
艺 • 非晶硅薄膜太阳能电池的应用与
前景
目录
CONTENTS
• 非晶硅薄膜太阳能电池的挑战与 解决方案
• 非晶硅薄膜太阳能电池的实际案 例分析
01
反应温度与压强控制
制造非晶硅薄膜太阳能电池需要在一定 的温度和压强条件下进行。
温度和压强对非晶硅薄膜的结构、性能 和光电性能有着直接的影响。通过精确 控制温度和压强,可以优化非晶硅薄膜 的结构,提高其光电转换效率和稳定性
。
通常需要在较低的温度和压强条件下进 行非晶硅薄膜的合成,以减少缺陷和杂
质,提高其质量。
碲化镉薄膜太阳能电池生产工艺流程

碲化镉薄膜太阳能电池生产工艺流程
碲化镉薄膜太阳能电池是一种高效、环保的新型太阳能电池,它的生产工艺流程主要由以下几个步骤组成。
第一步,制备透明导电玻璃基板。
透明导电玻璃基板是太阳能电池的重要组成部分,其主要作用是传输电荷和反射光线。
一般采用锡氧化铟(ITO)薄膜作为导电层,制备方法包括热氧化法、溅射法和离子束溅射法等。
第二步,沉积碲和镉层。
在透明导电玻璃基板上沉积碲层和镉层,制备p-n结。
常用的制备方法包括蒸发法、电化学法、化学浴沉积法等。
其中,化学浴沉积法是最为普遍的方法。
第三步,制备接触电极。
在碲化镉薄膜上制备透明导电电极和金属电极。
透明导电电极同样使用ITO薄膜,金属电极采用铝或钼等金属薄膜。
制备方法包括隔离焊接法、电镀法和真空沉积法等。
第四步,进行光照。
用太阳模拟器照射样品,通常在AM1.5G标准下进行,以测试电池的光电转换效率和输出功率。
第五步,进行测试和分类。
测量电池的I-V曲线,计算出其性能参数,如开路电压(Voc)、短路电流(Isc)、填充因子(FF)等。
然后将电池按照性能参数分类,分为等效类型和交流类型等。
第六步,进行封装。
将电池封装到玻璃或有机材料的保护层中,并接入阳极和阴极。
此时,就可以将其作为成品进行销售和使用。
以上就是碲化镉薄膜太阳能电池的生产工艺流程。
通过不断的优化和改进,这一工艺能够更好地满足人们对新能源的需求,为环保和可持续发展做出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池转换效率世界记录
高效太阳电池榜
三种主要光伏发电技术比较
技术路线
晶体硅太 阳能电池
单晶硅 多晶硅
薄膜太阳 非晶硅薄膜电
能电池
池
其他
聚光太阳能电池
实验室最高 转换效率 24.70% 20.30% 12.80%
40.70%
京都议定书的实施,世界各国降低温室气体排放,实行减碳 措施,重视地球环保,开发洁净新能源刻不容缓。
能源消费结构不合理—煤炭比例过高
2006年中国一次能源消费构成
电力缺口逐年增加
中国未来电力发展的预测(中国电力科学院)
能源 水 食物 环境 贫穷 战争
疾病 教育 民主政治 人口
Energy Water Food Environment Poverty Terrorism&War Disease Education Democracy Population
太阳能素有“干净能源”和“安全能源”之称。它不仅毫无污染,远比常规 能源清洁;也毫无危险,远比原子核能安全。
例:3kW太阳能发电系统对环境污染物的削减量 石油替代量:729L/年 减排放CO2能力:540kg-C/年 森林面积换算:5544m2
②对能源和节能的贡献 太阳能电池2.2年的发电量即可收回制造太阳能电池时使用的电力
海洋能
使用其它能源(再生动力资源) ➢ 水力发电 (H.E.P)
➢ 风力发电 (Wind Power)
➢ 地热能发电 ➢ 太阳能发电
➢ 潮汐发电
可再生能源的优点
➢ 环保(Environmental benefits) ➢ 可持续(Sustainability) ➢ 能源安全(Energy security)
三分之二的国土面积年日照小时数在2200小时以上 年太阳辐射总量大于每平方米5000兆焦。
中国太阳能资源分布情况
中国有12%国土面积为沙漠或戈壁滩,这些地区年日照小时数在 3200小时以上,如果在这些地区全部安装太阳能电池发电,其电 力足于供给全球使用。其发展潜力远远没有挖掘出来。
中国沙漠戈壁分布情况
简单的说,太阳光电的发电原理,是利用太阳电池吸收一定波 长的太阳光,将光能直接转变成电能输出的一种发电方式。
太阳能电池技术发展:
➢第一代太阳能电池:结晶硅类,单晶硅、多晶硅太阳能电池。 ➢第二代太阳能电池:薄膜太阳能电池,如硅基薄膜电池,CIGS
薄膜等。 ➢第三代太阳能电池:量子点型新概念,新结构的电池,如染料
节约及保护能源
➢ 把不需要的电器用品关掉。 ➢ 减少在夏季使用冷气的机会。 ➢ 尽量使用公共交通工具。 ➢ 使用节省能源的汽車或机器。
寻找新型清洁能源是解决问题的唯一途径
可再生能源 ➢ 不断补充(Constantly replenishing) ➢ 用之不竭(Inexhaustible) 分类 ➢ 太阳能、风能、生物能、地热能、水利发电、氢能、
太阳能的优点:
1、数量巨大:太阳能够给地球提供惊人的能量。
➢太阳给地球1.5天提供的能量相当于全球可 供开采石油的总量(3万亿桶)。
➢太阳给地球1小时的能量可供全球人类使用 一年。
➢太阳提供给地球1秒钟的能量,相当于2008 年汶川8.0级地震所释放的能量。
地球上几乎所有地方都能使用太阳能。 太阳能:唯一的兆兆瓦量级再生能源!
批量生产 效率 17% 16%
6%-7%
30%
组件成本 (美元/W)
2.29 2.25 1.0-1.5
优缺点
硅耗大、成本高 硅耗大、成本高 硅耗小、投资大、有衰
减
3
效率高、成本高
太阳能光伏术语:
光伏 (Photovoltaic, PV)光能到电能的直接转换 太阳能电池(Solar cells) 太阳能电池模组(Solar modules) 太阳能电池板(Solar panels) 建筑光伏一体化(Building Integrated Photovoltaics,BIPV) 非晶硅(amorphous Silicon, a-Si ) 多晶硅(polycrystalline silicon, p-Si) 单晶硅(crystalline silicon, c-Si) 铜铟镓硒(Copper Indium Gallium Diselenide, CIGS)
薄膜太阳能电池及制造工艺
I.太阳能电池技术及光伏产业背景知识
地球天然资源有限,物以稀为贵,原油价格将持续飚涨
世界和中国主要常规能源储量预测
全球能源短缺,而且分布不均匀,尤其是发展中国家能源匮乏。
NASA拍摄的地球夜晚卫星图片
温室效应使地球平均气温持续升高
1928年与2004年阿根廷的冰川消退对照
太阳能的利用
太阳能的利用可以分为两种:即光-热转化利用和光-电转化利用。 太阳能集热器 太阳能热水池(英文为Solar Cell)是一种利用太阳光直接发电的
光电半导体薄片。它只要被光照射,瞬间就可输出电流。在物理学 上称为光伏(Photovoltaic)。
2、时间长久: 太阳能发电在全球未来能源结构中扮演着重要的地位。
太阳能:取之不尽,用之不竭!
世界能源发展趋势
3、普照大地 太阳辐射能“送货上门”,既不需要开采和挖掘,也不需要运
输。普天之下,无论大陆或海洋,无论高山或岛屿,都一视同仁“。 既无”专利“可言,也不可能进行垄断,开发和利用都极为方便。
人类未来50年面临的十大问题,以“能源”问题为首。
我们可以怎样解決能源危机?
1. 增加及改善能源 (煤、石油、天然气)的生产 2. 节约及保护能源 3. 利用其它能源(可再生能源)
非再生能源(Non-renewable energy)
A. 煤
B. 石油
缺点: 有限资源;价格昂贵;环境破坏。
C. 天然气
阳光对地球各个地区的供应比其他资源的供应公平得多。
世界太阳能资源地图
4、清洁安全
①对防止地球温暖化,减轻对地球环境的贡献从太阳能发电系统 排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于 传统的燃料发电设备,是防止地球温暖化的环保设备。同时在发 电时,不排放氧化硫,氧化氮等污染物, 减轻了对环境的压力。