三种主要的薄膜太阳能电池详解

合集下载

薄膜太阳能电池分类

薄膜太阳能电池分类

薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。

薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。

薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其使用范围大,可和建筑物结合或是变成建筑体的一部份,使用非常广泛。

1.硅基薄膜电池硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。

非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。

为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。

2.碲化镉(CdTe)薄膜电池碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。

不过由于镉元素可能对环境造成污染,使用受到限制。

近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW 碲化镉太阳电池组件。

3.铜铟镓硒(CIGS)薄膜电池铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。

基底一般用玻璃,也可用不锈钢作为柔性衬底。

实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。

4.砷化镓(GaAs)薄膜电池砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被使用于人造卫星的太阳电池板。

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池解读

CIGS薄膜太阳能电池的结构
金属栅电极 减反射膜(MgF2) 窗口层ZnO 过渡层CdS 光吸收层CIGS 金属背电极Mo 玻璃衬底 高阻ZnO
低阻AZO
CIGS薄膜太阳能电池的结构
结构原理


减反射膜:增加入射率 AZO: 低阻,高透,欧姆接触 i-ZnO:高阻,与CdS构成n区 CdS: 降低带隙的不连续性,缓 冲晶格不匹配问题 CIGS: 吸收区,弱p型,其空间电 荷区为主要工作区 Mo: CIS的晶格失配较小且热膨 胀系数与CIS比较接近
测试设备主要有:台阶仪,SEM,XRD, RAMAN、分度光透射仪、I-V 分析系统等
铜铟镓硒(CIGS)太阳电池制造工艺路 线
清洁—基膜—单元或多元磁控溅射—沉积—硒化—防护膜—随机检 测—印刷—切割—检测—组装—检测—包装。
CIGS薄膜太阳能电池的制备
• CIGS薄膜太阳能电池的底电极Mo和上电极n-ZnO一般采用磁控溅射的 方法,工艺路线比较成熟 • 最关键的吸收层的制备有许多不同的方法,这些沉积制备方法包括:蒸发 法、溅射后硒法、电化学沉积法、喷涂热解法和丝网印刷法



CIGS的性能不是Ga越多性能越好的,因为短路电流是随 着Ga的增加对长波的吸收减小而减小的。 当x=Ga/(Ga+In)<0.3时,随着的增加,Eg增加, Voc也增 加; x=0.3时带隙为1.2eV;当x>0.3时,随着x的增加,Eg减小, Voc也减小。 G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最好。
CIGS薄膜太阳能电池介绍
二、铜铟硒(CIS)薄膜太阳能电池介绍 三、铜铟镓硒(CIGS)薄膜太阳能电池介绍
一、第三代太阳能电池

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解

摘要:上述电池中,尽管硫化镉薄膜电池地效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重地污染,因此,并不是晶体硅太阳能电池最理想地替代.砷化镓化合物及铜铟硒薄膜电池由于具有较高地转换效率受到人们地普遍重视.关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池文档收集自网络,仅用于个人学习单晶硅是制造太阳能电池地理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价地材料来取代.为了寻找单晶硅电池地替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料地太阳能电池.其中主要包括砷化镓族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习上述电池中,尽管硫化镉薄膜电池地效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重地污染,因此,并不是晶体硅太阳能电池最理想地替代.砷化镓化合物及铜铟硒薄膜电池由于具有较高地转换效率受到人们地普遍重视. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习砷化镓太阳能电池属于族化合物半导体材料,其能隙为,正好为高吸收率太阳光地值,与太阳光谱地匹配较适合,且能耐高温,在℃地条件下,光电转换性能仍很良好,其最高光电转换效率约,特别适合做高温聚光太阳电池.砷化镓生产方式和传统地硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆地直径通常为—英寸,比硅晶圆地英寸要小得多.磊晶圆需要特殊地机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品成本比较高.磊晶目前有两种,一种是化学地,一种是物理地.等化合物薄膜电池地制备主要采用和技术,其中方法制备薄膜电池受衬底位错,反应压力,比率,总流量等诸多参数地影响. (砷化镓)光电池大多采用液相外延法或技术制备.用作衬底地光电池效率高达(一般在左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用.以硅片作衬底,技术异质外延方法制造电池是降用低成本很有希望地方法.已研究地砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷砷化镓异质结,金属半导体砷化镓,金属绝缘体半导体砷化镓太阳电池等.文档收集自网络,仅用于个人学习砷化镓材料地制备类似硅半导体材料地制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等.由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池地发展受到影响.除外,其它化合物如,等电池材料也得到了开发. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习年德国费莱堡太阳能系统研究所制得地太阳能电池转换效率为,为欧洲记录.首次制备地电池转换效率为.另外,该研究所还采用堆叠结构制备,电池,该电池是将两个独立地电池堆叠在一起,作为上电池,下电池用地是,所得到地电池效率达到. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习砷化镓()化合物电池地转换效率可达,化合物材料具有十分理想地光学带隙以及较高地吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池.但是材料地价格不菲,因而在很大程度上限制了用电池地普及. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习铜铟硒电池铜铟硒简称材料地能降为,适于太阳光地光电转换,另外,薄膜太阳电池不存在光致衰退问题.因此,用作高转换效率薄膜太阳能电池材料也引起了人们地注目.文档收集自网络,仅用于个人学习电池薄膜地制备主要有真空蒸镀法和硒化法.真空蒸镀法是采用各自地蒸发源蒸镀铜,铟和硒,硒化法是使用叠层膜硒化,但该法难以得到组成均匀地.薄膜电池从年代最初地转换效率发展到目前地左右.日本松下电气工业公司开发地掺镓地电池,其光电转换效率为(面积) .年美国可再生能源研究室研制出转换效率地太阳能电池,这是迄今为止世界上该电池地最高转换效率.预计到年电池地转换效率将达到,相当于多晶硅太阳能电池. 作为太阳能电池地半导体材料,具有价格低廉,性能良好和工艺简单等优点,将成为今后发展太阳能电池地一个重要方向.唯一地问题是材料地来源,由于铟和硒都是比较稀有地元素,因此,这类电池地发展又必然受到限制. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习碲化镉太阳能电池是ⅡⅥ族化合物半导体,带隙,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好地材料,具有很高地理论效率(),性能很稳定,一直被光伏界看重,是技术上发展较快地一种薄膜电池.碲化镉容易沉积成大面积地薄膜,沉积速率也高.薄膜太阳电池通常以异质结为基础.尽管和和晶格常数相差,但它们组成地异质结电学性能优良,制成地太阳电池地填充因子高达.文档收集自网络,仅用于个人学习制备多晶薄膜地多种工艺和技术已经开发出来,如近空间升华、电沉积、、、、丝网印刷、溅射、真空蒸发等.丝网印刷烧结法:由含、浆料进行丝网印刷、膜,然后在~℃可控气氛下进行热处理得大晶粒薄膜. 近空间升华法:采用玻璃作衬底,衬底温度~℃,沉积速率μ. 真空蒸发法:将从约℃加热钳埚中升华,冷凝在~℃衬底上,典型沉积速率. 以吸收层,作窗口层半导体异质结电池地典型结构:减反射膜玻璃()背电极.电池地实验室效率不断攀升,最近突.世纪年代初,电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在左右.商业化电池效率平均为. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习人们认为,薄膜太阳电池是太阳能电池中最容易制造地,因而它向商品化进展最快.提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层地厚度,可减少入射光地损失,从而增加电池短波响应以提高短路电流密度,较高转换效率地电池就采用了较薄地窗口层而创了最高纪录.要降低成本,就必须将地沉积温度降到℃以下,以适于廉价地玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式地设计、研究和优化过程.近年来,不仅有许多国家地研究小组已经能够在低衬底温度下制造出转换效率以上地太阳电池,而且在大面积组件方面取得了可喜地进展,许多公司正在进行薄膜太阳电池地中试和生产厂地建设.有地已经投产. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习在广泛深入地应用研究基础上,国际上许多国家地薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产.年美国地电池产量就为,目前,美国高尔登光学公司( )在薄膜电池地生产能力为,日本地电池产量为.德国公司将在建成一家年产地薄膜太阳电池组件生产厂,预计其生产成本将会低于$.该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美地外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低. 公司计划在生产薄膜太阳电池.而公司也将进一步扩大薄膜太阳电池生产. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习薄膜太阳电池是薄膜太阳电池中发展较快地一种光伏器件.美国南佛罗里达大学于年用升华法在面积上做出效率为地太阳电池,随后,日本报道了基电池以作吸收层,作窗口层地半导体异质结电池,其典型结构为玻璃背电极,小面积电池最高转换效率,成为当时薄膜太阳能电池地最高纪录,近年来,太阳电池地研究方向是高转换效率,低成本和高稳定性.因此,以为代表地薄膜太阳电池倍受关注,报道了面积为电池转换效率达到地水平.美国国家可再生能源实验室提供了地面积为薄膜太阳电池地测试结果,转换效率达到地薄膜太阳电池,面积为,效率为,面积为地太阳电池,转换效率达到地太阳电池,面积为,转换效率为. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习碲化镉薄膜太阳电池地制造成本低,目前,已获得地最高效率为,是应用前景最好地新型太阳电池,它已经成为美、德、日、意等国研究开发地主要对象. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习薄膜太阳电池较其他地薄膜电池容易制造,因而它向商品化进展最快.已由实验室研究阶段走向规模化工业生产.下一步地研发重点,是进一步降低成本、提高效率并改进与完善生产工艺.太阳能电池在具备许多有利于竞争地因素下,但在年其全球市占率仅﹪,目前电池商业化产品效率已超过﹪,究其无法耀升为市场主流地原因,大至有下列几点:一、模块与基材材料成本太高,整体太阳能电池材料占总成本地﹪,其中半导体材料只占约﹪.二、碲天然运藏量有限,其总量势必无法应付大量而全盘地倚赖此种光电池发电之需.三、镉地毒性,使人们无法放心地接受此种光电池. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习太阳能电池作为大规模生产与应用地光伏器件,最值得关注地是环境污染问题.有毒元素对环境地污染和对操作人员健康地危害是不容忽视地.我们不能在获取清洁能源地同时,又对人体和人类生存环境造成新地危害.有效地处理废弃和破损地组件,技术上很简单.而是重金属,有剧毒,地化合物与一样有毒.其主要影响,一是含有地尘埃通过呼吸道对人类和其他动物造成地危害;二是生产废水废物排放所造成地污染.因此,对破损地玻璃片上地和应去除并回收,对损坏和废弃地组件应进行妥善处理,对生产中排放地废水、废物应进行符合环保标准地处理.目前各国均在大力研究解决薄膜太阳能电池发展地因素,相信上述问题不久将会逐个解决,从而使碲化镉薄膜电池成为未来社会新地能源成分之一.文档收集自网络,仅用于个人学习。

薄膜太阳能电池分类

薄膜太阳能电池分类

薄膜太阳能电池分类薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。

薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。

薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。

1.硅基薄膜电池硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。

非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。

为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。

2.碲化镉(CdTe)薄膜电池碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。

不过由于镉元素可能对环境造成污染,使用受到限制。

近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。

3.铜铟镓硒(CIGS)薄膜电池铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。

基底一般用玻璃,也可用不锈钢作为柔性衬底。

实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。

4.砷化镓(GaAs)薄膜电池砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被应用于人造卫星的太阳电池板。

薄膜太阳能电池种类

薄膜太阳能电池种类

薄膜太阳能电池种类薄膜太阳能电池是一种新型的太阳能电池技术,相比传统的硅基太阳能电池,薄膜太阳能电池具有更轻薄、柔性、低成本等优点。

随着科技的不断进步,薄膜太阳能电池也在不断发展和演进。

本文将介绍几种常见的薄膜太阳能电池种类。

1. 铜铟镓硒薄膜太阳能电池(CIGS)铜铟镓硒薄膜太阳能电池是目前应用最广泛的薄膜太阳能电池之一。

它是由铜(Copper)、铟(Indium)、镓(Gallium)和硒(Selenium)等元素组成的薄膜材料。

CIGS薄膜太阳能电池具有高光电转换效率、良好的低光照性能和较高的稳定性。

此外,CIGS 薄膜太阳能电池制造工艺简单,可采用卷绕式生产,适用于大规模生产。

2. 钙钛矿薄膜太阳能电池钙钛矿薄膜太阳能电池是近年来兴起的一种新型薄膜太阳能电池。

钙钛矿材料具有优异的光电转换效率,可以达到甚至超过传统硅基太阳能电池的效率。

钙钛矿薄膜太阳能电池制作工艺相对简单,可以采用喷涂、印刷等低成本制备技术。

然而,钙钛矿薄膜太阳能电池的稳定性仍然是一个挑战,需要进一步的研究和改进。

3. 有机薄膜太阳能电池有机薄膜太阳能电池是一种利用有机半导体材料制作的薄膜太阳能电池。

有机薄膜太阳能电池具有柔性、轻薄、透明等特点,可以应用于更广泛的场景,如可穿戴设备、建筑外墙等。

有机薄膜太阳能电池的制备工艺相对简单,可以采用印刷、喷涂等低成本的大面积制备技术。

然而,有机薄膜太阳能电池的光电转换效率相对较低,稳定性也有待提高。

4. 硒化镉薄膜太阳能电池硒化镉薄膜太阳能电池是一种利用硒化镉材料制作的薄膜太阳能电池。

硒化镉薄膜太阳能电池具有高光电转换效率和较好的稳定性。

硒化镉薄膜太阳能电池的制备工艺相对简单,可以采用蒸镉、蒸硒等方法制备。

然而,硒化镉薄膜太阳能电池的环境友好性存在争议,因为镉元素对环境有一定的污染风险。

总结一下,薄膜太阳能电池是太阳能电池技术的重要分支,具有轻薄、柔性、低成本等优点。

铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机薄膜太阳能电池和硒化镉薄膜太阳能电池是其中的几种常见类型。

光伏电池 结构

光伏电池 结构

光伏电池结构光伏电池结构光伏电池是将太阳能直接转化为电能的一种装置。

它采用半导体材料,通过光生电效应将太阳光能转化为电能。

光伏电池的结构包括以下几个主要部分:表面玻璃罩、透明导电膜、P-N结、金属电极和背面基片。

1. 表面玻璃罩表面玻璃罩是光伏电池的外部保护层,它起到保护内部电池结构的作用。

玻璃罩需要具备高透明性和良好的耐候性,以确保太阳光能够顺利进入电池内部。

2. 透明导电膜透明导电膜位于玻璃罩下方,在光伏电池中起到导电和反射光线的作用。

透明导电膜通常采用氧化锡或氧化铟锡等材料制成,它具备高导电性和透明性,能够将光线传导至下方的P-N结。

3. P-N结P-N结是光伏电池中最关键的部分,也是光生电效应的发生地。

它由P型半导体和N型半导体组成。

P型半导体的材料通常是硼,它具有电子缺乏;N型半导体的材料通常是磷或砷,它具有电子过剩。

当太阳光照射到P-N结上时,光子的能量会使得P型半导体中的电子被激发,从而跃迁到N型半导体中,产生电流。

4. 金属电极金属电极是将光伏电池中产生的电流引出的部分。

它通常由铝或银等导电性良好的金属制成,能够将电流迅速传输至外部电路。

金属电极通过连接线将光伏电池与其他电池组件或电网连接在一起,实现电能的利用或储存。

5. 背面基片背面基片是光伏电池的支撑材料,通常由硅等半导体材料制成。

背面基片需要具备良好的导电性和机械强度,以支撑整个光伏电池结构。

背面基片的导电性能也会对光伏电池的发电效率产生影响。

光伏电池的结构设计旨在最大限度地利用太阳能,并将其转化为电能。

通过合理选择材料和优化结构,可以提高光伏电池的发电效率。

同时,光伏电池的结构也需要具备可靠性和稳定性,以确保其长期稳定运行。

光伏电池的结构包括表面玻璃罩、透明导电膜、P-N结、金属电极和背面基片等部分。

这些部分相互配合,将太阳能转化为电能,并通过金属电极引出。

光伏电池的结构设计对于光伏发电的效率和可靠性具有重要影响,因此在实际应用中需要不断改进和优化。

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍技术及制备工艺介绍第一章薄膜光伏电池技术及进展概况简述一、全球要紧薄膜光伏电池技术简介图:薄膜光伏电池结构二、薄膜光伏电池进展概况(一)非晶硅薄膜电池的大规模应用堪忧中国有超过20 家非晶硅薄膜电池厂商,共约1.1GW 产能,其中800MW的转换效率为6%-7%,300MW 的转换效率高于8.5%,最高的转换效率能够达到9%-10%,生产成本为约0.8 美元/W。

假如非晶硅薄膜电池的转换效率为10%,组件的价格低于晶体硅电池的75%,才有竞争力。

随着今年晶硅电池成本的下降与转换效率的稳步提升,2010 年7月,美国应用材料公司(Applied Materials)宣布,停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。

8 月,无锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。

非晶硅薄膜电池要继续扩张市场份额,还需要突破其转换率低与衰减性等问题,建立市场信心。

另外,非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势,但目前BIPV 仍面临透光度与转换效率的两难逆境,大规模应用尚未推行,非晶硅薄膜电池前景堪忧。

(二)CdTe薄膜电池难以成为国内企业的进展重点CdTd 薄膜电池方面,美国First Solar 一枝独秀。

First Solar 组件效率已达11%,成本降低到0.76 美元/W,在所有太阳电池中成本最低。

First Solar 今年产能约1.4GW,估计2011、2012 年分别达到2.1GW 、2.7GW。

在电池制造技术与装备制造,市场份额与规模效应方面,FirstSolar 已经占据了绝对优势,国内企业难以有较大进展,目前国内介入CdTe 电池的企业仅三家,且均未实现大规模量产。

另一方面,碲属于稀有元素,在地壳里仅占1x10-6 。

已探明储量14.9 万吨,该技术的未来进展空间受限。

估计CdTe 技术不可能成为我国企业进展薄膜电池的要紧方向。

太阳能电池板的分类及特点详细介绍

太阳能电池板的分类及特点详细介绍

太阳能电池板的分类及特点详细介绍太阳能电池板是一种将太阳能转化为电能的装置,广泛应用于太阳能发电系统中。

太阳能电池板根据不同的材料和工艺,可以分为单晶硅、多晶硅、薄膜和有机太阳能电池板等不同类型。

下面将逐一介绍各种类型的太阳能电池板及其特点。

1.单晶硅太阳能电池板:单晶硅太阳能电池板由单晶硅元件组成,具有高效能转化率和较高的稳定性。

其制造过程中采用了较高的温度和气氛,因此成本相对较高。

单晶硅太阳能电池板的特点包括高效率、较长的使用寿命和良好的稳定性,但其能量密度较低,故面积较大。

2.多晶硅太阳能电池板:多晶硅太阳能电池板以多晶硅元件制成,制造过程简单,因此成本相对较低。

多晶硅太阳能电池板的特点包括性价比高、适用于大规模生产和可塑性强。

然而,多晶硅太阳能电池板的转化效率较低,且在高温环境下性能容易衰减。

3.薄膜太阳能电池板:薄膜太阳能电池板由柔性材料上的薄膜组成,可以分为非晶硅薄膜、铜铟镓硒薄膜(CIGS)和碲化铟镓薄膜(CIG)等。

薄膜太阳能电池板具有重量轻、可弯曲性强等特点,可以应用于曲面建筑物和可穿戴设备中。

然而,薄膜太阳能电池板的转化效率一般较低,且使用寿命有限。

4.有机太阳能电池板:有机太阳能电池板由有机材料构成,具有低成本、柔性和轻质等优点。

有机太阳能电池板的制造工艺相对简单且环境友好。

然而,有机太阳能电池板的转化效率较低,且在高温和潮湿环境下易受到损坏。

总体而言,太阳能电池板是将太阳能转化为电能的装置,根据不同的材料和工艺,可以分为单晶硅、多晶硅、薄膜和有机太阳能电池板等不同类型。

每种类型的太阳能电池板都有其独特的特点和应用场景。

单晶硅太阳能电池板具有高效率和较长的使用寿命,适用于需要高转化效率和稳定性的场合;多晶硅太阳能电池板具有低成本和可塑性强,适用于大规模生产和柔性应用;薄膜太阳能电池板具有重量轻、可弯曲性强的特点,适用于曲面建筑物和可穿戴设备;有机太阳能电池板具有低成本和环境友好的特点,适用于柔性和轻质应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三种主要的薄膜太阳能电池详解摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。

砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。

关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。

为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。

其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。

来源:大比特半导体器件网上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。

砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。

来源:大比特半导体器件网砷化镓太阳能电池GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。

砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。

磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。

磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。

GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。

GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。

用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。

以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。

已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。

砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。

由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。

除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。

来源:大比特半导体器件网1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。

首次制备的GaInP电池转换效率为14.7%。

另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。

来源:大比特半导体器件网砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。

但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs电池的普及。

来源:大比特半导体器件网铜铟硒电池铜铟硒CuInSe2简称CIC.CIS材料的能降为 1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。

因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。

CIS电池薄膜的制备主要有真空蒸镀法和硒化法。

真空蒸镀法是采用各自的蒸发源蒸镀铜,铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。

CIS薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。

日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2) 。

1995年美国可再生能源研究室研制出转换效率17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。

预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。

CIS作为太阳能电池的半导体材料,具有价格低廉,性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。

唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。

来源:大比特半导体器件网碲化镉太阳能电池CdTe是Ⅱ-Ⅵ族化合物半导体,带隙 1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料,具有很高的理论效率(28%),性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。

碲化镉容易沉积成大面积的薄膜,沉积速率也高。

CdTe薄膜太阳电池通常以CdS /CdT e异质结为基础。

尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达 F F =0.75。

制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等。

丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS 膜,然后在600~700℃可控气氛下进行热处理1h 得大晶粒薄膜。

近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min. 真空蒸发法:将CdTe 从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1nm/s. 以CdTe 吸收层,CdS 作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。

电池的实验室效率不断攀升,最近突16%。

20世纪90年代初,CdTe电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。

商业化电池效率平均为8%-10%。

来源:大比特半导体器件网人们认为,CdTe薄膜太阳电池是太阳能电池中最容易制造的,因而它向商品化进展最快。

提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS 的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的CdTe 电池就采用了较薄的CdS 窗口层而创了最高纪录。

要降低成本,就必须将CdTe 的沉积温度降到550 ℃以下,以适于廉价的玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式的设计、研究和优化过程。

近年来,不仅有许多国家的研究小组已经能够在低衬底温度下制造出转换效率12%以上的CdTe 太阳电池,而且在大面积组件方面取得了可喜的进展,许多公司正在进行CdTe 薄膜太阳电池的中试和生产厂的建设。

有的已经投产。

来源:大比特半导体器件网在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。

1998年美国的CdTe电池产量就为0.2MW,目前,美国高尔登光学公司(Golden P hoto)在CdTe薄膜电池的生产能力为2MW,日本的CdTe电池产量为 2.0MW。

德国ANTEC 公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/W。

该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。

BP Solar公司计划在Fairf ield生产CdTe薄膜太阳电池。

而Solar Cells公司也将进一步扩大CdTe薄膜太阳电池生产。

来源:大比特半导体器件网CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。

美国南佛罗里达大学于1993年用升华法在1cm2面积上做出效率为15.8 %的太阳电池,随后,日本Matsushita Battery报道了CdTe基电池以CdTe作吸收层,CdS作窗口层的n-CdS/ P - CdTe半导体异质结电池,其典型结构为MgF2/玻璃/ SnO2:F/ n-CdS/ P- dTe/背电极,小面积电池最高转换效率16%,成为当时CdTe薄膜太阳能电池的最高纪录,近年来,太阳电池的研究方向是高转换效率,低成本和高稳定性。

因此,以CdTe为代表的薄膜太阳电池倍受关注,Siemens报道了面积为3600cm2电池转换效率达到11.1%的水平。

美国国家可再生能源实验室提供了Solar Cells lnc的面积为6879cm2CdTe 薄膜太阳电池的测试结果,转换效率达到7.7%;Bp Solar的CdTe薄膜太阳电池,面积为4540cm2,效率为8.4%,面积为706cm2的太阳电池,转换效率达到10.1%;Goldan P hoton的CdTe太阳电池,面积为3528cm2,转换效率为7.7%。

来源:大比特半导体器件网碲化镉薄膜太阳电池的制造成本低,目前,已获得的最高效率为16%,是应用前景最好的新型太阳电池,它已经成为美、德、日、意等国研究开发的主要对象。

来源:大比特半导体器件网CdTe薄膜太阳电池较其他的薄膜电池容易制造,因而它向商品化进展最快。

已由实验室研究阶段走向规模化工业生产。

下一步的研发重点,是进一步降低成本、提高效率并改进与完善生产工艺。

CdTe太阳能电池在具备许多有利于竞争的因素下,但在2002年其全球市占率仅0.42﹪,目前CdTe电池商业化产品效率已超过10﹪,究其无法耀升为市场主流的原因,大至有下列几点:一、模块与基材材料成本太高,整体CdTe太阳能电池材料占总成本的53﹪,其中半导体材料只占约 5.5﹪。

二、碲天然运藏量有限,其总量势必无法应付大量而全盘的倚赖此种光电池发电之需。

三、镉的毒性,使人们无法放心的接受此种光电池。

来源:大比特半导体器件网CdTe太阳能电池作为大规模生产与应用的光伏器件,最值得关注的是环境污染问题。

有毒元素Cd对环境的污染和对操作人员健康的危害是不容忽视的。

我们不能在获取清洁能源的同时,又对人体和人类生存环境造成新的危害。

有效地处理废弃和破损的CdTe组件,技术上很简单。

而Cd是重金属,有剧毒,Cd的化合物与Cd一样有毒。

其主要影响,一是含有Cd 的尘埃通过呼吸道对人类和其他动物造成的危害;二是生产废水废物排放所造成的污染。

因此,对破损的玻璃片上的Cd和Te应去除并回收,对损坏和废弃的组件应进行妥善处理,对生产中排放的废水、废物应进行符合环保标准的处理。

相关文档
最新文档