圆柱的表面积优秀教学设计

合集下载

圆柱的表面积教学设计【3篇】

圆柱的表面积教学设计【3篇】

圆柱的表面积教学设计【优秀3篇】在教学工实际的教学活动中,就有可能用到教学设计,借助教学设计可以更好地组织教学活动。

那么优秀的教学设计是什么样的呢?这次本文范文为您整理了3篇《圆柱的表面积教学设计》,希望可以启发、帮助到大朋友、小朋友们。

圆柱的表面积教学设计篇一一、设计理念新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”二、教学策略1.创设生活情景,激励自主探索。

2.创建探究空间,主动发现新知。

3.自主总结规律,验证领悟新知。

4.解决生活问题,深化所学新知。

三、教材分析《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。

例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。

例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

四、教学目的:使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

五、教学难点:理解和掌握求圆柱表面积的计算方法。

六、教具准备:圆柱表面积展开模型电脑课件学具准备:易拉罐、白纸壳、剪子七、教学过程(一)创设生活情景,激励自主探索在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。

”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的'问题以后在研究,今天我们来解决用料问题。

假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”(评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。

)(二)创设探究空间,主动发现新知1、认识圆柱的表面积师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

《圆柱的表面积》教学设计(优秀8篇)

《圆柱的表面积》教学设计(优秀8篇)

《圆柱的表面积》教学设计(优秀8篇)《圆柱的表面积》教学设计篇一一、学习目标:1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:掌握圆柱侧面积和表面积的计算方法。

三、学习难点:运用所学的知识解决简单的实际问题。

四、学习过程:(一)、旧知复习1、圆柱有几个面?分别是、和。

2、底面是形,它的面积=。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个形。

它的长等于圆柱的,宽等于圆柱的。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?(二)列式为1、圆柱的侧面积(1)圆柱的侧面积指的是什么?(2)圆柱的侧面积的计算方法:圆柱的'侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。

因为长方形的面积=,所以圆柱的侧面积=。

(3)侧面积的练习求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。

②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积(1)圆柱的表面是由和组成。

(2)圆柱的表面积的计算方法:圆柱的表面积=(3)圆柱的表面积练习题一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)分析,理解题意:求需要用多少面料,就是求帽子的。

需要注意的是厨师帽没有下底面,说明它只有个底面。

列式计算:① 帽子的侧面积=② 帽顶的面积=③ 这顶帽子需要用面料=小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。

如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。

求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

《圆柱的表面积》教学设计(优秀5篇)

《圆柱的表面积》教学设计(优秀5篇)

《圆柱的表面积》教学设计(优秀5篇)《圆柱的表面积》数学教案篇一设计说明本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。

根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:1.利用迁移、猜想,理解圆柱表面积的意义。

新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

2.利用演示、分析探究圆柱表面积的求法。

直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

3.联系实际,解决问题。

在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

课前准备教师准备PPT课件学生准备圆柱形实物教学过程⊙复习导入1.铺垫。

师:长方体的表面积指的是什么?(6个面的面积之和)师:怎样求长方体的表面积?预设生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

2.迁移。

(1)圆柱的表面积指的是什么?(三个面的面积之和)(2)怎样求圆柱的表面积?(生自由回答)3.导入。

圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。

这节课我们就来学习圆柱的表面积的相关知识。

(板书:圆柱的表面积)设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

圆柱的表面积教案

圆柱的表面积教案

圆柱的表面积教案圆柱的表面积教案1教材内容:23-24页教学目标:1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

教学重难点:通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。

教学具准备:与练习六中的练习相关的图片。

教学过程:一、复习引入1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

二、基本练习1、出示练习六第3题,理解表格意思。

2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?各自计算,算后填写在书中表格里,再交流方法和得数。

3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?各自计算,算后填写在书中表格里,再交流方法和得数。

4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?各自计算,算后交流方法和得数。

三、综合练习1、完成练习六第4题。

⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?⑵各自练习后交流算法。

2、完成练习六第5题。

⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?⑵各自练习后交流算法和结果。

3、讨论练习六第7题。

⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?⑵看看,这个博士帽是怎么做成的,包括哪几个部分?⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?⑷各自计算,算后交流算法和结果。

⑸如果要做10顶呢?怎么算?3、讨论练习六第8题。

人教版数学六年级下册《圆柱的表面积》教案

人教版数学六年级下册《圆柱的表面积》教案

人教版数学六年级下册《圆柱的表面积》教案一、教学目标1.知识与技能:学生能够认识圆柱体,了解圆柱的特点,掌握计算圆柱的表面积的方法。

2.过程与方法:通过教师讲解、示范、引导和训练,培养学生观察问题、分析问题和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发他们探求知识的欲望,增强自信心和合作意识。

二、教学重点与难点重点:1.认识圆柱体的概念。

2.掌握计算圆柱的表面积的方法。

难点:1.理解圆柱的表面积计算方法。

2.应用所学知识解决实际问题。

三、教学过程1. 导入新知识教师出示一个圆柱模型,让学生观察并描述圆柱的特点,引入圆柱的概念。

2. 学习新知识1.教师讲解圆柱的表面积的计算方法:$S=2\\pi rh+2\\pi r^2$。

2.老师示范计算圆柱的表面积,引导学生理解公式中的含义。

3. 反馈与训练1.学生进行练习,计算给定圆柱的表面积。

2.学生上台展示计算结果,让其他同学评价和指正。

4. 拓展与应用1.给学生提供一些实际生活中的问题,让他们运用所学知识计算圆柱的表面积。

2.学生进行小组讨论,分享解题思路和答案。

5. 总结与展示学生们根据学习情况总结本节课所学内容,并进行展示分享,加深对圆柱表面积计算的理解。

四、课堂小结通过本节课的学习,学生们掌握了圆柱的表面积计算方法,提高了数学解决问题的能力,激发了对数学的兴趣和学习的积极性。

五、作业1.完成课堂上的练习题。

2.布置实际生活中有关圆柱表面积的问题,让学生继续练习和思考。

以上便是本次《圆柱的表面积》教案的内容,希望能够帮助学生更好地掌握这一知识点。

小学数学《圆柱的表面积》教学设计优秀6篇

小学数学《圆柱的表面积》教学设计优秀6篇

小学数学《圆柱的表面积》教学设计优秀6篇圆柱的表面积教学设计篇一一、教学目标【知识与技能】结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

【过程与方法】通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

【情感态度与价值观】能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

二、教学重难点【教学重点】圆柱表面积的计算方法以及在生活中的应用。

【教学难点】圆柱表面积的计算方法在生活中的应用。

三、教学过程(一)导入新课师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。

大家来看,这个圆柱形状的物体。

它的'制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)(二)生成原理(1)介绍圆柱的侧面积、底面积和表面积师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

(2)创疑激趣师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?(3)小组合作交流师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)ppt展示小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

(4)学会计算圆柱的表面积师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

《圆柱表面积》的教学设计(通用11篇)

《圆柱表面积》的教学设计(通用11篇)

《圆柱表面积》的教学设计《圆柱表面积》的教学设计(通用11篇)作为一无名无私奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。

教学设计要怎么写呢?下面是小编帮大家整理的《圆柱表面积》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《圆柱表面积》的教学设计篇1教学目标:(1)理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱体的侧面积和表面积。

(2)培养学生观察操作概括的能力以及利用知识合理灵活地分析、解决实际问题地能力。

教学重点:理解和掌握求圆柱表面积的计算方法教学难点:解答有关圆满柱体实物表面积的实际问题。

教学关键:充分运用多媒体演示,引导学生观察,推导出面积公式。

教具准备:学生准备自制圆柱、剪刀。

教学过程:一、检查复习,引入新课。

1.检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

2.复习:(1)点名说说两底的关系,圆柱的高以及侧面积展开可能是什么图形。

(2)圆柱的特征是什么?(3)答下面问题:一个圆形花池,直径是5米,周长是多少?长方形的面积怎样计算?长方形的面积=长×宽。

3.引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

板书:圆柱的表面积二、引导探究,学习新知。

1.侧面积的意义和计算方法。

(1)摸一摸自制的圆柱的侧面,谈谈自己感觉到了什么.(2)想一想用我们已有的知识,能不能求出这个曲面的面积。

小组讨论:有什么好办法求出圆柱的侧面积吗?(3)剪一剪自制的圆柱汇报交流结果。

(4)说一说:圆柱的侧面可转化为已学过的平面图形,它的侧面积正好等于底面周长与高的乘积。

板书:圆柱的侧面积=底面周长×高(5)算一算:选出下图中给出的数据,求出侧面积。

(单位:厘米)小组汇报结果:可能出现的计算方法有方法一:25.12×20=502.4(平方厘米)方法二:3.14×8×20=502.4(平方厘米)方法三:3.14×(2×4)×20=502.4(平方厘米)小结:计算圆柱的侧面积,要根据所给的已知条件灵活计算。

《圆柱的表面积》教学设计精选8篇

《圆柱的表面积》教学设计精选8篇

《圆柱的表面积》教学设计精选8篇《圆柱的表面积》教学设计篇一课题圆柱的表面积教时一3(3)学习目标1、进一步理解圆柱体侧面积和表面积的含义。

2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

学习重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

过程与方法教师活动一、基本练习二、实际应用求压路的面积是求什么?三、实践活动学生活动说说计算方法。

说自己的想法,独立解答。

说自己的想法,独立解答。

学生讨论后完成。

学生实际操作。

板书设计圆柱的表面积教学反思学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

但是个别学生计算的不准。

课题圆柱的表面积教时一4(4)学习目标1、进一步理解圆柱体侧面积和表面积的含义。

2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

学习重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

过程与方法教师活动实际应用1、2、3、学生活动指名读题,说出题意以及解题思路,然后指名做出。

结合生活实际进一步明确题意,以便做出。

学生互评互议。

板书设计圆柱的表面积圆柱的表面积=圆柱的侧面积+底面积×2教学反思在实际应用中,简单的问题还能轻松完成。

《圆柱的表面积》教学设计篇二教案背景:冀教20xx课标版小学数学六年级下册第四单元教学课题:圆柱的侧面积。

教材分析:本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。

圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。

所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。

教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。

在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱的表面积优秀教学设计
教学目标:
1.使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2.培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析,解决实际问题的能力。

3.培养学生的合作意识和主动探究知识的学习品质和实践能力。

学情分析:
本班共有学生48人,由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的学生已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。

教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

重点难点:
1.圆柱表面积的计算。

2.圆柱侧面积计算方法的推导。

准备:
圆柱、课件。

教学过程:
第1课时
一、复习旧知。

1.出示圆柱,并说说圆柱的特征。

2.圆柱的表面积指的什么?
二、探究新知。

1.圆柱表面积。

(1)出示圆柱的展开图:圆柱的表面积指的是什么?(通过演示,使学生认识到:圆柱的表面积指的是圆柱的侧面积与两个底面积的和。


(2)请同学们看着圆柱表面积展开的图形想一想:圆柱的表面积应该怎样计算?(圆柱的表面积=圆柱的侧面积+两个底面的面积)
2.圆柱的侧面积。

(1)圆柱的侧面是一个曲面,怎样计算它的面积呢?
(2)想一想:能否将这个曲面转化成我们学过的平面图形,开动脑筋想一想侧面积该怎样计算?(圆柱的侧面积=长方形的面积)(3)引导学生根据展开后的长方形的长和宽与圆柱底面周长和高有什么关系?(圆柱的侧面积=底面积×高)
(4)用字母怎么表示这个公式?(S侧=Ch;利用直径计算S侧=πdh;利用半径计算S侧=2πrh)
(5)表面积与侧面积有什么不同?
3.教学例4。

(1)出示例4。

学生读题,想一想:求多少面料就是求什么?
(2)“没有底”的帽子如果展开,它由哪几部分组成?(一个底面和一个侧面组成)
(3)指名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。

(做完后,集体订正。

指名学生回答自己在计算时,最后的得数是怎样取得的。

由此指出:这道题使用的材料要比计算得到的结果多一些。

因此,这里不能用四舍五入法取近似值。

这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。

这种取近值的方法叫做进一法。

①侧面积:3.14×20×30=1884(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1884+314=2198≈2200(平方厘米)
4.小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、小组合作。

1.生拿出准备的圆柱。

(1)展开圆柱,观察展开的图形。

(2)表面积与侧面积有什么不同?
(3)小组交流汇报。

2.出示一个圆柱形的水桶。

(1)出示水桶,让生观察说说有哪些面?(2)与刚才讲的例题中的圆柱有什么区别?(3)交流汇报。

四、巩固练习。

1.完成教材P21页的“做一做”。

2.完成教材P22页的“做一做”。

五、课堂检测。

1.出示。

(1)生独立完成出示的题。

(2)课堂检查检测结果。

2.小结检测结果。

六、作业。

相关文档
最新文档