七年级数学上册 第4章 图形的认识小结与复习教案 (新版)湘教版

合集下载

蜀山区第一中学七年级数学上册第4章图形的认识章末复习教案新版湘教版

蜀山区第一中学七年级数学上册第4章图形的认识章末复习教案新版湘教版

第4章图形的认识章末复习【知识与技能】1.理解线段、直线和射线的区别与联系,掌握两点确定一条直线及两点之间线段最短等性质,会比较线段的大小,并进行计算.2.理解角的概念,会比较角的大小,会进行角的度数的计算.3.了解互为余角、互为补角的概念,理解它们的性质.【过程与方法】经历利用相交线、平行线的有关事实解决实际问题的过程.从中体会分析问题,解决问题的一些思想(分类、转换、建模)和方法(分析、综合),发展空间观念和推理能力.【情感态度】在观察、想象、推理、交流的数学活动中.初步养成言之有据的习惯,初步形成积极参与数学活动.与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】线段和角的概念及其相关的性质.【教学难点】角的度数的计算.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.立体图形的概念:各部分不在同一平面内的几何图形叫做立体图形.2.平面图形的概念:各部分都在同一平面内的几何图形是平面图形.3.线段、射线、直线的区别:4.线段、直线的相关定理:过两点又且只有一条直线.简称两点确定一条直线.两点之间的所有连线中,线段最短.简称“两点之间线段最短”.5.角的概念:我们把一条射线绕着它的端点从一个位置旋转到另外一个位置时所成的图形叫做角.6.角的大小比较方法:①度量法;②叠合法.7.角平分线的概念:以一个角的顶点为端点的一条射线,如果把这个角分成两个相等的角,那么这条射线叫做这个角的平分线.8.角的度数之间的换算率:1°=60′1′=60″1′=(160)°1″=(160)′9.余角的概念:如果两个角的和是90°,那么这两个角互为余角,其中一个角是另一个角的余角.10.补角的概念:如果两个角的和是180°,那么这两个角互为补角,其中一个角是另一个角的补角.11.余角、补角的相关定理:同角(或等角)的补角相等.同角(或等角)的余角相等.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列说法中,正确的有(C)(1)过两点有且只有一条线段;(2)连结两点的线段叫做两点的距离;(3)两点之间,线段最短;(4)AB=BC,则点B是线段AC的中点;(5)射线比直线短.A.1个B.2个C.3个D.4个2.一个角的补角为158°,那么这个角的余角是(B)A.22°B.68°C.52°D.112°3.如图所示,OC平分∠AOD,OD平分∠BOC,下列等式不成立的是(B)A.∠AOC=∠BODB.2∠DOC=∠BOAC.∠AOC=12∠AODD.∠BOC=2∠BOD°=_____度_____分_____秒.答案:79,25,125.已知∠α为锐角,则它的补角比它的余角大度.答案:90°6.在下图中,线段的条数是_____.角共有_____个.答案:15,187.已知线段a,b,求作线段AB使AB=2a-b(不写作法,保留作图痕迹).解:略.8.计算:(1)30°25′×3;(2)48°39′+67°31′;(3)90°-78°19′23″.答案:(1)91°15′;(2)116°10′;(3)11°40′37″9.已知线段AB,延长AB至C,使BC=13AB,D是AC的中点,如果DC=2 cm,求AB的长.答案:3 cm【教学说明】通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.下列说法正确的是(B)A.直线AB和直线BA是两条直线;B.射线AB和射线BA是两条射线;C.线段AB和线段BA是两条线段;D.直线AB和直线a不能是同一条直线.2.如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为(C)A.互余B.互补C.相等D.不能确定.3.下列说法中错误的有(B)(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角A.1个B.2个C.3个D.4个4.如下图所示,把一块长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG和∠BGM的大小.答案:∠DEG=100°,∠BGM=80°5.如图所示,AD=12DB,E是BC的中点,BE=15AC=2cm,求线段DE的长.答案:DE=6cm6.若一个角的补角等于它的余角的4倍,求这个角的度数.答案:60°7.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数.答案:∠2=70°;∠3=180°-∠FOC-∠1=50°8.已知C为线段AB的中点,D为线段AC的中点.(1)画出相应的图形,并求出图中线段的条数;(2)若图中所有线段的长度和为26,求线段AC的长度;(3)若E为线段BC上的点,M为EB的中点,DM=a,CE=b,求线段AB的长度.解:(1)线段一共有6条.(2)设AD=x,则DC=x,CB=2x,AC=2x,DB=3x,AB=4x,∴AD+AC+AB+DC+DB+CB=13x.∴13x=26∴x=2∴AC=4.(3)AB=AC+CE+BE=2DC+CE+2EM=2(DC+EM)+CE=2(a-b)+b=2a-b.【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?布置作业:教材“复习题4”中第4、8、9、11、12、14、16、18题.教师布置任务时要求清晰、到位,再给予相应的评价和鼓励,不但使学生准备学具时积极,形成良好的预习习惯,而且,课堂学生参与度和积极性都很高,课堂效率会有很大的提高.通过课堂上的分组讨论和集体创造,学生在参与的过程中积极主动、兴趣高涨,课堂的授课效果也很理想.正方体的展开与折叠课后作业1.如图,下面图形中不是正方体展开图的是( )2.下图是一个正方体的平面展开图,这个正方体是( )3.如图是一个正方体的表面展开图,原正方体中“祝”的对面是( )A.考B.试C.顺D.利4.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体表面展开图的是( )5.在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上面有粗线,那么将图(1)中剩余的两个面中的粗线画入图(2)中,画法正确的是( )6.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.7.如图,在无阴影的方格中选出2个画阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.8.一个正方体的六个面上分别有“”,“●”,“+”,“○”,“▭”,“”六种不同的符号,如图所示给出了三种状态下的情形.请问:“●”所在面的相对面上的符号是哪一种?9.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.(2013·温州)下列各图中,经过折叠能围成一个正方体的是( )课后作业1.D 考查正方体的展开图.2.D 考查正方体的展开图.3.C 祝的对面是顺.4.C 考查正方体的展开图.5.A 考查正方体的展开图.6.67.如图所示(答案不唯一).8.“●”所在面的相对面上的符号是“○”.从有“○”的两个图形看,与“○”相邻的四个面都不是“●”,所以“○”与“●”所在面是相对面.9.11116的对面是21,19的对面是18,20的对面是17.中考链接A 考查正方体的展开图.同位角、内错角、同旁内角知识要点1.同位角(1)定义:两个角分别在两条被截线同一方,并且都在截线的同侧,具有这种位置关系的一对角叫做同位角.(2)位置特征:在截线同侧,在两条被截线同一方,形如字母“F”.2.内错角(1)定义:两个角都在两条被截线之间,并且分别在截线的两侧,具有这种位置关系的一对角叫做内错角.(2)位置特征:在截线两侧,在两条被截线之间,形如字母“Z”.3.同旁内角(1)定义:两个角都在两条被截线之间,并且在截线的同一旁,具有这种位置关系的一对角叫做同旁内角.(2)位置特征:在截线同侧,在两条被截线之间,形如字母“U”一、单选题1.下列图形中,∠1和∠2是同位角的是()A.B.C.D.2.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”为了便于记忆,同学们可仿照图用双手表示“三线八角”两大拇指代表被截直线,食指代表截线下列三幅图依次表示A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角3.如图,下列结论正确的是().A.∠5与∠2是对顶角;B.∠1与∠3是同位角;C.∠2与∠3是同旁内角;D.∠1与∠2是同旁内角.4.在图中,∠1与∠2不是同旁内角的是().A. B.C.D.5.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠56.如图,下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4是内错角7.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为().A.4 B.8 C.12 D.168.如图,∠1的内错角是( )A.∠2 B.∠3 C.∠4 D.∠59.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 10.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤二、填空题11.如图,直线a,b被直线c所截,互为同旁内角的是________.12.如图,(1)∠1,∠2,∠3,∠4,∠5,∠6是直线______,______被第三条直线_______所截而成的;(2)∠2的同位角是______,∠1的同位角是 _________;(3)∠3的内错角是______,∠4的内错角是 _________;(4)∠6的同旁内角是______________,∠5的同旁内角是________.13.如图所示,∠1和∠2是直线___,__被第三条直线___所截得的___角.14.如图,如果∠2=100°,那么∠1的同位角等于______,∠1的内错角等于_____,∠1的同旁内角等于____.三、解答题15.如图,BE是AB的延长线,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.16.如图所示,(1)∠BED与∠CBE是直线________,________被直线________所截形成的________角;(2)∠A与∠CED是直线________,________被直线________所截形成的________角;(3)∠CBE与∠BEC是直线________,________被直线________所截形成的________角;(4)∠AEB与∠CBE是直线________,________被直线________所截形成的________角.17.看图填空:(1)∠1和∠3是直线________被直线____所截得的______;(2)∠1和∠4是直线_________被直线____所截得的______;(3)∠B和∠2是直线_________被直线_____所截得的______;(4)∠B和∠4是直线_________被直线_____所截得的_______18.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.答案1.D 2.B 3.D 4.D 5.C 6.C 7.D 8.D 9.B10.D11.∠4与∠5,∠3与∠612.(1)AC , AB , EF ;(2)∠5,∠6;(3)∠6, ∠5;(4)∠4, ∠3.13.AC BD AB同位14.80° 80° 100°15.(1)∠A和∠D是由直线AE、CD被直线AD所截形成的,它们是同旁内角;(2)∠A和∠CBA是由直线AD、BC被直线AE所截形成的,它们是同旁内角;(3)∠C和∠CBE是由直线CD、AE被直线BC所截形成的,它们是内错角.16.(1)∠BED与∠CBE是直线DE,CB被直线EB所截成的内错角;(2)∠A与∠CED是直线AD,DE被直线AC所截成的同位角;(3)∠CBE与∠BEC是直线CB,CE被直线BE所截成的同旁内角;(4)∠AEB与∠CBE是直线AE,BC被直线EB所截成的内错角。

七年级数学上册第4章图形的认识小结与复习教案新版湘教版.docx

七年级数学上册第4章图形的认识小结与复习教案新版湘教版.docx

第4章图形的认识小结与复习教学目标1.使学生理.解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2..对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法. 教学手段引导一一活动一一讨论教学方法启发式教学教学过程(一)几何图形r立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、儿何图形[平面图形:三角形、四边形、圆等。

2、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:而和而相交的地方是线,分为直线和曲线.。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(二)直线、射线、线段1、基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB (BA)射线AB线段a线段AB (BA)作法叙述作直线AB;作直线a 作射线AB作线段a;作线段AB;.连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线。

简单地:两点确定一条直线。

3八画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)•、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。

图形:符号:若点M是线段AB的中点,则AM=BM=AB, AB=2AM二2BM。

6、线段的性质两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

7、两点的距离连接两点的线段长度叫做两点的距离。

2018年秋七年级数学上册第4章图形的认识小结与复习教案湘教版

2018年秋七年级数学上册第4章图形的认识小结与复习教案湘教版

第4章图形的认识小结与复习教课目的1.使学生理解本章的知识构造,并经过本章的知识构造掌握本章的所有知识;2.对线段、射线、直线、角的观点及它们之间的关系有进一步的认识;3.掌握本章的所有定理和公义;4.理解本章的数学思想方法;5.认识本章的题目种类.教课要点和难点要点是理解本章的知识构造,掌握本章的所有定理和公义;难点是理解本章的数学思想方法.教课手段指引——活动——议论教课方法启迪式教课教课过程(一)几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形平面图形:三角形、四边形、圆等。

2、立体图形的平面睁开图(1)同一个立体图形按不同的方式睁开,获得的平现图形不同样的。

(2)认识直棱柱、圆柱、圆锥、的平面睁开图,能依据睁开图判断和制作立体模型。

3、点、线、面、体(1)几何图形的构成点:线和线订交的地方是点,它是几何图形最基本的图形。

线:面和面订交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(二)直线、射线、线段1、基本观点直线射线线段图形端点个数无一个两个表示法直线 a射线 AB线段 a直线 AB( BA)线段 AB( BA)作直线 AB;作线段 a;作射线 AB作线段 AB;作法表达作直线 a连结 AB 延伸表达不可以延伸反向延伸射线 AB延伸线段 AB;反向延伸线段 BA 2、直线的性质经过两点有一条直线,而且只有一条直线。

简单地:两点确立一条直线。

3、画一条线段等于已知线段( 1)胸怀法( 2)用尺规作图法4、线段的大小比较方法(1)胸怀法(2)叠合法5、线段的中点(二均分点)、三均分点、四均分点等定义:把一条线段均匀分红两条相等线段的点。

图形:A M B符号:若点M是线段 AB 的中点,则AM=BM=AB, AB=2AM=2BM。

6、线段的性质两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

7、两点的距离连结两点的线段长度叫做两点的距离。

最新湘教版七年级数学上册 第4章 图形的认识 教案教学设计(含教学反思)

最新湘教版七年级数学上册 第4章 图形的认识 教案教学设计(含教学反思)

第4章图形的认识4.1 几何图形 (1)4.2 线段、射线、直线 (4)第1课时线段、射线、直线 (4)第2课时线段长度比较 (8)4.3 角 (13)4.3.1 角与角的大小比较 (13)4.3.2 角的度量与计算 (17)第1课时角的度量与计算 (17)第2课时余角与补角 (20)章末复习 (24)4.1 几何图形【知识与技能】1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形.2.能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.【过程与方法】经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.【情感态度】积极参与教学活动,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感.【教学重点】从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.【教学难点】立体图形与平面图形之间的转化是难点.一、情景导入,初步认知1.观察下列图片,你能抽象出哪些图形?2.观察教师四周,看看有哪些你熟悉的图形?【教学说明】通过图片展示,激发学生的学习兴趣,引领学生步入丰富的几何世界.二、思考探究,获取新知1.前面同学们列举出了一些我们常见的图形,这些图形都是什么图形呢?【归纳结论】从物体外形中抽象出来的图形称为几何图形.各部分不在同一平面内的几何图形叫做立体图形.2.观察下面的图形.这些图形与下面的哪个立体图形对应?【教学说明】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富对几何形状的感性认识.3.想一想:长方形、正方形、三角形、圆等图形有什么共同特点呢?这些图形是什么图形呢?【归纳结论】各部分都在同一平面内的几何图形是平面图形.4.观察下列交通标志,这些标志中含有哪些平面图形呢?虽然立体图形和平面图形是两类不同的几何图形,但它们是相互联系的,立体图形中某些部分是平面图形,如正方体的每个侧面都是正方形.从不同方向观察立体图形,往往会看到不同形状的平面图形.如图,整体上看,我们看到的是长方体;看不同侧面,看到的是长方形或正方形;从长方形或正方形中,我们还可以看到点、线段.有些立体图形是由一些平面图形围成的,将它们的表面适当断开,可以展开成平面图形(如图所示).由此,我们可以发现虽然立体图形与平面图形是两类不同的几何图形,但它们是相互联系的.立体图形中某些部分是平面图形.5.观察下列长方体.(1)从不同方向看,然后说出得到的各种平面图形.(2)你能从这个立体图形中得到哪些平面图形.【教学说明】教师启发,引导,帮助学生完成.6.操作:将一个正方体沿着它的棱剪开,但不剪断,你能得到一个什么形状的平面图形.请相互交流.【归纳结论】有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,展开后是一个平面图形.【教学说明】培养了学生参与意识和合作交流的意识.三、运用新知,深化理解1.下列各组图形都是平面图形的一组是(C)A.三角形、圆、球、圆锥B.线段、角、梯形、长方体C.角、三角形、四边形、圆D.直线、圆柱、长方形、圆2.如图的圆锥是下面(B)平面图形绕轴旋转一周得到的.3.生活中有许多立体图形,想象下列物体分别与哪些图形相类似?(1)易拉罐;(2)铅笔盒;(3)一堆沙子;(4)足球;(5)螺母;(6)金字塔.答案:(1)圆柱(2)长方体(3)圆锥(4)球体(5)棱柱(6)棱锥4.如下图所示,把下面几何体的标号分别写在相对应的括号里面.长方体:{ };棱柱体:{ };圆柱体:{ };球体:{ };圆锥体:{ }.答案:长方体:{②⑤⑧};棱柱体:{②④⑤⑧};圆柱体:{①③⑥};球体:{⑦⑨};圆锥体:{⑩}.【教学说明】巩固提高.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题4.1”中第1、2、4题.通过本节课的学习使我感触很深,我认真的备课,制作课件,设计教学活动,使同学们在轻松愉快的氛围下学习,学生反应热烈,学习效果很好.不足之处是自己的语言不够简练.4.2 线段、射线、直线第1课时线段、射线、直线【知识与技能】1.在现实情境中感受线段、射线、直线等简单平面图形的广泛应用.2.理解线段、射线、直线等概念的意义,掌握它们的表示方法.3.掌握并会应用“两点确定一条直线”这一定理.【过程与方法】通过操作,了解“两点确定一条直线”,积累操作活动经验,初步感受说理的过程.【情感态度】通过练习,使学生学会在活动中与人合作,并养成与他人交流思维的良好学习习惯.【教学重点】线段、射线、直线的意义及直线的性质及其应用.【教学难点】点与直线的位置关系、直线的性质.一、情景导入,初步认知观察下列图片,你们能在其中发现我们所熟知的几何图形吗?【教学说明】利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形.让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情.二、思考探究,获取新知1.下图中,可以近似的看做线段、射线、直线的分别有哪些?【归纳结论】笔直的路灯等实物都给我们以线段的形象,线段有两个端点.线段向一端无限延长形成了射线,射线有一个端点.线段向两端无限延长形成了直线,直线没有端点.2.线段、射线、直线有什么联系与区别呢?请相互交流,完成下表:【教学说明】让学生了解线段、射线、直线的规范的表示方法,并加深对线段、射线、直线的本质性的理解.练习有助于学生理解线段、射线、直线的联系和区别.同时可以巩固对表示方法的掌握.教师应充分调动他们的积极性,让他们广泛参与、积极主动的学习.3.动手画一画,点与直线有几种位置关系?【归纳结论】点在直线上或点在直线外.也可以说成直线经过这个点或直线不经过这个点.4.当两条不同的直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点.5.探究:(1)如图,用尽可能少的钉子把木条固定在木板上,问至少要几颗?(2)过一个点可以画几条直线?过两个点呢?【归纳结论】过两点有且只有一条直线.简称两点确定一条直线.【教学说明】让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生相互协作、猜想验证、反思生活.实际教学中学生纷纷想办法解决问题,老师适当激励,能极大地调动学生参与的热情和主观能动性,把课堂气氛推向一个高潮.这样符合学生的年龄特点和认知特点.三、运用新知,深化理解1.如果你想将一根细木条固定在墙上,至少需要几个钉子(B)A.一个B.两个C.三个D.无数个2.下列说法不正确的是(B)A.线段AB和线段BA是同一条线段B.射线AB和射线BA是同一条射线C.直线AB和直线BA是同一条直线3.下列说法正确的是(D)A.延长直线AB到C;B.延长射线OA到C;C.平角是一条直线;D.延长线段AB到C.4.下列四个图中的线段(或直线、射线)能相交的是(A)A.(1)B.(2)C.(3)D.(4)5.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点探出一条墨线.这个理由是_______________________________.答案:两点确定一条直线6.(1)如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段,请写出来.(2)如图(2)直线l上有3个点,则图中有_____条可用图中字母表示的射线,有_____条线段.答案:(1)射线A1A2,射线A2A1,线段A1A2.(2)4 3.7.用恰当的几何语言描述图形,图(1)可描述为:_____________________图(2)可描述为____________________.答案:点A在直线l上;直线a与直线b相交于点O.8.如图,平面上有A、B、C、D4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上.解:所画图形如下:9.如图,在已有的线段中,能用大写字母表示不同线段共有多少条.解:线段AC上有线段3条;AB上有线段3条;BC上有线段3条;AD上有线段3条;BE上有线段3条;CF上有线段3条;∴共有3×6=18条线段.【教学说明】检测学生的达标情况和巩固练习,同时为学有余力的学生设置了稍具难度和有创新思维的问题,以满足不同学生在数学发展方面的需要.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题4.2”中第1、2、7题.反思整节课的设计亮点,第一,不拘泥于教材,广泛挖掘生活背景素材,由“生活原型——提炼抽象出几何图形——明确性质——辨析理解——操作探究活动——解释运用”这条主线贯穿始终,过渡自然,衔接自如流畅.第二,问题设计合理,学生易上手,易调动学生.比如让学生广泛挖掘生活中蕴含基本图形的例子,让学生动手操作“钉木条”,让学生交流运用性质的例子以及练习题和反馈题组的设计,学生都能主动积极参与,自觉应用数学知识解决问题.第三,在设计中关注学生的人文价值和情感态度.强调知识的主动获得,鼓励学生的积极参与与探究信心的扶植,照顾到学生的年龄特点和经验水平.第2课时线段长度比较【知识与技能】1.会用尺规画一条线段等于已知线段,会比较两条线段的长短.2.掌握并能应用“两点之间线段最短”这一定理.【过程与方法】通过班级学生之间合作及操作探究,引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力.【情感态度】培养学生动手操作能力.【教学重点】线段的大小比较,画一条线段等于已知线段.【教学难点】画一条线段等于已知线段的尺规作图方法.一、情景导入,初步认知1.在班上点两个个子差别不大的学生都坐着,他们谁高谁矮?怎么比较?2.看一看:下列图形,分别比较线段a、b的长短.【教学说明】利用生活中可以感知的情境,极大激发学生的学习兴趣,使学生感受生活中所蕴含的数学道理.让学生感受从实际问题中抽象出所要比较的线段大小的过程.二、思考探究,获取新知1.怎样比较下列线段AB,CD的长短呢?可以采用度量法、折叠法.2.折叠法:将线段CD移到AB上,使点C与点A重合,点B与D都在A的同侧.这时可能出现以下情况.3.如下图,点C落在线段AB的延长线上,设AB=a,AC=b,BC=c,则线段AC就是a与c 的和,叫做b=a+c;线段BC就是b与a的差,记作c=b-a.【教学说明】这样的设计能让学生体会方法的获得过程,同时可以巩固对表示方法的掌握.教师应关注全体学生、充分调动他们的积极性,让他们广泛参与、积极主动的学习.4.杭州湾跨海大桥是跨越杭州湾的便捷通道,大桥北起嘉兴市,跨越宽阔的杭州湾海域后至于宁波市,全长36 km,大桥建成后宁波至上海间的陆路距离缩短了约120 km,你知道是根据什么道理吗?5.从A地到B地,有3条路,走哪条路最近呢?为什么?6.根据上面的两个实际问题,你能得到什么道理?【归纳结论】两点之间的所有连线中,线段最短.简称“两点之间线段最短”.连接两点的线段的长度叫做两点之间的距离.7.你能用圆规画出一条线段等于已知线段吗?【教学说明】小组合作交流画法。

湘教版七年级上册第四章图形的认识复习与小结ppt(共29张)

湘教版七年级上册第四章图形的认识复习与小结ppt(共29张)


是柱体的有_____________,
是锥体的有__________,
是球体的有________.(填序号)
知识模块一:立体图形和平面图形
例1 如图所示,是平面图的有 ①③ ,是柱体的有_②___④__⑤__⑨_____, 是锥体的有___⑦__⑧_____,是球体的有___⑥_____.(填序号)
A.60° B.45° C.30° D.15°
解:设这个角为x° 那么它的补角是180°-x°,余角是90°-x°, 180°-x°=3(90°-x°) 所以180°-x°=270°-3x°,所以x°=45°.
例6:角度的有关计算
如图所示,已知∠AOB=120°,OC,OD分别为∠AOE,∠BOE的平分线.求
球体
立体图形
几何 图形
平面图形
直线 两点确认一条直线
射线
线段
长短比较 两点之间线段最短
度量与计算
大小比较
角平分线

同角(或等角)的余角相等
余角和补角
同角(或等角)的补角相等
知识模块一:立体图形和平面图形
想一想:几何图形的两大类型如何进行合理分类?他们之间有什么区别 和联系?
例1 如图所示,
是平面图的有
33
33
33
33
33
33
3 3
33
33
3 3
33
“隔河相对”,找对立面。
知识模块二:线段、直线、射线
线段、直线、射线有什么区别呢?
图形
AB
线段
a
射线
OA
表示方法
端点数
延伸性
能否度量
直线
l
知识模块二:线段、直线、射线

最新湘教版初一数学上册第四章 图形的认识 全单元教案设计

最新湘教版初一数学上册第四章 图形的认识 全单元教案设计

4.1 几何图形4.2 线段、射线、直线第1课时线段、射线、直线【教材分析】本节是以现实背景为素材,在以往学习线段、射线和直线的基础上,给出了它们的表示方法,并让学生通过探究,体验两点确定一条直线的性质。

同时在情感上激发学生兴趣,培养学生数学感情。

【教学目标】知识目标:在现实情境中了解线段、射线、直线等简单的平面图形;通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。

能力目标:让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。

情感目标:感受图形世界的丰富多彩,能够主动参与教师组织的数学活动。

【教学重点】线段、射线、直线的符号表示方法。

【教学难点】培养学生学会一些几何语言,培养学生的空间观念。

【教学方法】引导发现、尝试指导以及学生的互动合作相结合。

【教学准备】教师:图片,三角板,窄木条。

学生:直尺,几枚图钉,薄窄木条或硬纸板条。

【教学过程】一、认识图形1、看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达极光铁轨输油管道2、想一想:交流小学学过的线段、射线和直线的有关知识。

3、议一议:在我们的现实生活中,还有那些物体可以近似做线段、射线和直线?(让同学们积极发言,尽量让他们举出尽可能多的例子。

)之后教师板书课题《4.1线段、射线和直线》绷紧的琴弦、人行横道线都可以近似地看做线段。

线段有两个端点。

将线段向一个方向无限延长就形成了射线。

射线有一个端点。

将线段向两个方向无限延长就形成了直线。

直线没有端点。

二、图形的表示法活动内容和步骤:(教师画出两条长短不一的线段)1、如何表示2条不同的线段呢?A aBC b D(根据线段的特征,学生思考讨论,教师征集各类结果最后适当加以补充引导说明表示方法)(1)用表示两个端点的大写字母表示:记为线段AB(或BA)、线段CD(或DC)(2)用一个小写字母表示:如记为线段a 、线段b2、如何表示射线呢? A E 射线AE(注意:不能记为射线EA)3、直线又该怎样表示? A B 直线AB(或BA)4a以A 为端点,经过点B 的射线 连结A ,B 两点的线段经过A ,B 两点的直线 5、做一做、比一比⑴用两种方式分别表示图中的两条直线。

2019春湘教版七年级数学上册(XJ)教案第4章 小结与复习

2019春湘教版七年级数学上册(XJ)教案第4章 小结与复习

⎧⎨⎩第4章图形的认识小结与复习教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教学手段引导——活动——讨论教学方法启发式教学教学过程(一)几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形平面图形:三角形、四边形、圆等。

2、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

3、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线。

简单地:两点确定一条直线。

3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。

图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。

6、线段的性质两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

7、两点的距离连接两点的线段长度叫做两点的距离。

8、点与直线的位置关系(1)点在直线上(2)点在直线外。

(三)角1、角:由公共端点的两条射线所组成的图形叫做角。

2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。

湘教版数学七上第4章 图形的认识复习与小结 一等奖创新教案

湘教版数学七上第4章 图形的认识复习与小结 一等奖创新教案

湘教版数学七上第4章图形的认识复习与小结一等奖创新教案第4章图形的认识小结与复习【复习目标】1.进一步认识线段、射线、直线、角的概念及它们的表示方法,并会进行线段的相关计算.2.进一步理解直线及线段的性质并能利用其相关性质解决实际问题.3.进一步理解角的相关概念及表示方法,并会进行角度的相关计算.【复习重点】线段及角的计算.【复习难点】用几何语言进行简单的说理.INCLUDEPICTURE"教学环节指导.TIF" INCLUDEPICTURE "教学环节指导.TIF" \* MERGEFORMAT INCLUDEPICTURE "教学环节指导.TIF" \* MERGEFORMAT行为提示:知识结构图可让学生自主完成.注意:(1)为了区分有公共顶点的几个角,一般用三个大写字母表示角;(2)角的度、分、秒间的换算是60进制;(3)线段的长短、角的大小的比较用度量法和叠合法.行为提示:教会学生看书,自学互研时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题构建知识结构图几何图形自学互研生成能力【例1】下列图形中,哪些是平面图形,哪些是立体图形?INCLUDEPICTURE "KJ74.TIF" \* MERGEFORMATINCLUDEPICTURE "KJ74.TIF" \* MERGEFORMAT解:(2)(4)是平面图形;(1)(3)(5)是立体图形.【例2】如图给定的是纸盒的外表面,下面能由它折叠而成的是( B )INCLUDEPICTURE "KJ75.TIF" \* MERGEFORMAT INCLUDEPICTURE "KJ75.TIF" \* MERGEFORMAT _ INCLUDEPICTURE "KJ75A.TIF" \* MERGEFORMAT INCLUDEPICTURE "KJ75A.TIF" \* MERGEFORMAT【例3】已知线段AB=4.8cm,C是它的一个三等分点,D 是它的中点,则CD=0.8cm.注意:C点可能在线段AB上,也可能在线段AB的延长线上,需要分情况讨论.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在小组展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.【例4】已知:线段AB=6厘米,点C是AB的中点,点D 是AC的中点,求线段BD的长.INCLUDEPICTURE "KJ77.TIF" \* MERGEFORMAT INCLUDEPICTURE "KJ77.TIF" \* MERGEFORMAT解:因为AB=6厘米,C是AB的中点,所以AC=BC=3厘米.因为点D是AC的中点,所以DC=1.5厘米.所以BD=BC+CD=4.5厘米.【例5】INCLUDEPICTURE "KJ76.TIF" \* MERGEFORMAT INCLUDEPICTURE "KJ76.TIF" \* MERGEFORMAT如图,已知OB是∠AOC的平分线,OD是∠COE的平分线,∠COB=50°,∠DOC=30°,则∠AOE的度数为160°.【例6】一个角的补角比这个角的余角的2倍大15°,求这个角的度数.解:设这个角为x°,根据题意得:180-x=2(90-x)+15.解得x=15.答:这个角的度数为15°.交流展示生成新知INCLUDEPICTURE"交流预展.TIF" INCLUDEPICTURE "交流预展.TIF" \* MERGEFORMAT INCLUDEPICTURE "交流预展.TIF" \* MERGEFORMAT1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.INCLUDEPICTURE"展示提升.TIF" INCLUDEPICTURE "展示提升.TIF" \* MERGEFORMAT INCLUDEPICTURE "展示提升.TIF" \* MERGEFORMAT知识模块一立体图形与平面图形知识模块二线段的有关计算知识模块三角的有关计算课后反思查漏补缺收获:_________存在困惑:_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧⎨⎩第4章图形的认识
小结与复习
教学目标
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
3.掌握本章的全部定理和公理;
4.理解本章的数学思想方法;
5.了解本章的题目类型.
教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定理和公理;
难点是理解本章的数学思想方法.
教学手段
引导——活动——讨论
教学方法
启发式教学
教学过程
(一)几何图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形
平面图形:三角形、四边形、圆等。

2、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

3、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

(二)直线、射线、线段
1、基本概念
直线射线线段图形
端点个数无一个两个
表示法直线a
直线AB(BA)
射线AB
线段a
线段AB(BA)
作法叙述作直线AB;
作直线a
作射线AB
作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线。

简单地:两点确定一条直线。

3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。

图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。

6、线段的性质
两点的所有连线中,线段最短。

简单地:两点之间,线段最短。

7、两点的距离
连接两点的线段长度叫做两点的距离。

8、点与直线的位置关系
(1)点在直线上(2)点在直线外。

(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。

2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β锐角直角钝角平角周角
范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。

(2)借助量角器能画出给定度数的角。

(3)用尺规作图法。

8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。

图形:
符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。

其中∠1是∠2的余角,∠2是∠1的余角。

(2)若∠1+∠2=180°,则∠1与∠2互为补角。

其中∠1是∠2的补角,∠2是∠1的补角。

(3)余(补)角的性质:等角的补(余)角相等。

10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
四、课堂练习与作业
1、下列说法中正确的是()
A、延长射线OP
B、延长直线CD
C、延长线段CD
D、反向延长直线CD
2、下面是我们制作的正方体的展开图,每个平面
内都标注了字母,请根据要求回答问题:
(1)和面A所对的会是哪一面?
(2)和B面所对的会是哪一面?
(3)面E会和哪些面相交?
3、两条直线相交有几个交点?
三条直线两两相交有几个交点?
四条直线两两相交有几个交点?
思考:n条直线两两相交有几个交点?
4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,
最多可画多少条直线?画出图来.
5、已知点C是线段AB的中点,点D是线段BC的中
点,CD=2.5厘米,请你求出线段AB、AC、AD、
BD的长各为多少?
6、已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档