2021高考数学分类汇编:统计与概率
2021年高考数学分项汇编 专题11 概率与统计(含解析)

2021年高考数学分项汇编专题11 概率与统计(含解析)一.选择题1. 【xx年普通高等学校招生全国统一考试湖北卷12】某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样2.【xx年普通高等学校招生全国统一考试湖北卷6】为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示,根据此图,估计该校xx名高中男生中体重大于70.5公斤的人数为()A.300B.350C.420D.4503. 【2011年普通高等学校招生全国统一考试湖北卷5】有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间内的频数为( ) A .18 B .36 C .54 D .724.【xx 年普通高等学校招生全国统一考试湖北卷2】容量为20的样本数据,分组后的频数如下表:分组 频数2345420.19 0.150.05 0.02样本数据则样本数据落在区间的频率为()A.0.35 B.0.45 C.0.55 D.0.65【答案】B【解析】试题分析:由频率分布表可知:样本数据落在区间内的頻数为2+3+4=9,样本总数为5. 【xx年普通高等学校招生全国统一考试湖北卷10】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.【答案】C【解析】试题分析:如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S1,S2,两块阴影部分的面积分别为S3,S4,则S1+S2+S3+S4=S扇形OAB=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 3②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. . 由几何概型概率公式可得,此点取自阴影部分的概率6.【xx 年普通高等学校招生全国统一考试湖北卷4】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ① y 与x 负相关且; ② y 与x 负相关且; ③ y 与x 正相关且; ④ y 与x 正相关且. 其中一定不正确...的结论的序号是( ) A .①②B .②③C .③④D . ①④7.【xx 年普通高等学校招生全国统一考试湖北卷5】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为,点数之和大于5的概率为,点数之和为偶数的概率为,则( ) A. B. C. D. 【答案】C 【解析】试题分析:依题意,,,,所以.选C. 考点:古典概型公式求概率,容易题.8.【xx 年普通高等学校招生全国统一考试湖北卷6】根据如下样本数据:3 4 5 6 7 84.02.50.5得到的回归方程为,则( ) A. , B. , C. , D. , 【答案】A【解析】试题分析:作出散点图,如图所示,观察图像可知,回归直线的斜率,当时,.故选A.考点:根据已知样本数判断线性回归方程中的与的符号,容易题.9. 【xx高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石10. 【xx高考湖北,文8】在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,则()A.B.C.D.【答案】.【解析】由题意知,事件“”的概率为,事件“”的概率,其中,,所以,故应选.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.11. 【xx 高考湖北,文4】已知变量和满足关系,变量与正相关. 下列结论中正确的是( ) A .与负相关,与负相关 B .与正相关,与正相关 C .与正相关,与负相关D .与负相关,与正相关二.填空题1.【xx 年普通高等学校招生全国统一考试湖北卷12】接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 精确到0.01) 【答案】0.94 【解析】试题分析:P =332445550.800.200.800.200.80C C ⨯⨯⨯⨯()()+()+()=0.94.2. 【xx 年普通高等学校招生全国统一考试湖北卷11】一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 【答案】10【解析】由分层抽样方法可知从该部门抽取的工人数满足,即10为正确答案.3. 【xx年普通高等学校招生全国统一考试湖北卷15】下图是样本容量为200的频率分布直方图。
高考数学真题专题满分解析—统计与概率

高考数学真题专题满分解析—统计与概率
[典例](本题满分12分)(2021·山西联考)已知甲盒中有三个白球和三个红球,乙盒中仅装有三个白球,球除颜色外完全相同。
现从甲盒中任取三个球放入乙盒中。
(1)求乙盒中红球个数X 的分布列与数学期望; (2)求从乙盒中任取一球是红球的概率。
学生解答
满分答题
满分解析:
解 (1)由题意知X 的可能取值为0,1,2,3.
P (X=0)=C 30C 3
3C 63=120,P (X=1)=C 31C 32
C 63=920, 2分 P (X=2)=
C 32C 3
1C 6
3=
920,P (X=3)=C 33C 30C 6
3=1
20,
4分
所以X 的分布列为
5分
所以E (X )=0×1
20+1×9
20+2×9
20+3×1
20=3
2.
6分
(2)当乙盒中红球个数为0时,P 1=0, 7分
当乙盒中红球个数为1时,P 2=C 31C 3
2C 63×C 11C 61=3
40, 8分 当乙盒中红球个数为2时,P 3=C 32C 3
1C 6
3×
C 21C 6
1=3
20,
9分 当乙盒中红球个数为3时,P 4=
C 33C 6
3×
C 31C 6
1=140,
10分
所以从乙盒中任取一球是红球的概率为P 1+P 2+P 3+P 4=1
4.
12分。
2021-2023年高考数学真题分类汇编专题15概率与统计理

专题15概率与统计(理)近三年高考真题1.(2023•北京)为了研究某种农产品价格变化的规律,收集到了该农产品连续40天的价格变化数据,如表所示,在描述价格变化时,用“ ”表示“上涨”;即当天价格比前一天价格高,用“ ”表示“下跌”,即当天价格比前一天价格低:用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天0 0 00第21天到第40天0 0 0 0用频率估计概率.(Ⅰ)试估计该农产品“上涨”的概率;(Ⅱ)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(Ⅲ)假设该农产品每天的价格变化只受前一天价格的影响,判断第41天该农产品价格“上涨”、“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)【解析】(Ⅰ)由表可知,40天中“上涨”的有16天,则该农产品“上涨”的概率为160.440.(Ⅱ)由表可知,40天中“上涨”的有16天,则该农产品“下降”的概率为140.3540,40天中“不变”的有10天,则该农产品“上涨”的概率为100.2540,则该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率2211421040.350.250.168C C C .(Ⅲ)由于第40天处于“上涨”状态,从前39天中15次“上涨”进行分析,“上涨”后下一次仍“上涨”的有4次,概率为415,“上涨”后下一次“不变”的有9次,概率为35,“上涨”后下一次“下降”的有2次,概率为215,故第41天该农产品价格“不变”的概率估值最大.2.(2023•甲卷(理))一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:)g .(1)设X 表示指定的两只小鼠中分配到对照组的只数,求X 的分布列和数学期望;(2)试验结果如下:对照组的小白鼠体重的增加量从小到大排序为18.820.221.322.523.225.826.527.530.134.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为9.211.412.413.215.516.518.018.819.220.221.622.823.623.925.128.232.336.5()i 求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表:mm对照组实验组()ii 根据()i 中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:22()()()()()n ad bc K a b c d a c b d ,2()P K k 0.1000.0500.010k2.7063.8416.635【解析】(1)根据题意可得0X ,1,2,又02202024019(0)78C C P X C ,11202024020(1)39C C P X C ,20202024019(2)78C C P X C ,X 的分布列为:X 012P197820391978192019()0121783978E X;(2)()40i 个数据从小到大排列后,中位数m 即为第20位和第21位数的平均数,第20位数为23.2,第21位数为23.6,23.223.623.42m, 补全列联表为:mm 合计对照组61420实验组14620合计202040()ii 由()i 可知2240(661414) 6.400 3.84120202020K, 能有95%的把握认为药物对小鼠生长有抑制作用.3.(2022•新高考Ⅰ)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B;(ⅱ)利用该调查数据,给出(|)P A B ,(|P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附:22()()()()()n ad bc K a b c d a c b d .2()P K k 0.0500.0100.001k3.8416.63510.828【解析】(1)补充列联表为:不够良好良好合计病例组4060100对照组1090100合计50150200计算22200(40901060)24 6.63510010050150K,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)()i 证明:()()()()(|)(|)(|)(|)()()(|)(|)()()()():()()()()(|)(|)(|)(|)()()(|)(|)()()()()P AB P AB P AB P AB P B A P B A P B A P B A P AB P AB P A B P A B P A P A P B P B R P AB P AB P AB P AB P B A P B A P B A P B A P AB P AB P A B P A B P A P B P A P B;(ⅱ)利用调查数据,402(|)1005P A B ,101(|)10010P A B,3(|)1(|)5P A B P A B ,9(|1(|10P A B P A B ,所以29510631510R .4.(2023•新高考Ⅱ)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p (c);误诊率是将未患病者判定为阳性的概率,记为q (c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p (c)0.5% 时,求临界值c 和误诊率q (c);(2)设函数f(c)p(c)q (c).当[95c ,105],求f(c)的解析式,并求f(c)在区间[95,105]的最小值.【解析】(1)当漏诊率p(c)0.5%时,则(95)0.0020.5%c ,解得97.5c ;q(c)0.01 2.550.0020.035 3.5%;(2)当[95c ,100]时,f(c)p(c)q (c)(95)0.002(100)0.0150.0020.0080.820.02c c c,当(100c ,105]时,f(c)p(c)q (c)50.002(100)0.012(105)0.0020.010.980.02c c c,故f(c)0.0080.82,951000.010.98,100105c cc c,所以f(c)的最小值为0.02.5.(2022•新高考Ⅱ)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【解析】(1)由频率分布直方图得该地区这种疾病患者的平均年龄为:50.00110150.00210250.01210350.01710450.02310550.02010650.01710750.00610850.0021047.9x 岁.(2)该地区一位这种疾病患者的年龄位于区间[20,70)的频率为:(0.0120.0170.0230.0200.017)100.89,估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率为0.89.(3)设从该地区中任选一人,此人的年龄位于区间[40,50)为事件B,此人患这种疾病为事件C,则()0.1%0.02310(|)0.0014()16%P BCP C BP B.6.(2023•上海)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到红色外观的模型,事件B 为小明取到棕色内饰的模型,求P (B)和(|)P B A ,并判断事件A 和事件B 是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.【解析】(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P (A)122142525,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P (B)12820425255.取到红色外观的模型同时是棕色内饰的有12个,即12()25P AB ,则12()12625(|)14()14725P AB P B A P A.P ∵(A)P (B)144561225512525,P (A)P (B)()P AB ,即事件A 和事件B 不独立.(2)由题意知600X ,300,150,则外观和内饰均为同色的概率2222128322256628319849300300150C C C C P C ,外观和内饰都异色的概率1111232822552300C C C C P C ,仅外观或仅内饰同色的概率49521501150300300P,∵1504952300150300,150(150)300P X,9849(300)300150P X ,52(600)300P X ,则X 的分布列为:X 150300600P1503004915052300则1504952150300600277300150300EX(元).7.(2022•甲卷(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【解析】(1)甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,可以得到两个学校每场比赛获胜的概率如下表:第一场比赛第二场比赛第三场比赛甲学校获胜概率0.50.40.8乙学校获胜概率0.50.60.2甲学校要获得冠军,需要在3场比赛中至少获胜2场,①甲学校3场全胜,概率为:10.50.40.80.16P ,②甲学校3场获胜2场败1场,概率为:20.50.40.20.50.60.80.50.40.80.44P ,所以甲学校获得冠军的概率为:120.6P P P ;(2)乙学校的总得分X 的可能取值为:0,10,20,30,其概率分别为:(0)0.50.40.80.16P X ,(10)0.50.40.20.50.60.80.50.40.80.44P X ,(20)0.50.60.80.50.40.20.50.60.20.34P X ,(30)0.50.60.20.06P X ,则X 的分布列为:X 0102030P0.160.440.340.06X 的期望00.16100.44200.34300.0613EX .8.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50)m 的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望EX ;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【解析】(Ⅰ)甲以往的10次成绩中有4次获得优秀奖,用频率估计概率,则甲在校运动会铅球比赛中获得优秀奖的概率42105.(Ⅱ)用频率估计概率,则乙在校运动会铅球比赛中获得优秀奖的概率为3162,丙在校运动会铅球比赛中获得优秀奖的概率为2142,X 的所有可能取值为0,1,2,3,则3113(0)52220P X ,21131131182(1)522522522205P X ,2112113117(2)52252252220P X ,21121(3)5222010P X,387270123202020205EX.(Ⅲ)由题中数据可知,乙与丙获得优秀奖的概率较大,均为12,且丙投出过三人成绩中的最大值9.85m ,在三人中有一定优势,故如果发挥较好的话丙获得的概率估计值最大.9.(2021•北京)在核酸检测中,“k 合1”混采核酸检测是指:先将k 个人的样本混合在一起进行1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这k 个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(Ⅰ)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(ⅰ)如果感染新冠病毒的2人在同一组,求检测的总次数:(ⅱ)已知感染新冠病毒的2人分在同一组的概率为111.设X 是检测的总次数,求X 的分布列与数学期望()E X .(Ⅱ)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y 是检测的总次数,试判断数学期望()E Y 与(Ⅰ)中()E X 的大小.(结论不要求证明)【解析】(Ⅰ)(ⅰ)若采用“10合1检测法”,每组检查一次,共10次;又两名患者在同一组,需要再检查10次,因此一共需要检查20次.(ⅱ)由题意可得:20X ,30.1(20)11P X,10(30)11P X .可得分布列:X 2030P1111011110320()2030111111E X.(Ⅱ)由题意可得:25Y ,30.2329851004(25)2099C C P Y C,95(30)99P Y .可得分布列:Y 2530P499959949529502880320()25309999999911E Y.()()E X E Y .另设“10合1”混采核酸检测两名感染患者在同一组的概率为1p ,“5合1”混采核酸检测两名感染患者在同一组的概率为2p ,则12p p ,此时有111()2030(1)3010E X p p p ;而22211()2530(1)3053053010()E Y p p p p p E X ,()()E X E Y .10.(2021•新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【解析】(1)由已知可得,X 的所有可能取值为0,20,100,则(0)10.80.2P X ,(20)0.8(10.6)0.32P X (100)0.80.60.48P X ,所以X 的分布列为:X 020100P0.20.320.48(2)由(1)可知小明先回答A 类问题累计得分的期望为()00.2200.321000.4854.4E X ,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,(0)10.60.4P Y ,(80)0.6(10.8)0.12P Y ,(100)0.60.80.48P Y ,则Y 的期望为()00.4800.121000.4857.6E Y ,因为()()E Y E X ,所以为使累计得分的期望最大,小明应选择先回答B 类问题.11.(2023•新高考Ⅰ)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且(1)1(0)i i i P X P X q ,1i ,2, ,n ,则11()nni i i i E X q .记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【解析】(1)设第2次投篮的人是乙的概率为P ,由题意得0.50.40.50.80.6P ;(2)由题意设n P 为第n 次投篮的是甲,则10.60.2(1)0.40.2n n n n P P P P ,1110.4(33n n P P ,又1111103236P,则1{}3n P 是首项为16,公比为0.4的等比数列,1112()365n n P ,即1112()365n n P , 第i 次投篮的人是甲的概率为1112()365i i P;(3)由(2)得1112(365i i P ,由题意得甲第i 次投篮次数i Y 服从两点分布,且(1)1(0)i i i P Y P Y P ,11()()n ni i i i E Y E Y P ,当1n 时,11112[1()]125265()([1(]26533185315n n ni n i i i n n n E Y P ;当0n 时,0520()0[1()]1853E Y,综上所述,52()[1(]1853n n E Y ,n N .12.(2021•新高考Ⅱ)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0i P X i p i ,1,2,3).(Ⅰ)已知00.4p ,10.3p ,20.2p ,30.1p ,求()E X ;(Ⅱ)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x 的一个最小正实根,求证:当()1E X 时,1p ,当()1E X 时,1p ;(Ⅲ)根据你的理解说明(2)问结论的实际含义.【解析】(Ⅰ)由题意,00.4p ,10.3p ,20.2p ,30.1p ,故()00.410.320.230.11E X ;(Ⅱ)证明:由题意可知,01231p p p p ,则123()23E X p p p ,所以230123p p x p x p x x ,变形为230123(1)0p p x p x p x ,所以23023023()0p p x p x p p p x ,即023(1)(1)(1)(1)0p x p x x p x x x ,即23230(1)[()]0x p x p p x p ,令23230()()f x p x p p x p ,若30p 时,则()f x 的对称轴为23302p p x p ,注意到0(0)0f p ,f (1)3201232231()1p p p p p p E X ,若30p 时,f (1)()1E X ,当()1E X 时,f (1)0,()0f x 的正实根01x ,原方程的最小正实根1p ,当()1E X 时,f (1)1232310p p p ,()0f x 的正实根01x ,原方程的最小正实根1p ,(Ⅲ)当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝;。
2021届高考数学(新课改版)二轮专题四概率与统计第2讲统计、统计案例课件

2021届高考数学(新课改版)二轮专 题四概 率与统 计第2讲 统计、 统计案 例课件
甲分厂产品等级的频数分布表
等级
A
B
C
频数
40
20
20
乙分厂产品等级的频数分布表
等级 频数
A
B
C
28
17
34
返回
D 20
D 21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品 的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利 润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
30
0
-70
频数
28
17
34
21
因此乙分厂加工出来的100件产品的平均利润为
70×28+30×1170+00×34-70×21=10.
比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接
加工业务.
2021届高考数学(新课改版)二轮专 题四概 率与统 计第2讲 统计、 统计案 例课件
2021届高考数学(新课改版)二轮专 题四概 率与统 计第2讲 统计、 统计案 例课件
返回
[例1] (2020·全国卷Ⅰ)某厂接受了一项加工业务,加工 出来的产品(单位:件)按标准分为A,B,C,D四个等级.加 工业务约定:对于A级品、B级品、C级品,厂家每件分别收 取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原 料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲 分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂 家为决定由哪个分厂承接加工业务,在两个分厂各试加工了 100件这种产品,并统计了这些产品的等级,整理如下:
的众数为 3 000,
2021年高考文数第二轮第2讲 概率与统计

{D,G},{E,F},{E,G},{F,G},共21种.
②由(1),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年级的是 D, E,来自丙年级的是 F,G,则从抽出的 7 名同学中随机抽取的 2 名同学来自同一年 级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共 5 种.所以, 事件 M 发生的概率 P(M)=251.
A.p1=p2 C.p2=p3
B.p1=p3 D.p1=p2+p3
第4页
赢在微点 无微不至
考前顶层设计·英语
解析 不妨设△ABC 为等腰直角三角形,AB=AC=2,则 BC=2 2,所以区域Ⅰ的 面积即△ABC 的面积,为 S1=12×2×2=2,区域Ⅲ的面积 S3=π×(2 2)2-S1=π -2.区域Ⅱ的面积为 S2=π·222-S3=2.根据几何概型的概率计算公式,得 p1=p2= π+2 2,p3=ππ+-22,所以 p1≠p3,p2≠p3,p1≠p2+p3. 答案 A
第6页
赢在微点 无微不至
考前顶层设计·英语
(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,
E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},
第11页
赢在微点 无微不至
考点整合
考前顶层设计·英语
1.古典概型的概率
(1)公式 P(A)=mn =A中所基含本的事基件本总事数件数. (2)古典概型的两个特点:所有可能出现的基本事件只有有限个;每个基本事件出现 的可能性相等.
第9页
高考数学考试大纲解读专题11概率与统计理(2021年整理)

专题11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性。
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。
(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式。
(2)会计算一些随机事件所含的基本事件数及事件发生的概率。
3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义。
(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。
(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。
(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用。
2021年高考数学知识点:概率统计的总结概括知识点总结

2021年高考数学知识点:概率统计的总结概括知识点总结一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅资料、设计调查问卷等方法收集数据。
(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。
②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
2021年高考数学三轮复习试题汇编 专题7 概率与统计第3讲 统计与统计案例(B卷)理(含解析)

2021年高考数学三轮复习试题汇编专题7 概率与统计第3讲统计与统计案例(B卷)理(含解析)一、选择题(每题5分,共30分)1.(xx·德州市高三二模(4月)数学(理)试题·4)若某市8所中学参加中学生合唱比赛的得分用茎叶图表示如图,其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是()A.91 5.5 B.91 5C.92 5.5 D.92 52.(xx·聊城市高考模拟试题·6)利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为()A.46 B.48C.50 D.523. (xx·山东省潍坊市第一中学高三过程性检测·4)某产品的广告费用x与销售额y的统计数据如下表:根据下表可得回归方程中的b=10.6,据此模型预报广告费用为10万元时销售额为()A.112.1万元B.113.1万元C.113.9万元D.111.9万元4.(xx·山东省潍坊市高三第二次模拟考试·6)5.(xx·济宁市5月高考模拟考试·5)6.(xx·山东省枣庄市高三下学期模拟考试·4)8.(xx·陕西省安康市高三教学质量调研考试·3)五位同学在某次考试的数学成绩如茎叶图:则这五位同学这次考试的数学平均分为()A.88 B.89 C.90 D.91二、非选择题(60分)9.(xx·武清区高三年级第三次模拟高考·9)书架上有语文、数学、英语书若干本,它们的数量比依次是2:4:5,现用分层抽样的方法从书架上抽取一个样本,若抽出的语文书为10本,则应抽出的英语书本.10.(xx·德州市高三二模(4月)数学(理)试题·11)某校在一次测试中约有600人参加考试,数学考试的成绩(,试卷满分150分),统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次测试中数学考试成绩不低于120的学生约有___________人.11.(xx.绵阳市高中第三次诊断性考试·13)右图是绵阳市某小区100户居民xx年月平均用水量(单位:t)的频率分布直方方图的一部分,则该小区xx年的月平均用水量的中位数的估计值为12.(xx.南通市高三第三次调研测试·4)为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在中的频数为100,则n的值为.13.(xx.菏泽市高三第二次模拟考试数学(理)试题·13)采用系统抽样方法从600人中抽取50人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽得的号码为003,抽到的50人中,编号落入区间[001,300]的人做问卷A ,编号落入区间[301,495]的人做问卷B ,编号落入区间[496,60]的人做问卷C ,则抽到的人中,做问卷C 的人数为 .14.(xx ·南京市届高三年级第三次模拟考试·5)如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15. ( 徐州、连云港、宿迁三市xx 届高三第三次模拟·3)如图是某市xx 年11月份30天的空气污染指数的频率分布直方图. 根据国家标准,污染指数在区间内,空气质量为优;在区间内,空气质量为良;在区间内,空气质量为轻微污染;由此可知该市11月份空气质量为优或良的天数有 ▲ 天.16.(xx ·盐城市高三年级第三次模拟考试·5)某单位有840名职工, 现采用系统抽样抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[61, 120]的人数为 .17.(xx ·漳州市普通高中毕业班适应性考试·13)某校高三(1)班的一次数学测试成绩甲 乙 8 9 7 8 9 3 1 0 6 9 7 8 9 (第5题图)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)频率分布直方图中[80,90)间的矩形的高为.(2)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,至少有一份分数在[90,100]之间的概率为.18. (xx·海南省高考模拟测试题·19)(本小题满分12分)某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人.(1)求N的值并估计这次测试数学成绩的平均分和众数;(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为,求的分布列和数学期望. 19.(江西省九江市xx届高三第三次模拟考试·18)(本小题满分12分)如图所示的茎叶图为甲、乙两家连锁店七天内销售额的某项指标统计:(1)求甲家连锁店这项指标的平均数、中位数和众数,并比较甲、乙两该项指标的方差大小;(2)每次都从甲、乙两店统计数据中随机各选一个进行对比分析,共选了7次(有放回选取),设选取的两个数据中甲的数据大于乙的数据的次数为,求的数学期望.专题7 概率与统计第3讲 统计与统计案例(B 卷)参考答案与解析1.【答案】A【命题立意】本题旨在考查茎叶图.【解析】由茎叶图可知这8所中学学生得分的成绩分别为:,从而平均数为:,方差为:()()()()()()()()2222222287918891909191919291939193919491 5.58-+-+-+-+-+-+-+-=故选:A2.【答案】D【命题立意】本题主要考查频率分布直方图中频数,频率的有关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学理试题分类汇编统计与概率一、选择题1、(2016年北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多 【答案】C2、(2016年山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5, 25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A )56(B )60(C )120(D )140【答案】D3、(2016年全国I 高考)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B4、(2016年全国II 高考)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C5、(2016年全国III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 【答案】D二、填空题1、(2016年山东高考)在],[11-上随机的取一个数k ,则事件“直线kx y =与圆9522=+)(y x -相交”发生的概率为 【答案】43. 2、(2016年上海高考)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米) 【答案】1.763、(2016年四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 . 【答案】32三、解答题1、(2016年北京高考) A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ ,表格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明) 解析】⑴81004020⨯=,C 班学生40人 ⑵在A 班中取到每个人的概率相同均为15设A 班中取到第i 个人事件为,1,2,3,4,5i A i =C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j = A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38= ⑶10μμ<三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值2、(2016年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求: (Ⅰ) “星队”至少猜对3个成语的概率;(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX .【解析】(Ⅰ) “至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”. 设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1253232414331324343)(1212=⋅⋅⋅⋅+⋅⋅⋅⋅=C C B P ; 4132324343)(=⋅⋅⋅=C P .所以3241125)()()(=+=+=C P B P A P . (Ⅱ) “星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6 于是144131413141)0(=⋅⋅⋅==X P ; 725144103143314131413241)1(1212==⋅⋅⋅+⋅⋅⋅==C C X P ;14425313243413131434332324141)2(12=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==C X P ; 1211441231413243)3(12==⋅⋅⋅==C X P ; 12514460)31433241(3243)4(12==⋅+⋅⋅⋅==C X P ;411443632433243)6(==⋅⋅⋅==X P ;X 的分布列为:X 的数学期望62314455264141253121214425172501441==⨯+⨯+⨯+⨯+⨯+⨯=EX .3、(2016年四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(I )求直方图中a 的值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(III )若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由. 【解析】(I )由概率统计相关知识,各组频率之和的值为1 ∵频率=(频率/组距)*组距 ∴()0.50.080.160.40.520.120.080.0421a ⨯+++++++=得0.3a =(II )由图,不低于3吨人数所占百分比为()0.50.120.080.04=12%⨯++∴全市月均用水量不低于3吨的人数为:3012%=3.6⨯(万)(III )由图可知,月均用水量小于2.5吨的居民人数所占百分比为:()0.50.080.160.30.40.520.73⨯++++=即73%的居民月均用水量小于2.5吨,同理,88%的居民月均用水量小于3吨,故2.53x <<假设月均用水量平均分布,则()85%73%0.52.50.5 2.90.3x -÷=+⨯=(吨).注:本次估计默认组间是平均分布,与实际可能会产生一定误差。
4、(2016年天津高考)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I )设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(II )设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(Ⅰ)设事件A :选2人参加义工活动,次数之和为4()112343210C C C 1C 3P A +== (Ⅱ)随机变量X 可能取值 0,1,2 ()222334210C C C 40C 15P X ++=== ()11113334210C C C C 71C 15P X +=== ()1134210C C 42C 15P X ===X0 1 2P 415 715 415()7811515E X =+=5、(2016年全国I 高考)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?解:⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯= ()()()44220.20.20.04P x P A P B ===⨯=⑵ 要令()0.5P x n ≤≥,0.040.160.240.5++<,0.040.160.240.240.5+++≥则n 的最小值为19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯= 所以应选用19n =6、(2016年全国II 高考)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X . X 0.85a a1.25a 1.5a 1.75a 2a P0.300.150.200.200.100.05平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=, ∴平均保费与基本保费比值为1.23.7、(2016年全国III 高考)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。