-微量元素的测定
微量元素的检测方法

微量元素的检测方法微量元素是人体以及其他生物体内所需的一类元素,虽然其在体内所需量较小,但却起着非常重要的作用。
因此,对微量元素的检测方法的研究显得尤为重要。
本文将探讨微量元素的检测方法及其应用。
一、原子吸收光谱法(AAS)原子吸收光谱法是一种常用的微量元素检测方法。
该方法通过测量样品中微量元素的吸收光谱来确定其含量。
它的原理是将样品原子化后通过光学装置,使特定波长的光通过原子化的样品,并测定透射光或吸收光的强度。
根据光谱的强度可以推算出元素的含量。
二、电感耦合等离子体质谱(ICP-MS)电感耦合等离子体质谱是一种灵敏的微量元素检测方法。
该方法结合了电感耦合等离子体和质谱技术的优点,能够同时测定多种元素。
它利用等离子体中的高能电子来使样品原子化,并通过质谱仪来分析元素的含量。
ICP-MS在环境科学、生物医学等领域有着广泛的应用。
三、分光光度法分光光度法是一种经济、简便的微量元素检测方法。
它利用样品溶液对特定波长的光进行吸收,根据吸光度与浓度之间的关系来确定元素的含量。
该方法常用于血清、尿液等样品中微量元素的分析。
四、电化学法电化学法是另一种常用的微量元素检测方法。
根据微量元素在电极表面的电化学反应来测定其含量。
常用的电化学方法包括电位滴定法、控制电流伏安法等。
这些方法可以快速、准确地测定微量元素的含量。
除了上述的方法外,还有一些新兴的微量元素检测技术值得关注。
例如,纳米传感技术在微量元素检测中具有巨大的潜力。
纳米材料的表面积大、传感灵敏度高,可以用于设计高效的微量元素检测传感器。
此外,基于光纤技术的微量元素检测方法也在不断发展。
光纤的柔软性、高传导性能使得它可以用于设计各种形状的传感器,从而提高微量元素的检测精度。
总结起来,微量元素的检测方法包括原子吸收光谱法、电感耦合等离子体质谱、分光光度法、电化学法等。
这些方法各具特点,可以根据需要选择合适的方法来进行微量元素的检测。
随着科技的不断发展,新的微量元素检测技术也不断涌现,为微量元素的研究和应用提供了更多可能性。
微量元素检测方法

微量元素检测方法
微量元素对于人体的健康带来非常大的影响,尤其是一些婴幼儿以及儿童,有必要到医院去做一些微量元素的检测,当人体微量元素缺乏会形成很多疾病,那么要测量微量元素到底有哪些检查呢?下面我们就来详细介绍一下微量元素的检查方法,希望对朋友们会有一些帮助。
生化法
目前一般都需要选择性地采取生化法,这种方法是能够测量到微量元素的,但是在测量之前需要做一个前处理,操作较为复杂,消耗的时间也是比较长的,而且准确性并不是特别的高,所以检测的元素种类也是有一定的限制的。
电化学分析法
电化学分析法适用于痕量测量的误差也是较大,如果是测量多种元素的时候,还会有重复性,对于环境以及实验人员也会带来一定的影响,而且前处理事较为复杂的。
这种方法用的比较少的。
原子吸收光谱法
原子吸收光谱法又可以称为是原子吸收分光光度法,这种方法是利用了电源中发射的特定的波长的入射光,能够对待测得基态的原子产生吸收效果,能够通过测定吸收波长的光量的大小,来计算出微量元素的含量,这种方法用的较多
金,选择性较好,速度是非常快的,成本也是比较低的,所以这种方法在临床上用的一般都是比较广泛的。
1微量元素的测定技术

1微量元素的测定技术
微量元素的测定技术
微量元素的测定技术在科研和工业领域中扮演着重要的角色。
这些技术的发展使得我们能够准确地测量和分析微量元素的含量,进而深入了解其在自然界和生物体内的作用。
在本文中,我们将探讨几种常用的微量元素测定技术,以及它们的优势和应用领域。
首先,常见的微量元素测定技术之一是原子吸收光谱法(AAS)。
这种技术基于原子吸收光谱的原理,通过测量样品中吸收特定波长的光来确定元素的含量。
AAS具有较高的准确性和灵敏度,可以同时测定多种元素。
它在环境监测、食品安全和药物研发等领域得到广泛应用。
另一种常见的微量元素测定技术是电感耦合等离子体质谱法(ICP-MS)。
ICP-MS通过将样品中的元素离子化,并使用质谱仪测量离子信号来分析元素含量。
该技术具有极高的灵敏度和选择性,可以测
定多种元素的含量,并能够进行同位素分析。
ICP-MS广泛应用于地质学、生物医学和材料科学等领域。
除了AAS和ICP-MS,还有一些其他的微量元素测定技术,如荧光光谱法、电化学分析法和核磁共振技术。
这些技术各有优势和适用范围,可以根据具体的研究目的和样品性质选择合适的方法进行测定。
然而,在进行微量元素测定时,我们也需要注意避免一些可能会对结果产生负面影响的因素。
例如,样品的准备过程中应注意避免污染和样品损失;仪器的校准和质量控制也是确保测定结果准确可靠的重要环节。
总结起来,微量元素的测定技术在科学研究和工业应用中具有重要意义。
通过选择合适的测定方法,并注意实验细节和质量控制,我们能够获得准确的微量元素含量数据,进一步推动相关领域的发展和应用。
微量元素测定的方法

微量元素测定的方法
微量元素测定的方法有多种,以下列举了几种常见的方法:
1. 原子吸收光谱法:包括火焰原子吸收光谱法(FAAS)、石墨炉原子吸收光谱法(GFAAS)等。
利用待测元素原子对特定波长的可见光或紫外光(吸收光)的吸收特性来测定微量元素的含量。
2. 原子荧光光谱法:包括电感耦合等离子体原子辐射光谱法(ICP-OES)、电弧原子发射光谱法(DCP)等。
利用待测元素原子在高温等离子体中激发发射特定波长的光谱线来测定微量元素的含量。
3. X射线荧光光谱法:利用待测元素原子被X射线激发后发射出的特定能量的荧光X射线来测定微量元素的含量。
4. 电化学方法:包括电感耦合等离子体质谱法(ICP-MS)、电化学石墨炉法等。
利用待测元素原子在电场或电流作用下发生电化学反应产生的信号来测定微量元素的含量。
5. 光谱分析法:包括紫外-可见分光光度法、荧光光谱法等。
利用待测元素溶液对特定波长的光的吸收、发射或散射特性来测定微量元素的含量。
这些方法各有优缺点,选择合适的方法要根据待测元素的性质、样品的特点以及
分析要求等因素进行综合考虑。
土壤里微量元素的检测方法

土壤里微量元素的检测方法
一、介绍
微量元素是指土壤中的一些元素,其含量很低,但是对植物的生长和发育起着至关重要的作用。
微量元素在土壤维持着一定的平衡,这些元素的含量过高或过低都会影响到作物的生长。
因此,检测土壤中微量元素的含量是重要的。
检测土壤中微量元素的方法有以下几种:
二、湿式离子交换
湿式离子交换是一种常用的检测微量元素的方法,它通过控制土壤中离子的相对浓度,来检测土壤中含有的微量元素。
该方法的原理是,将待检测的土壤溶解于一定量的碱溶液或酸溶液中,在溶液中存在的微量离子(如铜、钾、锌、锰等)依据离子交换成分的不同,与溶液中的其它离子发生交换,以交换率的变化来检测土壤中微量元素的含量。
三、微量元素的分离分析
微量元素的分离分析是利用化学试剂的作用,将土壤中的微量元素与其它元素以及杂质物分离,把微量元素从土壤中分离出来后,利用适当的方法对分离出来的微量元素进行测定,从而测定土壤中微量元素的含量。
四、原子吸收法
原子吸收法是检测土壤中微量元素的常用方法,也是一种分离分析的方法,它的原理与微量元素的分离分析是一样的,将土壤中的微量元素和杂质物分离,再用原子吸收法对分离出的微量元素的含量进行测定。
微量元素的分析检测方法

微量元素的分析检测方法微量元素在自然界和生物体中均起着重要的作用。
为了进行微量元素的研究,人们需要利用分析检测方法来准确地测定微量元素的含量和性质。
本文将介绍几种常见的微量元素分析检测方法。
一、原子吸收光谱法原子吸收光谱法是目前应用最广泛的微量元素分析方法之一。
该方法基于原子或离子对特定波长的光的吸收度进行分析。
其主要步骤包括样品的预处理、蒸发浓缩、光谱扫描和浓度测定。
原子吸收光谱法具有高灵敏度、准确性高和可靠性好等特点,适用于大多数元素的分析。
二、电感耦合等离子体质谱法电感耦合等离子体质谱法是一种高灵敏度和高选择性的微量元素分析方法。
它通过离子化和离子的质量分析来测定微量元素的含量。
该方法需要对样品进行溶解、稀释和进样处理,然后利用电感耦合等离子体质谱仪进行分析。
这种方法适用于研究微量元素在环境和生物体内的迁移、转化和富集等过程。
三、原子荧光光谱法原子荧光光谱法是一种快速、准确、灵敏的微量元素分析方法。
它利用样品中微量元素激发态原子产生特定波长的荧光进行分析。
该方法的优点是测定简单、操作方便,并且具有较高的灵敏度和准确性。
原子荧光光谱法广泛应用于土壤、植物和水体等样品中微量元素的分析。
四、电化学分析方法电化学分析方法是利用电流和电势等电学参数对微量元素进行测定的方法。
常见的电化学分析方法包括电位滴定法、极谱法和电导法等。
这些方法具有操作简单、准确度高和可靠性好的特点。
电化学分析方法适用于微量元素的测定,尤其是在环境监测和食品安全领域具有广泛的应用。
综上所述,微量元素的分析检测方法包括原子吸收光谱法、电感耦合等离子体质谱法、原子荧光光谱法和电化学分析方法等。
这些方法在不同领域和不同样品中具有广泛的应用,为微量元素的研究和分析提供了可靠的手段。
随着科学技术的不断发展,相信微量元素分析检测方法将会不断进步和完善,为人们更深入地了解微量元素的作用和影响提供更好的支持。
(本文仅供参考,具体分析检测方法请参考相关文献和专业机构提供的指南)。
微量元素的测定

微量元素的测定铁标准溶液(1.0 mg/ml)称取样品0.5-4.00克于聚四氟乙烯溶样杯内(若样品中含有乙醇、二氧化碳等挥发性物质时,应先于水浴上蒸发至近干),根据样品消解的难易程度,依次加入4—7ml硝酸,1—2ml过氧化氢,混匀。
盖好安全阀,放入微波消解系统中,……取出放冷并定容至10,混匀备用,同时做试剂空白试验粗蛋白测定1 凯氏常量定氮法:不论常量、半微量以及微量定氮法它们的原理都是一样的,首先第一个步骤是消化:(1)消化:样品与硫酸一起加热消化,硫酸使有机物脱水。
并破坏有机物,使有机物中的C、H氧化为CO2和H2O蒸汽逸出,而pro则分解氮,则与硫酸结合成硫酸铵,留在酸性溶液中。
(2)在消化过程中添加硫酸钾可以提高温度加快有机物分解,它与硫酸反应生成硫酸氢钾,可提高反应温度,一般纯硫酸加热沸点330℃,而添加硫酸钾后,温度可达400℃,加速了整个反应过程。
此外,也可以加入硫酸钠,氢化钾盐类来提高沸点。
其理由随着消化过程硫酸的不断地被分解,水分的逸出而使硫酸钾的浓度增大,沸点增加。
加速了有机的分解。
但硫酸钾加入量不能太大,否则温度太高,生成的硫酸氢铵也会分解,放出氨而造成损失。
为了加速反应过程,还加入硫酸铜,氧化汞或硒粉作为催化剂以及加入少量过氧化氢,次氯酸钾作为氧化剂。
但为了防止污染通常使用硫酸铜。
所以有机物全部消化后,出现硫酸铜的兰绿色,它具有催化功能,还可以作为碱性反应指示剂。
(1)蒸馏:样液中的硫酸铵在碱性条件下释放出氨,在这操作中,一是加入氢氧化钠溶液要过量,二是要防止样液中氨气逸出。
(2)吸收与滴定:蒸馏过程中放出的氨可用一定量的标准硫酸或标准盐酸溶液进行氨的吸收,然后再用标准氢氧化钠溶液反滴定过剩的硫酸或盐酸溶液,从而计算出总氮量。
半微量或微量定氮通常用硼酸溶液吸收后,再用标准盐酸直接滴定,硼酸呈微弱酸性,用酸滴定不影响指示剂变色反应,它有吸收氨的作用。
准确称取样品中0.50-2.00g→于500ml凯氏瓶中→加10g无水K2SO4→加0.5gCuSO4→加20ml H2SO4→在通风橱中先以小火加热,待泡沫消失后,加大火力,消化至透明无黑粒后,将瓶子摇动一下使瓶壁炭粒溶于硫酸中→继续消化30分钟→至到样液呈绿色状态,停止消化,冷却→加200ml水→连接蒸馏装置→用硼酸作吸收液→在K氏瓶中加波动珠数粒和80ml50% NaOH→立即接好定氮球→加热→至到K氏瓶内残液减少到三分之一时,取出用水冲洗→用0.1N HCl滴定。
微量元素测定的检查意义及说明

微量元素是指在人体中所需量极少的元素,但却对人体健康起着至关重要的作用。
微量元素测定则是在医学检测中常见的一项检查,通过测定人体内的微量元素含量,可以帮助医生了解患者的营养状况、代谢情况以及疾病诊断等方面的信息。
本文将深入探讨微量元素测定的检查意义及说明。
一、微量元素测定的意义微量元素在人体中虽需要的量极少,但却对人体健康起着至关重要的作用。
铁元素是血红蛋白和肌红蛋白的组成成分,对血液的形成和氧气的运输至关重要;锌元素参与人体的免疫功能和生长发育;硒元素具有抗氧化作用等。
微量元素测定可以帮助医生了解患者的营养状况,是否存在相关元素的缺乏或过量,并根据检测结果进行相应的营养干预或治疗。
二、微量元素测定的说明1. 检测项目:常见的微量元素包括铁、锌、硒、铜等,而不同的检测项目可能需要不同的检测方法和仪器设备。
2. 检测对象:微量元素测定通常适用于营养不良、贫血、免疫功能低下等患者,也可用于特殊人群如儿童、孕妇和老年人的健康检查。
3. 检测方法:微量元素的测定方法有原子吸收光谱法、电感耦合等离子体质谱法、荧光法等,每种方法都有其适用范围和操作要求。
4. 参考范围:不同的微量元素在人体中的含量有一定的参考范围,而超出范围可能会影响人体健康。
三、个人观点和理解通过对微量元素测定的意义和说明的深入了解,我认为这项检查对于人体健康至关重要。
在现代社会,营养不良、贫血等问题依然存在,而微量元素测定则可以帮助医生及时发现并进行干预。
随着生活水平的提高,营养过剩和微量元素过量的问题也不可忽视,因此需要通过检测来及时发现并纠正。
微量元素测定作为一项重要的医学检查,对于人体健康具有重要意义。
总结回顾通过本文的探讨,我们了解到微量元素测定是一项重要的医学检查,其意义在于帮助医生了解患者的营养状况、代谢情况以及疾病诊断等方面的信息。
通过测定微量元素的含量,可以帮助医生及时发现并进行相应的营养干预或治疗,从而维护人体健康。
我们也了解到微量元素测定的说明,包括检测项目、对象、方法和参考范围等方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙酸铵缓冲液:将乙酸铵 250 g 溶于400 ml 去离子 水中,缓慢加入冰醋酸 125 ml,混匀,储存于塑 料瓶中。
2)姜黄素比色法P121
A、原理
姜黄素在酸性介质中与硼脱水结合形成
红色络合物,该物质能溶于酒精,在 550
nm 处比色。
B、姜黄素法优缺点
优 点:
①灵敏度高(0.0~0.5μg/ml)适合测定低含
3、溶液中B的测定
1)、甲亚胺比色法P119
A、原理
溶液中的 B 与甲亚胺在 pH = 5.1~5.8
下,用 HOAc + NH4OAc 缓冲液中形成棕 黄色络合物。在 410~420 nm 下比色。
B、甲亚胺法优缺点
优 点:
①浓度范围较宽(0.05~1.0μg/ml)。即灵敏度 低,适合于高含量的测定。 ②测定速度快,操作简便快速,所用的器皿 不是很严格。 ③在测定过程中加了EDTA,可消除多种元素 在比色中的干扰。BaCO3消除Fe的干扰。
工作曲线绘制
用 10 mg/L B 标准溶液,按 0.0,0.2,
0.4,0.6,0.8,1.0 mg/L B 浓度配成 B标
准系列溶液,分别吸取 1 ml 按样品操作显
色,测定吸光度,并绘制工作曲线
姜黄素改进法
取滤液1.0 ml → 塑料管中 → 2 ml 1 mol/L HCI → 摇匀 → 加2-乙基-1,3-己乙醇-氯仿 3 ml → 搅 拌 30 秒 → 吸有机相试液 0.5 ml → 另一塑料管 → 加姜黄素溶液 1 ml →再加浓 H2SO4 0.3 ml → 放置 15 min → 95 % 乙醇定容至 25.0 ml → 550 nm 处与标准系列一同比色(20 min 内比色)
姜黄素比色法
取滤液 1.0 ml → 蒸发器中 → 加姜黄素-草 酸溶液 4.0 ml → 搅拌均匀 → 于 55 ± 3 ℃ 水浴蒸干 → 再蒸 15 min → 冷却至室温 → 加 20.0 ml 95 % 乙醇 → 用塑料棒搅拌 使之全部溶解 → 干过滤于塑料管中 → 550 nm 处与标准系列一同比色
B、浓硫酸溶液中显色法:
硫酸起脱水剂的作用,使硼以三价阳离子的形态存 在,与显色剂生成有色配合物。 此条件下金属阳离子不与试剂反应选择性好;硫酸 中操作十分不便;主要用胭脂红酸作显色剂。测定范围 0.5~10mg/L。
C、三元配合物萃取比色法:
利用硼的负电性配位体形成络离子的特点,以有机溶 剂萃取进行测定。
应用范围:主要用于微量元素的分析,可分析的元 素为大多数的金属和硅、磷、硫等少量的非金属,共72种。 广泛地应用于质量控制的元素分析,超微量元素的检测, 尤其是在环保领域的水质监测。还可以对常量元素进行检 测,例如组分的测量中,主要成分的元素测定。
2、比色分析法
A、蒸干显色法: 姜黄素比色法
灵敏度高,适合土壤中微量硼的测定;操作严格, 手续繁琐,影响测定结果的因素多,难以控制;现多采用 姜黄素改良法。
使用最普遍的配合物为次甲基蓝,灵敏度为10-6数量 级;但次甲基蓝本身有少量被萃取,空白值较高。
D、水溶液中显色法:甲亚胺比色法
硼与一些有机溶剂可以再有机溶剂中显色,如甲亚胺、 茜素-S。 操作简便,适合批量样品测定和自动化分析。 灵敏度低,干扰因素较多。
第2节 土壤中硼的测定
一、作物需硼量
Berger等按作物需要硼的多少分为: 1、需硼较多的(>0.5mg/kg): 油菜、萝卜、甜菜、 花椰菜、卷心菜、芹菜、向日葵、豆类、苹果、 葡萄 2、中等需硼的(0.1~0.5mg/kg):棉花、烟草、西 红柿、红苕、花生、土豆、胡萝卜、桃、梨、樱 桃、茶树 3、需硼较少的(<0.1mg/kg): 水稻、小麦、大麦、 黑麦、燕麦、荞麦、玉米、高粱、柑橘、草类、 甘蔗
缺
点:
①浸提液若有颜色,必须脱色(灼烧土样,用
活性碳吸附。KMnO4 氧化有机质等方法)。
②该法随温度的变化,吸光值变化很大,适
宜的显色温度为20 ℃~35 ℃,最佳控制温 度为 23 ℃。显色稳定时间为 2 h
C、甲亚胺的合成
称取 18 g H 酸 → 溶于 1000 ml 水中 → 加热使 其完全溶解 → 用100 g/L KOH调节pH为 7 → 加
量的B。
②测定有效B时,用pH=3的草酸-草酸铵浸提
与作物吸收量有良好的相关性。
③测定结果的准确度和精密度高,重现性好。
缺
点:
①测定条件要求严格(如脱水温度在55±3℃ 进行)
②费时,测定较麻烦。
三、土壤有效B测定方法
速效B的测定方法主要是提取方法的不同。
沸水提取:1939年Beigei Troug提出的,水土比 2:1,沸腾 5 min,再测定。应用最广。 1g/LCaCI· 2H2O:1966年Baker Mertnson,水土比 2:1,沸腾 5 min,再测定。 0.01mol/L0.01mol/LCaCI· 2H2O: 1970年Rhacles, 水土比 2:1,沸腾 5 min,再测定。
称土壤 15.00 g → 250 ml 石英三角瓶 →
加 30.0 ml 去离子水 → 连接冷疑器 → 电热 板上煮沸 5 min → 冷却 → 加 1 mol/L (1/2CaCI2· 2H2O) 2~4滴 → 加活性炭 0.5 g → 激烈震荡 → 静置 5 min → 过滤于塑料 管中
2 显色测定:
水杨醛 20 ml → 滴加浓 HCI 使 pH 为 1.5(边加
边搅拌)→ 至有黄色沉淀产生 → 40 ℃ 加热 1 h
→ 搅拌 → 放置 3~4 天并间隙震荡 → 砂芯漏斗
过滤 → 用无水乙醇洗涤 5~6 次 → 100 ℃ 干燥 3 hr → 玛瑙研钵研磨 → 储存于塑料瓶备用
D、显色测定: 取待测液 10.0 ml → 塑料(聚丙烯)试管 中 → 加 10.0 ml 乙酸铵缓冲液 → 加 5.0 ml 甲亚胺显色液 → 混匀 0.5 min → 置暗 处 2 hr (23 ℃显色) → 420 nm 与标准系列 一同比色。
沸水浸提土壤有效硼含量分级
轻质土壤mg/kg 充 足 适 度 不 足 >0.50 0.25~0.50 0.0~0.25 粘质土壤mg/kg >0.80 0.4~0.8 0.0~0.4
(一) 测定原理
土壤用热水浸提出的B,与作物对B的 反映有较高的相关性。 浸提液中B在草酸存在下与姜黄素作用, 经脱水生成玫瑰红色的络合物,用乙醇溶 解后测定其吸光度,红色络合物溶液在 0.0014 ~ 0.06 mg/L B范围内,符合朗 伯—比尔定律
(二) 测定步骤
1 浸提
称取1.0 mm风干土 15.00 g ,放入 250 ml 石英锥形瓶中,加 20.0 ml H2O,连接冷凝管, 煮沸 5 min,立即移开热源,继续回流,冷凝 5 min (准确记时),取下锥形瓶,加入 2 滴 MgSO4 液(起凝聚作用),摇匀后里立即过滤,将瓶内悬 浮液一次倾入滤纸上,滤纸承接于聚乙烯瓶内。 同一试样做两次平行测定 同时用水按上述提取步骤制备空白溶液
4.0
6.0
8.0
10.0
100 ml
F、结果计算
土壤全硼(B mg/kg) = 待测液浓度×V×ts/m 待测液浓度: y = ax + b V:显色液体积,ml Ts:分取倍数 M:烘干土样质量,g
G、试剂配制
100 mg/L B 标准溶液:取硼酸 0.5716 g,去离子 水溶解定容 1000 ml,储存于塑料瓶中。 甲亚胺显色液:甲亚胺 0.9 g 和抗坏血酸 2 g 溶于 60 ml 去离子水,水浴加热溶解,定容至 100 ml, 塑料瓶保存,现配现用,放冰箱可保存7天。
姜黄素比色法
移取 1.00 ml 滤液于 50 ml 瓷蒸发皿内,加 4.00 ml姜黄素草酸溶液,在恒温水浴 55 ± 3℃ 完全 脱水蒸发至干,自呈现玫瑰色时开始记时,继续 烘焙 15 min,取下蒸发皿冷却至室温,加入 20.0 ml 95% 乙醇,用塑料棒擦洗皿壁,使内含 物完全溶解,用中速滤纸过滤到具塞塑料容器内 (此溶液放置时不要超过 3 h ),以 95 % 乙醇为参 比溶液,在分光光度计 550 nm 波长,用 1 cm 比色皿测定吸光度。
C、溶解
用少量 1:1 的 HCI将融块转入 250 ml 的烧杯中
→ 盖上表面皿 → 用少量 1:1 的 HCI 清洗坩埚 →
洗液一并倒入烧杯中 → 用移液管缓慢加 25 ml
1:1 的 HCI → 盖上表面皿 → 将烧杯置于通风厨 4h D、定容 将烧杯中的溶液无损的转移到 100 ml 容量瓶中 → 用 1:1 的 HCI 反复清洗烧杯 → 用 1:1 的 HCI 定容
铜
锰
3 ~ 300
42 ~ 5000
22
74
主要土壤B、Zn含量
中国土 壤全量 B Zn 0-500 64 0-790 100 中国土 壤速效 <6.4 <1 红壤 全量 1-125 20 0-323 123 黄壤 全量 5-453 52 0-750 84 黄棕壤 全量 56-100 85 55-122 94
2、土壤中的微量元素对植物生长的缺乏、适量和
致毒量间的范围很窄。
3、土壤中的微量元素既有供应不足的问题,也有
供应过多造成毒害的问题。
中国土壤微量元素含量
元素硼Biblioteka 钼 锌全量范围 mg/kg
痕迹~ 500 0.1 ~ 6.0 3 ~ 790
平均 mg/kg
64 1.7 100
有效态 mg/kg
0.0 ~ 5(水溶性硼) 0.02 ~ 0.5(Tamm-Mo) 0.1 ~ 4(DTPA-Zn) 0.2 ~ 4(DTPA-Cu)
坩埚内 → 每次加入后用小圆头玻棒小心搅匀 →
将坩埚在桌面上轻磕几下 → 将剩下的 1/8 的碳