(完整版)小学奥数:鸡兔同笼问题
小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
小学奥数 鸡兔同笼问题

第五课鸡兔同笼问题例:鸡兔同笼,上有40个头,下有100只足。
鸡兔各有多少只?1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
(完整)二年级奥数鸡兔同笼问题

鸡兔同笼问题1、鸡和兔共有8只,脚共28只,鸡和兔各几只?8×2=16(只)28-16=12(只)4-2=2(只)12÷2=6(只)8-6=2(只)答:鸡有6只,兔有2只。
解题思路:⑴把这8只动物都看做鸡,一只鸡有两只腿,8只动物一共应该有16只腿,可是现在一共有28只腿,少了12只。
为什么会少12只,是因为把兔子算成了鸡,如果有一只兔子那就少了2只腿。
那几只兔子才能少12只腿,就看12里面有几个2,就是有几只兔子。
⑵或者把这8只动物都看做兔,一只兔有四只腿,8只动物一共应该有32,可是现在一共有28只腿,多了4只。
为什么会多4只,因为把鸡算成了兔子,如果有一只鸡看成了兔子,就多算了两只腿。
多少只鸡才能多算4只腿呢,就看4 里面有几个2,就是有几只鸡。
8-2=6(只)兔子有6只。
(3)或者让鸡和兔都抬起一只腿,现在腿数就少了8只,28-8=20(只),再让它们都抬起一只腿,腿数又少了8只,20-8=12(只)。
现在地上就剩下兔子的腿,每只兔子两只腿。
剩下的这12只腿里有几个2,就是有几只兔。
做这样的题时候,尽量假设成腿少的动物。
2、小强是个汽车迷,他来到展厅,一看有大、小两种车,用14辆,数数车轮,大汽车6个轮子,小汽车4个轮子,14辆车数在一起一共64个轮子,请问:有几辆大汽车,几辆小汽车?14×4=56(个)64-56=8(个)6-4=2(个)8÷2=4(辆)14-4=10(辆)答:大汽车4辆,小汽车10辆。
解题思路:⑴把这14辆车都看成小汽车,应该有56个轮子。
可是现在一共有64个轮子,少了8个轮子。
为什么会少8个轮子,是因为把大汽车算成了小汽车,如果一辆大汽车算成小汽车就少算2个轮子。
那几辆大汽车才能少算8个轮子,就看8里面有几个2,就是有4辆大汽车,小汽车就有10辆。
⑵把这14辆车都看成大汽车,应该有84个轮子。
可是现在一共有64个轮子,多了20个轮子。
四年级奥数题及答案(鸡兔同笼)

四年级奥数1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.5.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.6.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有_______盒,铅笔有_______盒.8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了______只.10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.二、分析与解答题:1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题 ?4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?1.鸡有42只,兔有58只.兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).2. 明信片有9张,贺年卡有5张.明信片: (35⨯14-400)÷(35-25)=9(张)贺年卡: 14-9=5(张).3. 15题. 20-(5⨯20-60)÷(5+3)=15(题).4. 鸡有14只,兔有18只.因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).5. 大和尚25人,小和尚75人.小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),大和尚: 100-75=25(人).6. 2分币17枚,5分币13枚.2分: (5⨯30-99)÷(5-2)=17(枚)5分: 30-17=13(枚).7. 钢笔12盒,铅笔15盒.钢笔: (12⨯27-300)÷(12-10)=12(盒),铅笔: 27-12=15(盒).8. 鸡76只,兔24只.兔: (248-52⨯2)÷(2+4)=24(只),鸡: 24+52=76(只).9. 5个.(20⨯250-4400)÷(100+20)=5(只).10. 1元7张,5角8张,2角5张.2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).二、分析与解答题:1. 男生15人,女生35人.男生: (120-5-2⨯50)÷(3-2)=15(人).女生: 50-15=35(人)2. 大油瓶20个,小油瓶40个.大油瓶: (100-0.5⨯60)÷(4-0.5)=20(个).小油瓶: 60-20=40(个).3. 14道.---因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或做错的有(5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).4. 蜘蛛5只,蜻蜓7只,蝉6只.蜘蛛: (118-6⨯18)÷(8-6)=5(只),那么6条腿的虫应有: 18-5=13(只).蜻蜓: (20-1⨯13)÷(2-1)=7(只).蝉: (2⨯13-20)÷(2-1)=6(只).。
(完整版)小学奥数鸡兔同笼问题题库学生版

鸡兔同笼问题板块一、两个对象的“鸡兔同笼”【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只兔子多少只【巩固】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少【巩固】鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只【例 2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只【巩固】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只【例 3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次【例 4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【巩固】100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水多少个挑水【例 5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【例 6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
(完整版)小学高年级基础奥数第4讲鸡兔同笼

鸡兔同笼鸡兔同笼的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只? (1)解决鸡兔同笼问题的方法是假设法先假设笼子里装的全是兔,根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只鸡,将所差的脚数除以2,就可以算出共有多少只鸡。
假设兔求出来的是鸡。
(2)解决鸡兔同笼问题的基本关系式是:每次相差数×份数=总的相差数鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)鸡兔同笼问题的变型已知鸡、兔脚数之差和总头数,求鸡兔各有多少只?已知鸡、兔头数之差和总脚数,求鸡兔各有多少只?已知鸡、兔头数之差和脚数之差,求鸡兔各有多少只?鸡兔的只数互换,求,求鸡兔各有多少只?例1鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?假设笼子里的全是兔子,则一共有4×36=144(只)脚,比实际多了144-100=44(只)脚。
把鸡的脚当兔子的脚计算时,1只鸡就多算了2只脚,所以鸡有44÷2=22(只)鸡:(4×36-100)÷(4-2)=22(只)兔:36-22=14(只)【举一反三】1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?2、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?3、在一个停车场上,停放的车辆(汽车和三轮摩托车)数恰好是24辆。
其中每辆汽车有四个轮子,每辆摩托车有三个轮子,这些车共有86个轮子。
那么,三轮摩托车有多少辆?例2小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题扣4分,小明共得了72分。
他做对了几道题?假设全做对,则一共得8×15=120(分),比实际多了120-72=48分,把错题当对的题计算时,1道错题就多算了8+4=12分,所以错题有48÷12=4(道)错题:(8×15-72)÷(8+4)=4(道)做对:15-4=11(道)【举一反三】1、一次智力测验有10道题,每答对一道得3分,每答错一道扣2分,小红答完了10道题,只得了20分。
小学奥数--鸡兔同笼(含答案解析)

小学奥数--鸡兔同笼一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.292.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.173.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,74.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.56.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.167.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?小学奥数--鸡兔同笼参考答案与试题解析一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.29【分析】假设全是鸡,则脚有29×2=58只,比实际少92﹣58=34只,又因为每只兔比每只鸡多4﹣2=2只脚,所以多出的脚是兔脚,所以兔的只数是:34÷2=17只,进而求出鸡的数量.【解答】解:兔的只数:(92﹣29×2)÷(4﹣2)=34÷2=17(只)鸡有29﹣17=12(只).答:鸡有12只.故选:B.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.2.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.17【分析】假设20只全是兔子,则一共有20×4=80只脚,这比已知的46只脚多出80﹣46=34只,又因为一只兔子比一只鸡多4﹣2=2只脚,所以鸡有34÷2=17只,据此即可解答.【解答】解:(20×4﹣46)÷(4﹣2)=34÷2=17(只),答:鸡17只.故选:D.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,7【分析】假设全是蜘蛛,则一共有腿:10×8=80条,这比已知多了80﹣68=12条,又因为一只蜘蛛比一只蛐蛐多8﹣6=2条腿,所以蛐蛐有12÷2=6只,那么蜘蛛就是10﹣6=4只,据此即可解答.【解答】解:(10×8﹣68)÷(8﹣6)=12÷2=6(只)10﹣6=4(只)答:蛐蛐和蜘蛛分别有6只、4只.故选:B.【点评】解答此类题目一般都用假设法,这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.4.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人【分析】假设全是男生,那么一共可以植树12×5=60(棵),多植了60﹣56=4(棵),是因为一位男生比一位女生多植5﹣4=1(棵),那么女生的人数就是4÷1=4(人),进而可以求出男生的人数.【解答】解:假设全是男生,那么女生有:(12×5﹣56)÷(5﹣4)=4÷1=4(人)男生有:12﹣4=8(人)答:男生有8人.故选:C.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.5【分析】用总钱数减去两个大人门票的钱可得小孩买门票花的钱,再用总钱数除以小孩门票的价格即可得小孩的个数.【解答】解:(45﹣2×10)÷5=(45﹣20)÷5=25÷5=5(个)答:这两个大人带了5个小孩,故选:C.【点评】此题属于鸡兔同笼问题,关键是得出小孩买门票花的钱.6.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.16【分析】假设小华20道题全答对,应得100分,现在小华得了86分,少了14分.因为答对一题不但得不到5分还要倒扣2分,也就是每答错一题要减去5+2=7(分),那么,少的这14分,就是因为答错题的缘故,因此小华答错了:14÷7=2(道),进一步解决问题.【解答】解:20﹣(20×5﹣86)÷(5+2)=20﹣14÷7=20﹣2=18(道).答:小华答对了18道题.故选:B.【点评】此题解答的关键是运用了假设法,先求出答错了几道题,再求出答对的题的数量.7.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7【分析】假设11条全是大船,则一共有6×11=66人,这比已知的54人多了66﹣54=12人,又因为一条大船比一条小船多坐6﹣4=2人,所以可得小船有12÷2=6条,则大船就是11﹣6=5条,据此即可解答问题.【解答】解:(6×11﹣54)÷(6﹣4)=(66﹣54)÷2=12÷2=6(只)11﹣6=5(只)答:大船租了5只.故选:B.【点评】此题属于鸡兔同笼问题,采用假设法即可解答问题.二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?【分析】假设全是鸡,则脚的只数是(33×2)只,而实际有108只,实际就比假设多和(108﹣33×2)只脚,这因每只兔子比每只鸡多(4﹣2)只.据此解答.【解答】解:(108﹣33×2)÷(4﹣2)=42÷2=21(只)33﹣21=12(只)答:鸡有12只,兔有21只.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?【分析】假设全部为兔子,共有腿4×100=400条,比实际的260条多:400﹣260=140条,因为我们把鸡当成了兔子,每只多算了4﹣2=2条腿,所以可以算出鸡的只数,列式为:140÷2=70(只),那么兔子就有:100﹣70=30(只);据此解答.【解答】解:假设全是兔,鸡:(4×100﹣260)÷(4﹣2)=140÷2=70(只)兔:100﹣70=30(只)答:鸡有70只,兔有30只.【点评】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?【分析】假设全是羽毛球,则有16×3=48人,这样就少了54﹣48=6人,因为一副乒乓球比一副羽毛球少算了4﹣3=1人,即乒乓球有6÷1=6(副);进而求出羽毛球的数量.【解答】解:假设全是羽毛球,乒乓球:(54﹣16×3)÷(4﹣3)=6÷1=6(副)羽毛球:16﹣6=10(副)答:羽毛球有10副,乒乓球有6副.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?【分析】假设全部为乌龟,共有脚4×15=60只,比实际的58只多:60﹣58=2只,因为我们把仙鹤当成了乌龟,每只多算了4﹣2=2只脚,所以可以算出仙鹤的只数,列式为:2÷2=1(只),那么乌龟就有:15﹣1=14(只);据此解答.【解答】解:假设全是乌龟,仙鹤有:(4×15﹣58)÷(4﹣2)=2÷2=1(只);乌龟:15﹣1=14(只);答:乌龟有14只,仙鹤有1只.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?【分析】假设全部租大船,10条船能坐6×10=60人,比实际多算了:60﹣48=12人,因为把小船看作了大船,每条小船多算了6﹣4=2人,所以小船的条数是:12÷2=6条,那么大船的条数就是:10﹣6=4条,据此解答.【解答】解:(6×10﹣48)÷(6﹣4)=12÷2=6(条)10﹣6=4(条)答:大船租了4条,小船租了6条.【点评】解答鸡兔同笼问题一般用假设法,也就是假设全部为某种量,和实际的总量相比较,就会出现矛盾,然后利用这个矛盾求出另一个量,继而求出假设的量.13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?【分析】假设小亮20题全答对,他应得100分,但现在只得了86分,少了14分.因为答错一题不但不得分,而且要扣2分,也就是答错一题要少得7分.因此答错了14÷7=2(题),据此解答即可.【解答】解:(20×5﹣86)÷(5+2)=(100﹣86)÷7=14÷7=2(题)答:他答错了2题.【点评】此题运用了假设法解答盈亏问题,假设全答对,根据分数差即可求出答错了几题.14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?【分析】假设全是大船,能坐12×6=72人,比实际多72﹣58=14人,因为每条大船比每条小船多坐6﹣4=2人,所以小船有14÷2=7条,进而可以求出大船的数量.【解答】解:假设全是大船,则小船有:(12×6﹣58)÷(6﹣4)=14÷2=7(条);则大船有:10﹣7=3(条).答:大船有3条,小船有7条.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?【分析】因为小猴子3只分1个桃子,所以1只小猴子分得个桃子,大猴子每只分3个桃子,则1只大猴子比1只小猴子多分(3﹣)个桃子;假设都是小猴子,则桃子的个数是20×个,实际是20个桃子,多出的桃子个数是(20﹣20×)个,(20﹣20×)÷(3﹣)即为大猴子的只数,运用减法求出小猴子只数.【解答】解:因为小猴子3只分1个桃子,所以1只小猴子分得个桃子.(20﹣20×)÷(3﹣)=(20﹣)÷=×=5(只)20﹣5=15(只)答:猴村有5只大猴子,15只小猴子.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.。
鸡兔同笼小学奥数题

小学奥数题:鸡兔同笼(含义+公式+例题答案)鸡兔同笼含义:已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
公式:【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例题答案:1、鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
2、李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。
鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
3、鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?解:解法一:假设全是兔子(4×45-146)÷(4-2)=17(只)——→鸡45-17=28(只)——→兔解法二:假设全是鸡(146-2×45)÷(4-2)=28(只)——→兔45-28=17(只)——→鸡所以:鸡有17只,兔子有28只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数:
第十一讲鸡兔同笼问题
“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。
比如:“鸡兔同笼,共有45个头,146只脚。
笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数装化为一个未知数,从而解出答案。
典型例题
例【1】鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?
分析题目中给出了鸡、兔共45只。
如果假设这45只全都是兔子,那么就应该有180只脚。
而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。
为什么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。
如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34÷2=17(只)。
所以鸡有17只,兔子有28只。
当然,我们也可以把45只都假设成是鸡,把以上问题反过来
考虑。
解法一假设全是兔子。
(4×45-146)÷(4-2)=17(只)——鸡
45-17=28(只)——兔
解法二假设全是鸡。
(146-2×45)÷(4-2)=28(只)——兔
45-28=17(只)——鸡
答:鸡有17只,兔子有28只。
例【2】盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。
盒中大钢珠、小钢珠各有多少个?
分析假设全部都是大钢珠,则共重:11×30=330(克);
比原来的克数重:330-266=64(克);
小钢珠的个数是:64÷(11-7)=16(个)
大钢珠的个数是:30-16=14(个)
同样,也可以假设全部都是小钢珠。
算法一样。
解法一假设全是大钢珠。
(30×11-266)÷(11-7)=16(个)——小钢珠
30-16=14(个)——大钢珠
解法二假设全是小钢珠。
(266-30×7)÷(11-7)=14(个)——大钢珠
30-14=16(个)——小钢珠
例【3】一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。
这个集邮爱好者买这两种邮票各多少张?
分析先假定买来的100张邮票全部是20分一张的,那么总值应是2000分,比原来的总值多120分。
而多的120分,是把10分一张的看作是20分的一张的,每张多算10分。
因此可以先求出10分一张的邮票有多少张。
解10分一张的邮票的张数有:
(2000-1880)÷(20-10)=12(张)
20分一张的邮票张数有:
100-12=88(张)
答:10分一张的邮票有12张,20分一张的邮票有88张。
例【4】学校买来3个排球和2个足球,共花去111元。
每个足球比每个排球贵3元。
每个排球和每个足球各多少元?
分析根据“每个足球比每个排球贵3元”可知,当把买2个足球换成买2个排球时,买球共花的钱就会比原来少6元,现在买的是(3+2)个排球,因此,可以求出每个排球的价钱。
解每个排球的价钱:
(111-3×2)÷(3+2)=21(元)
每个足球的价钱:
21+3=24(元)
答:每个排球的价钱是21元,每个足球的价钱是24元。
同样,这道题也可以将3个排球换成3个足球来考虑。
例【5】买2支钢笔的价钱等于买8支圆珠笔的价钱。
如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?
分析根据“买2支钢笔的价钱等于买8支圆珠笔的价钱”,可知“买1支钢笔的价钱等于买4支圆珠笔的价钱”,买3支钢笔的价钱可以买(4×3)支圆珠笔。
这样,我们就可以将买钢笔的支数转换为买圆珠笔的支数了。
从而顺利地求出每支圆珠笔的价钱。
解一支圆珠笔的价钱:
5+(8÷2)×3=17(支)
17÷17=1(元)
一支钢笔的价钱:
1×8÷2=4(元)
答:一支钢笔4元,一支圆珠笔1元。
小结解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
通常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算,直到求出结果。
概括起来,解“鸡兔同笼问题”的基本公式是:
鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数。