圆周角 第二课时教案

合集下载

28.3圆心角和圆周角(第二课时圆周角)教学设计-2023-2024学年冀教版数学九年级上册

28.3圆心角和圆周角(第二课时圆周角)教学设计-2023-2024学年冀教版数学九年级上册
4. 题型四:圆周角定理的证明
题目:证明一个圆周角等于它所夹的圆心角的一半。
答案:略。
5. 题型五:圆周角定理的综合应用
题目:在一个圆中,有两个圆周角分别为30度和60度,求这两个圆周角所对的圆心角的和。
答案:根据圆周角定理,30度圆周角所对的圆心角为60度,60度圆周角所对的圆心角为120度。所以,这两个圆周角所对的圆心角的和为60度+120度=180度。
首先,通过探究圆周角定理,学生需要运用逻辑推理能力,从具体的事实和案例中抽象出圆心角和圆周角之间的关系,从而加深对圆的性质和角度概念的理解。学生需要能够运用归纳和演绎的逻辑推理方法,明确圆周角定理的证明过程,并能够运用该定理解决相关问题。
其次,学生需要运用数学建模能力,将圆心角和圆周角的关系运用到实际问题中。通过解决实际问题,学生需要能够建立数学模型,运用圆周角定理进行问题的分析和解答,提高解决几何问题的能力。
- 逻辑推理和证明:引导学生运用归纳和演绎的逻辑推理方法,证明圆周角定理。
- 重点讲解:详细解释圆周角定理的含义和应用,确保学生理解和掌握。
3. 巩固练习(10分钟)
- 练习题:布置一些有关圆周角定理的练习题,让学生独立完成。
- 讨论和解答:学生之间相互讨论,共同解答练习题,巩固对圆周角定理的理解和掌握。
三、重点难点及解决办法
本节课的重点是圆周角定理的理解和应用,难点在于对圆心角和圆周角关系的抽象和逻辑推理。
1. 重点:圆周角定理的理解和应用
- 解决办法:通过具体的图形和实例,让学生直观地感受圆周角定理,然后通过逻辑推理和证明,帮助学生理解和掌握定理。同时,通过大量的练习题,让学生在实际应用中加深对圆周角定理的理解。
八、课堂
1. 课堂评价:

人教版九年级数学上册教案:24.1.4 圆周角(第2课时)

人教版九年级数学上册教案:24.1.4 圆周角(第2课时)

第2课时 圆周角定理的推论和圆内接多边形教学目标知识技能1.能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明.2.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆.3.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题. 数学思考与问题解决1.通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力.2.通过定理的证明探讨过程,促进学生的发散思维;通过定理的应用,进一步提高学生的应用能力和思维能力.3.在解决几何问题时,常常需添加辅助线,以此构建定理所需的基本图形,运用相关图形的性质得到问题的解决.情感态度在教学中渗透事物普遍存在的相互联系、相互转化的观点,让学生体验到用运动的观点来研究图形的思想方法,同时,借助计算机技术,培养学生在数学学习中的动手实践能力,通过让学生充分感受发现问题和解决问题带来的愉悦,培养学生的创新意识.重点难点重点:圆周角定理的两个推论和圆内接四边形的性质的运用.难点:圆内接四边形性质定理的准确、灵活应用以及如何添加辅助线.教学设计活动一:温习旧知1.圆周角定理的内容是什么?2.如图,若BD ︵的度数为100°,则∠BOC =________,∠A =________.3.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹∠2=60°,则∠1=________,∠B=________.4.判断正误:(1)圆心角的度数等于它所对的弧的度数.()(2)圆周角的度数等于它所对的弧的度数的一半.()(答案:1.略;2.100°,50°;3.120°,60°;4.略.)设计意图:在本节课一开始设计“温习旧知”这个环节,不只是对上一节课知识的简单回顾,用意在于要由“旧知”引出“新知”.三个具体问题既全面地“温习旧知”,又为下面的教学环节搭起支架.活动二:探索圆周角定理的“推论”1.请同学们在练习本上画一个⊙O.想一想,以A、C为端点的弧所对的圆周角有多少个?试着画几个.然后教师引导学生:观察下图,∠ABC、∠ADC、∠AEC的大小关系如何?为什么?让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗?2.教师引导学生观察下图,BC是⊙O的直径.请问:BC所对的圆周角∠BAC是锐角、直角还是钝角?让学生交流、讨论,得出结论:∠BAC是直角.教师追问理由.3.如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?4.师生共同解决教材第87页例4.设计意图:通过设计问题串让学生了解几个推论的由来,同时培养学生的探索精神.活动三:探索圆内接四边形的性质1.教师给学生介绍以下基本概念:圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.2.要求学生画一画,想一想:在⊙O上任作它的一个内接四边形ABCD,∠A是圆周角吗?∠B、∠C、∠D呢?进一步思考,圆内接四边形的四个角之间有什么关系?3.先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形的对角互补.4.课件展示练习:(1)如图,四边形ABCD内接于⊙O,则∠A+∠C=________,∠B+∠ADC=________;若∠B =80°,则∠ADC=________,∠CDE=________;(2)如图,四边形ABCD内接于⊙O,∠BOD=100°,则∠BAD=________,∠BCD=________;(3)四边形ABCD内接于⊙O,∠A∶∠C=1∶3,则∠A=________;(4)如图,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=________.(5)观察并思考:在(1)题图中,∠B和∠CDE什么关系?想一想对于圆的任意内接四边形都有这样的关系吗?(答案:(1)180°,180°,100°,80°;(2)130°,50°;(3)45°;(4)75°;(5)相等,都有.) 设计意图:活动三展示的是本节课的最重要的探究活动,共分为四个环节.第1个环节简单介绍相关概念,由于概念简单,教师不必纠缠;第2个环节“要求画一画,想一想”,学生在教师的引导之下进行思考,初步得出结论;第3个环节先用几何画板从实验的角度去探究结论的正确性,然后教师再引导学生用所学知识证明结论;第4个环节的练习是圆内接四边形的性质的应用.四个环节层层递进,步步深入.活动四:基础练习1.教材第88页练习第5题.2.圆的内接梯形一定是________梯形.3.若四边形ABCD为圆内接四边形,则下列哪个选项可能成立()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4 D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶1(答案:1.略;2.等腰;3.B.)活动五:课堂小结与作业布置课堂小结:1.本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质;并初步应用性质进行有关问题的证明和计算.2.我们结合几何画板探索出圆内接四边形的性质,在这一过程中用到了许多数学方法(实验、观察、类比、分析、归纳、猜想等).因此,同学们要逐步学会并应用这些方法去探讨有关的数学问题,提高我们的数学实践能力与创新能力.作业布置:教材第89~91页习题第5、6、13、14、17题.板书设计圆周角定理的推论和圆内接多边形1.圆周角定理的推论推论1:推论2:2.圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.3.圆内接四边形及性质:圆内接四边形的对角互补3.小结:(1)由圆周角定理我们得到了哪些推论?圆内接四边形有什么特殊性质?(2)通过本节课的学习,你有什么感受?。

《圆周角》第2课时教案

《圆周角》第2课时教案

《圆周角》第2课时教案教学目标:1. 经历探索圆周角定理的另一个推论的过程.2. 掌握圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等”3. 会运用上述圆周角定理的推论解决简单几何问题.重点: 圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等”难点:例3涉及圆内角与圆外角与圆周角的关系,思路较难形成,表述也有一定的困难例4的辅助线的添法.教学方法:类比 启发教学辅助:多媒体教学过程:一、旧知回放:1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角.特征:① 角的顶点在圆上.② 角的两边都与圆相交.2、圆心角与所对的弧的关系3、圆周角与所对的弧的关系4、同弧所对的圆心角与圆周角的关系圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.二. 课前测验1.100º的弧所对的圆心角等于_______,所对的圆周角等于_______。

2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为________________。

3、如图,在⊙O 中,∠BAC=32º,则∠BOC=________。

4、如图,⊙O 中,∠ACB = 130º,则∠AOB=______。

5、下列命题中是真命题的是( )(A )顶点在圆周上的角叫做圆周角。

(B )60º的圆周角所对的弧的度数是30º (C )一弧所对的圆周角等于它所对的圆心角。

(D )120º的弧所对的圆周角是60º三, 问题讨论问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么?问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠BAC 的度数吗? 问题3、如图3,圆周角∠BAC =90º,弦BC 经过圆心O 吗?为什么?圆周角定理的推论:同圆或等圆中,同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

课题:圆周角第二课时 教案

课题:圆周角第二课时 教案
《课题名》教学案
课题
4.3圆周角(2)
课型
新授课
第二课时
教学目标
知识与技能
掌握圆周角定理的推论3,并会熟练运用这些知识进行有关的计算和证明
过程与方法
进一步培养学生观察、分析及解决问题的能力及逻辑推理能力
情感态度与价值观
培养添加辅助线的能力和思维的广阔性
教学重点
圆周角定理的推论的应用
教学难点
推论的灵活应用பைடு நூலகம்及辅助线的添加
问题导学,有效引发学生的积极思考问题,积极参与交流,并自主获取结论。
这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握
强化对推论3的理解
生通过交流获得知识,梳理知识形成体系。
巩固所学知识
附板书设计:圆周角(2)
圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.
圆周角定理:圆周角的度数等于它所对的弧的度数的一半。
教与学策略
知识是通过学生自己动口、动手、动脑,积极思考、主动探索获得.我将课堂交给学生,让学生自己去探索,发现验证知识.自主探索,研讨发现,得出结论是本节课主要的学习方法.
课前准备(教具、活动准备等)
教师:多媒体、课件、圆规、三角板等
学生:圆形硬纸片若干、直尺、圆规、量角器等
教学过程
教学步骤
教师活动
能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.
课本20页习题4.5第1.2.3
让学生自主练习
让学生充分交流
学生先个人自主探索,然后交流讨论,获得结论。
学生自我反省,交流总结
以题目的形式复习上节学习内容,增加复习的实效性。

圆周角2教案

圆周角2教案

圆周角定理推论:
例4
圆内接多边形:
性质:
作业安排 课堂小结
板书设计 课后记

论 1:同弧或等弧 所对的圆周角相 等。 问题: 思考: 如图半圆或直径 所对的圆周角是 多少度?90 度的 学生尝试独立思考 圆周角所对的弦 写出解答过程,教 是 什 么 特 殊 的 师评价补充改正。 弦? 推论 2: 半圆(或直径) 所对的圆周角是 直角,90 度的圆 周角所对的弦是 直径。 课本 87 页例 4 课件出示教师教 给学生解题方 法。 多边形的外接 圆:若一个多边 教师观察学生课件 形各顶点都在同 演示的过程,体会 一个圆上,那么, 概念。 这个多边形叫做 圆内接多边形, 这个圆叫做这个 多边形的外接 圆。(图略)
教学内容 课标对本节 课的教学要
圆周角(2) 1、掌握圆周角定理的推论,了解推论的证明过程,并会应用其进行证明 和计算。 2、知道什么是圆内接四边形及其性质,会应用性质进行计算。
求 教学目标
教学重点 难点 教学准备 教学时间
知识与技能: 1、能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和 证明。 2、知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆。 过程与方法: 通过定理的证明探讨过程,促进学生的发散思维;通过定理的应用,进一步提高学 生的应用能力和思维能力。 情感态度与价值观: 在教学中渗透事物普遍存在的相互关系、相互转化的观点,让学生体验到用运动的 观点来研究图形的思想方法。
性质:圆内接四边
形的对角互补。
练习:88 页 1、2、
3、4、5
进一步提高学生应 用定理的能力。
通过具体图形的认 识,更能促进使学 生生成圆内接多边 形和多边形的外接 圆的概念。

2022年精品 《圆周角2》名师优秀教案

2022年精品 《圆周角2》名师优秀教案

圆周角〔第二课时〕〔张丹丹〕一、教学目标〔一〕学习目标1探索同圆或等圆中,相等的圆周角所对的弧和弦的关系2探索同弦所对圆周角的关系3记住圆周角定理的推论并能运用其解决实际问题4知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔二〕学习重点1探索同圆或等圆中,相等的圆周角所对的弧的关系2知道圆内接多边形及多边形的外接圆的概念,掌握圆的内接四边形的性质〔三〕学习难点1探索同弦所对圆周角的关系2圆的内接四边形中对角的关系二、教学设计〔一〕课前设计1预习任务〔1〕在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧和弦也相等.〔2〕在同圆或等圆中,同弦所对的圆周角相等或互补.〔3〕圆内接四边形的对角互补.2预习自测〔1〕如图,A,B,C是⊙O上三点,∠ACB=25°,那么∠BAO的度数是〔〕A.55°B.60°C.65°D.70°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=〔180°﹣50°〕=65°.应选C.【思路点拨】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【答案】C.〔2〕如图,AB是⊙O的直径,BC是⊙O的弦.假设∠OBC=60°,那么∠BAC的度数是〔〕A.75°B.60°C.45°D.30°【知识点】圆周角定理.【数学思想】数形结合【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.应选D.【思路点拨】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【答案】D.〔3〕如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,那么∠OAD∠OCD=度.【知识点】圆周角定理;平行四边形的性质【数学思想】数形结合【解题过程】解:连接OB∵四边形OABC为平行四边形∴AB=OC=OB=OA=BC∴△OAB和△OBC都为等边三角形∴∠OAB=∠OCB=60°∵四边形ABCD为圆的内接四边形∴∠DAB∠DCB=180°∴∠OAD∠OCD=180°﹣60°﹣60°=60°【思路点拨】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B∠ADC=180°,即可求得∠B=∠AOC=12021∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD∠OCD的度数.【答案】60°〔4〕如图,AB为⊙O的直径,AB=AC,AC交于⊙O点E,∠BAC=45°.假设AE=1,那么BC=.【知识点】圆周角定理;等腰直角三角形【数学思想】数形结合【解题过程】解:∵AB是圆的直径,∴∠AEB=90°,又∵∠BAC=45°,∴△ABE是等腰直角三角形,那么AB=,BE=AE=1,那么EC=AC﹣AE=AB﹣AE=﹣1,在直角△BCE中,BC=.故答案是:.【思路点拨】首先利用圆周角定理证明△ABE是等腰直角三角形,那么求得AB、BE的长度,那么EC即可求得,然后再在直角△BCE中,利用勾股定理即可求解.【答案】二课堂设计1知识回忆〔1〕把顶点在圆上,并且两边都与圆相交的角叫做圆周角。

《圆周角》第2课时 教学设计【初中数学人教版九年级上册】

《圆周角》第2课时 教学设计【初中数学人教版九年级上册】

第二十五章 圆24. 1 圆的有关性质 教学设计第 1 课时本节是新人教版九年级上册数学第24章《圆》的内容,本节要求了解圆周角与圆心角的关系.探索圆周角的性质和直径所对圆周角的特征.能运用圆周角的性质解决问题.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.1. 了解圆周角与圆心角的关系;探索圆周角的性质和直径所对圆周角的特征;能运用圆周角的性质解决问题.2. 通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力;通过观察图形,提高学生的识图能力;通过引导学生添加合理的辅助线,培养学生的创造力;学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.3. 引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.4. 【教学重点】探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征. 【教学难点】发现并论证圆周角定理.教师:多媒体课件; 学生:“五个一”◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程 ◆一、提出问题,思考引入问题1 什么叫圆心角?指出图中的圆心角?问题2 如图,∠BAC的顶点和边有哪些特点?二、合作交流,探究新知(一)圆周角的定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.判一判:下列各图中的∠BAC是否为圆周角并简述理由.(二)圆周角定理及其推论1. 测量与猜测如图,连接BO , CO ,得圆心角∠BOC.试猜想∠BAC 与∠BOC 存在怎样的数量关系.◆教学过程◆2. 推导与论证⏹圆心O在∠BAC的一边上(特殊情形)⏹圆心O在∠BAC 的内部⏹圆心O 在∠BAC 的外部3. 圆周角定理:一条弧所对的圆周角等于该弧它所对的圆心角的一半;圆周角定理的推论:同弧或等弧所对的圆周角相等.圆周角和直径的关系:半圆或直径所对的圆周角都相等,都等于90°.(三)圆内接多边形如果一个多边形所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.1.探究性质如图,四边形ABCD 为⊙O 的内接四边形,⊙O 为四边形ABCD 的外接圆. 猜想:∠A与∠C, ∠B与∠D之间的关系为:∠A + ∠C = 180º,∠B + ∠D = 180º2.证明猜想∵弧BCD 和弧BAD 所对的圆心角的和是周角,∴∠A+∠C=180°,同理∠B+∠D=180°,3.归纳总结推论:圆的内接四边形的对角互补.推论:圆的内接四边形的任何一个外角都等于它的内对角.三、应用新知例1 如图,⊙O 的直径AC 为10 cm,弦AD 为 6 cm.(1)求DC 的长;(2)若∠ADC 的平分线交⊙O 于B, 求AB、BC 的长.例2 如图,BD是⊙O的直径,∠CBD=30°,则∠A 的度数为()A.30° B.45° C.60° D.75°四、巩固新知1.四边形ABCD是⊙O的内接四边形,且∠A=110°,∠B=80°,则∠C = ,∠D = .2.⊙O的内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3 ,则∠D= .3. 如图,AB为⊙O的直径,CF⊥AB于E,交⊙O于D,AF交⊙O于G. 求证:∠FGD =∠ADC.4. 如图,在⊙O的内接四边形ABCD中,∠BOD=120°,那么∠BCD是()A.120° B.100°C.80° D.60°5. 在圆内接四边形ABCD 中,∠A,∠B,∠C的度数之比是2︰3︰6.求这个四边形各角的度数.五、归纳小结◆教学反思略.。

九年级数学下册 2.2.2 圆周角(课时2)教案 (新版)湘教版

九年级数学下册 2.2.2 圆周角(课时2)教案 (新版)湘教版

圆周角【知识与技能】1.巩固圆周角概念及圆周角定理.2.掌握圆周角定理的推论:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【过程与方法】在探索圆周角定理的推论中,培养学生观察、比较、归纳、概括的能力.【情感态度】在探索过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.【教学重点】对直径所对的圆周角是直角及90°的圆周角所对的弦是直径这些性质的理解.【教学难点】对圆周角定理推论的灵活运用是难点.一、情境导入,初步认识1.如图,木工师傅为了检验如图所示的工作的凹面是否成半圆,他只用了曲尺(它的角是直角)即可,你知道他是怎样做的吗?【分析】当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,因为90度的圆周角所对的弦是直径.解:当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,否则工作不合格.2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【教学说明】半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径都是圆周角定理可推导出来的.试着让学生简单推导,培养激发他们的学习兴趣.二、思考探究,获取新知1.直径所对的圆周角是直角,90°的角所对的弦是直径.如图,∠C1、∠C2、∠C3所对的圆心角都是∠AOB,只要知道∠AOB的度数,就可求出∠C1、∠C2、∠C3的度数.【教学说明】∵A、O、B在一条直线上,∠AOB是平角,∠AOB=180°,由圆周角定理知∠C1=∠C2=∠C3=90°,反过来也成立.2.讲教材P54例3【教学说明】在圆中求角时,一种方法是利用圆心角的度数求,另一种方法是把所求的角放在90°的三角形中去求.3.讲圆内接四边形和四边形的外接圆的概念.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;圆内接四边形对角互补.例1如图所示,OA为⊙O的半径,以OA为直径的圆⊙C与⊙O的弦AB相交于点D,若OD=5cm,则BE=10cm.【教学说明】在题中利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线,从而求解.例2如图,已知∠BOC=70°,则∠BAC=_____,∠DAC=______.【分析】由∠BOC=70°可得所对的圆周角为35°,又∠BAC与该圆周角互补,故∠BAC=145°.而∠DAC+∠BAC=180°,则∠DAC=35°.答案:145°35°例3如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,使得点E一定是AC的中点(直接写出结论)【教学说明】连接AD,得AD⊥BC,构造出Rt△ABD≌Rt△ACD.解:(1)AB=AC.证明:如图,连接AD,则AD⊥BC.∵AD是公共边,BD=DC,∴Rt△ABD≌Rt△ACD,∴AB=AC.(2)△ABC为正三角形或AB=BC或AC=BC或∠BAC=∠B或∠BAC=∠C.三、运用新知,深化理解1.(湖南湘潭中考)如图,AB是半圆O的直径,D是AC的中点,∠ABC=40°,则∠A等于()A.30°B.60°C.80°D.70°2.如图,AB是⊙O的直径,∠BAC=40°,点D在圆上,则∠ADC=_______.3.(山东威海中考)如图,AB为⊙D的直径,点C、D在⊙O上.若∠AOD=30°,则∠BCD的度数是______.4.(浙江金华中考)如图,AB是⊙O的直径,C是»BD的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,则⊙O的半径为,CE的长是_____.【教学说明】①遇到直径常设法构造直角三角形;②注意:“角→弧→角”之间转化.【答案】1.D 2.50°3.105°4.解:(1)AB为⊙O直径,∴∠ACB=90°,∴∠A+∠CBA=90°.又CE⊥AB,∠ECB+∠CBA=90°,∠BCE=∠A,又»»CD BC=,∴∠A=∠CBD,∴∠ECB=∠DBC,∴CF=BF.(2)半径为5.CE=·6810AC BCAB⨯= =4.8.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?在学生回答基础上.2.教师强调:①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③关于圆周角定理运用中,遇到直径,常构造直角三角形.1.教材P57第7~9题.2.完成同步练习册中本课时的练习.本节课是在巩固圆周角定义及定理的基础上开始,运用定理推导出半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及圆内接四边形性质定理的,学生见证了从一般到特殊的这一过程,使学生明白从特殊到一般又从一般到特殊的多种解决问题的途径,激发学生的求知欲望.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)直径是圆中最长的弦,它所对的圆周角是多少度?
(3)如果一个圆周角是90°,它所对的弦是哪一条?
学生动手探究,交流总结。利用圆周角定理可以得出:
半圆(或直径)所对的圆周角是直角,90°的圆周
角所对的弦是直径。
2、问题2:在同圆或等圆中,如果两个圆周角相等,
它们所对的弧一定相等吗?为什么?
学生讨论回答,得出结论。
圆周角 第二课时
教学目标:
1、知识教学点:
掌握圆周角定理和推论的内容,并能运用它们进行证明或计算。
2、能力要求:
(1)能运用圆周角定理和推论来解决一些简单的实际问题;
(2)通过例题的讲解,提高学生分析问题和解决问题的能力.
3、德育渗透:
学生讨论交流,培养学生合作探究的能力。
教学重难点:
1、圆周角定理及推论的运用;
例2:如图,AB是⊙O的直径,D是圆上任意一点(不与A、B重合),连接BD,并延长到C,使DC=DB,连接AC,判断△ABC的形状?
导析:AB作为⊙O的直径有无直接作用?怎样将圆周角定理推论利用起来?
学生探究方法。
连接AD,由AB是⊙O的直径,可以得出∠ADB
=90°,即AD⊥BC,
又因为BD=CD,所以可以得出AD为BC的垂直平分线,所以AB=AC,即△ABC为等腰三角形。添加。
教具:
圆规、三角板、量角器。
教学过程:
一、复习提问
1、“顶点在圆上的角叫圆周角”这句话对吗?
2、圆周角定理的内容是什么?
二、探索新知
1、问题1,思考回答。
(1)想一想,半圆所对的圆心角是多少度?圆周角是多少度?
(学生拿出准备好的圆,画出一个半圆所对的圆心角和圆周角,再量出它们的度数)
3、范例:
例1:如图,⊙O的直径AB=10㎝,弦AC为㎝,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
导析:已知直径可以得到什么结论?在直
角三角形中有哪些已知条件?如何求出未知边的长度?
解:∵AB是直径
∴∠ACB=90°
在Rt△ABC中,
BC=
∵CD平分∠ACB

∴AD=BD
又在Rt△ABD中, ∴AD=BD= ㎝
三、课堂小结
引导学生作知识总结:
⑴圆周角定理推论内容,⑵辅助线的添加方法:构造直径所对的圆周角。
四、课堂练习
P93 2、3
五、作业
1、P95 11
2、补充:如图,在圆内接四边形ABCD中,AC平分BD,且AC⊥BD,
∠BAD=70°18′,求四边形其它各角的度数。
六、板书设计
复习提问
探索新知
应用新知
相关文档
最新文档