(江西人教)数学中考专题突破【专题5】圆的综合题(24页)

合集下载

部编数学九年级上册专题24.5圆(压轴题综合测试卷)(人教版)(解析版)含答案

部编数学九年级上册专题24.5圆(压轴题综合测试卷)(人教版)(解析版)含答案

专题24.5 圆(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·重庆忠县·九年级期中)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°【思路点拨】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【解题过程】解:在圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.2.(2022·江苏·九年级专题练习)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【思路点拨】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可。

【解题过程】解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.3.(2022·全国·九年级课时练习)如图,在⊙О中,点C在弦AB上移动,连接OC,过点C作CD⊥OC交⊙О于点D.若AB=2,则CD的最大值是()A.4B.2C D.1【思路点拨】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】4.(2022·浙江丽水·模拟预测)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )A.B.cm C.或D.或【思路点拨】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解题过程】解:连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,5.(2022·江苏·九年级)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A B.C.1D.2【思路点拨】【解题过程】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中6.(2022·全国·九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1的值是()S2A.5π2B.3πC.5πD.11π2【思路点拨】【解题过程】7.(2022·全国·九年级专题练习)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为()A B C D.【思路点拨】如图,作过A、B、F作⊙O,AFB为点F的轨迹,然后计算出AFB的长度即可.【解题过程】解:如图:作过A、B、F作⊙O,过O作OG⊥AB∵等边ΔABC∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△BCE≌△ABC∴∠BAD=∠CBE∵∠ABC=∠ABE+∠EBC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∵∠AFB是弦AB同侧的圆周角∴∠AOB=120°8.(2022·全国·九年级课时练习)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O AB=4,则BC的长是( )A.B.C D【思路点拨】【解题过程】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,9.(2022·全国·九年级课时练习)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB =6,AC=5,BC=7,则DE的长是()A B C D【思路点拨】【解题过程】10.(2022·江苏无锡·九年级期中)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,根据定义:①等边三角形一定是奇异三角形;②在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,则a:b:c=12;③如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.则△ACE是奇异三角形;④在③的条件下,当△ACE是直角三角形时,∠AOC=120°,其中,说法正确的有()A.①②B.①③C.②④D.③④【答案】B【思路点拨】【解题过程】解:设等边三角形的边长为a,则a2+a2=2a2,满足奇异三角形的定义,∴等边三角形一定是奇异三角形,故①正确;在RtΔABC中,a2+b2=c2,∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2,若△ABC是奇异三角形,一定有2b2=a2+c2,∴2b2=a2+(a2+b2),∴b2=2a2,得b=.∵c2=b2+a2=3a2,∴c,∴a:b:c=1故②错误;在RtΔABC中,a2+b2=c2,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在RtΔACB中,AC2+BC2=AB2;在RtΔADB中,AD2+BD2=AB2.∵D是半圆ADB的中点,∴AD=BD,∴AD=BD,∴AB2=AD2+BD2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2.∴ΔACE是奇异三角形,故③正确;由③可得ΔACE是奇异三角形,∴AC2+CE2=2AE2.当ΔACE是直角三角形时,由②可得AC:AE:CE=1AC:AE:CE=1,(Ⅰ)当AC:AE:CE=1AC:CE=1AC:CB=1∵∠ACB=90∘,∴∠ABC=30°,∴∠AOC=2∠ABC=60°.(Ⅱ)当AC:AE:CE=1时,AC:CE=1,即AC:CB=1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∴∠AOC的度数为60°或120°,故④错误;故选:B.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级课时练习)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.【思路点拨】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【解题过程】12.(2022·全国·九年级课时练习)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为________cm.【思路点拨】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.【解题过程】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,13.(2022·山东菏泽·九年级期中)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为___________.【思路点拨】【解题过程】14.(2022·全国·九年级课时练习)如图,⊙O是等边△ABC的外接圆,已知D是⊙O上一动点,连接AD、CD,若圆的半径r=2,则以A、B、C、D为顶点的四边形的最大面积为_____.【思路点拨】连接BO并延长交AC于E,交AC于D,根据垂径定理得到点D到AC的距离最大,根据直角三角形的性质、三角形的面积公式计算,得到答案.【解题过程】15.(2022·全国·九年级课时练习)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC边上的动点,以为EF直径作⊙O,当⊙O与矩形的边相切时,BF的长为______.【思路点拨】⊙O与矩形的边相切,但没有具体说与哪个边相切,所以该题有三种情况:第一种情况是圆与边AD、BC 相切,此时BF=AE;第二种情况是圆与边AB相切,利用中位线定理以及勾股定理可求出BF的长;第三种是圆与边CD相切,同样利用中位线定理以及勾股定理求得BF.【解题过程】解:①当圆与边AD、BC相切时,如图1所示此时∠AEO=BFO=90°所以四边形AEFB为矩形即BF=AE=2;②当圆与边AB相切时,设圆的半径为R,切点为H,圆与边AD交于E、N两点,与边BC交于M、F两点,连接EM、HO,如图2所示此时OE=OF=OH=R,点O、H分别是EF、AB的中点∴2OH=AE+BF即BF=2R-2∵BM=AE=2∴MF=2R-4在Rt△EFM中,EM2+MF2=EF2∴BF=13.2评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·全国·九年级课时练习)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知AB,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段AC的垂直平分线DE,分别交AB于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交AB于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【思路点拨】【解题过程】解:(1)作出线段AC的垂直平分线DE,连接AD,CD;以D为圆心,DA长为半径作弧,交AB于点F,连接DF,BD,BF,如图示:(2)结论:BC=BF.理由如下:由作图可得:DE是AC的垂直平分线,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,AD=FD,∴∠DBC=∠DBF,∵四边形ABFD是圆的内接四边形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.17.(2022·江西上饶·九年级期末)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是CD的中点时,求△CDE的面积.【思路点拨】(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解题过程】解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE18.(2022·全国·九年级专题练习)如图,AB是半圆O的直径,点D是半圆O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.【思路点拨】(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;(3)直接利用勾股定理结合三角形面积得出答案.【解题过程】(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,∴∠GPD=∠GDP;∴GP=GD;(2)证明:∵AB为直径,∴∠ACB=90°,∵CE⊥AB于E,∴∠CEB=90°,∴∠ACE+∠ECB=∠ABC+∠ECB=90°,∴∠ACE=∠ABC=∠CAP,∴PC=PA,∵∠ACB=90°,∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,∴∠PCQ=∠CQA,∴PC=PQ,∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;(3)连接CD,∵弧AC=弧CD,∴CD=AC,∵CD=2,∴AC=2,19.(2022·全国·九年级课时练习)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P 上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q 间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.【思路点拨】(1)理解题意后直接利用垂线段最短即可求解.(2)先理解当⊙O与线段有交点时,d(⊙O,AB)=0,利用⊙O与线段相切和⊙O经过A点即可求解.(3)①先确定A′位于x轴上,再求出OA′的长即可求解;②先确定A′的轨迹,再利用存在两个α使d(⊙O,A')=0,确定并求出两个界点值,即可求解.【解题过程】∴∠A′NB=90°,由旋转知BA′=BA=2−(−2)=4,∵∠ABA′=30°,BA′=2,∴A′N=12∴A′位于x轴上,BN=42−22=23,∴A′M=23,∴A′O=23−2,∵对于取定的r值,若存在两个α使d(⊙O,A')=0,∴⊙O与以AH为直径的半圆有两个交点(A点和H点除外),此时有两个界点值,分别是⊙O与该半圆内切时和⊙O由B(2,2),得OB=22+22=22,当⊙O与该半圆内切时,r=4−22,当⊙O经过A点时,r=22,∴4−22<r<22.20.(2022·四川德阳·九年级阶段练习)如图1,四边形ABCD内接于⊙O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与CD围成阴影部分的面积.【思路点拨】【解题过程】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠EBC+∠ABC=180°,∴∠D=∠EBC,∵AD为⊙O直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵CE⊥AB,∴∠ECB+∠EBC=90°,∴∠CAD=∠ECB;(2)①四边形ABCO是菱形,理由如下:∵CE是⊙O的切线,∴OC⊥EC,∵AB⊥EC,∴∠OCE=∠E=90°,∴∠OCE+∠E=180°,∴OC∥AE,∴∠ACO=∠BAC,∴CF=3,21.(2022·全国·九年级专题练习)如图,以AB为直径的⊙O上有一动点C,⊙O的切线CD交AB的延长线于点D,过点B作BM∥OC交⊙O于点M,连接AM,OM,BC.(1)求证:AM∥CD(2)若OA=5,填空:①当AM=时,四边形OCBM为菱形;②连接MD,过点O作ON⊥MD于点N,若BD=,则ON=.【思路点拨】(1)首先根据圆周角定理可得∠MAB+∠ABM=90°,由切线的性质可得∠DOC+∠CDO=90°,再根据平行线的性质即可证得∠MAB=∠CDO,据此即可证得结论;(2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC 是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.【解题过程】(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵CD是⊙O的切线,∴OC⊥CD,∴∠DOC+∠CDO=90°,又∵BM∥OC,∴∠ABM=∠DOC,∴∠MAB=∠CDO,∴AM∥CD;(2)解:①若四边形OCBM为菱形,则OM=OA=MB =5,∵AB是⊙O的直径,∴∠AMB=90°,∵BD=52−5,OB=5,∴OD=OB+BD=5+5∵CD是⊙O的切线,∴∠OCD=90°,22.(2022·全国·九年级课时练习)如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE∶PF=1∶3,AB=OG的长.【思路点拨】【解题过程】(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,∵OF=OD OM=ON,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,23.(2022·全国·九年级课时练习)问题提出:(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC 的面积为______.问题探究:(2)如图2,在△ABC中,已知∠BAC=120°,BC=△ABC的最大面积.问题解决:(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°.请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.【思路点拨】(1)作AD⊥BC于D,由勾股定理求出AD的长,即可求出面积;(2)作△ABC的外接圆⊙O,可知点A在BC上运动,当A'O⊥BC时,△ABC的面积最大,求出A'H的长,从而得出答案;(3)以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,利用等腰直角三角形的性质求出OA,OG的长,则以O为圆心,OA为半径的圆与CD相交,从而⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F 于E,连接OF,利用勾股定理求出OE的长,从而解决问题.【解题过程】24.(2022·江苏·苏州中学九年级阶段练习)在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.(1)如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是;(2)如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;(3)如图3,⊙O是△ABC的外接圆,点D在AC上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.【思路点拨】【解题过程】即△CDE面积的面积最大值为4,此时,BD。

【初三数学】九江市九年级数学上(人教版)第24章圆单元综合练习题(解析版)

【初三数学】九江市九年级数学上(人教版)第24章圆单元综合练习题(解析版)

人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC=-=5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.6.如图,直径AB为12的半圆绕点A逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是( )A.12πB.24πC.6πD.36π答案 B 因为以AB为直径的半圆绕点A逆时针旋转60°得到以AB'为直径的半圆,故S半圆AB'=S半圆AB,则S阴影=S扇形BAB'+S半圆AB'-S半圆AB=S扇形BAB'===24π,故选B.7.如图,已知线段OA交☉O于点B,且OB=AB,点P是☉O上的一个动点,那么∠OAP的最大值是( )A.30°B.45°C.60°D.90°答案A连接OP,根据题意知,当OP⊥AP时,∠OAP的取值最大.在Rt△AOP 中,∵OP=OB,OB=AB,∴AO=2OP,∴∠OAP=30°.故选A.8.如图,直线AB与☉O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若☉O的半径为,CD=4,则弦EF的长为( )A.4B.2C.5D.6答案 B 连接OA,并反向延长交CD于点H,连接OC,∵直线AB与☉O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴OH⊥CD,∴CH=CD=×4=2,∵☉O的半径为,∴OA=OC=,∴OH=-=,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.9.如图,在平面直角坐标系xOy中,☉P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被☉P截得的弦AB的长为4,则a的值是( )A.4B.3+C.3D.3+答案B作如图所示的辅助线,易得OC=CD=3,AP=3,AE=2,故PE=DE=-=1,PD=,故a=PC=DC+PD=3+.10.如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA、PB,则△PAB面积的最大值是( )A.8B.12C.D.答案 C 如图,平移AB使其与☉C相切于P,此时P点距离AB最远,即△PAB的面积最大,连接AC,连接PC并延长交AB于H.因为PC是☉C的半径,MN∥AB,所以PH⊥AB.∵直线y=x-3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3),则AB=5.∵S△ABC=·BC·AO=·AB·CH,∴CH=,∴PH=1+=,∴△PAB面积的最大值是×5×=,故选C.二、填空题11.“三角形中至少有一个内角大于或等于60°”,这个命题用反证法证明应假设.答案三角形中三个内角都小于60°解析第一步应假设结论不成立,即三角形中三个内角都小于60°.12.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.答案108π解析圆锥的侧面积就是所给扇形的面积,设扇形的半径为r cm,∵弧AB的长为12πcm,∴πr=12π,解得r=18,∴S=πr2=π×182=108π(cm2).另解:S=rl=×18×12π=108π(cm2).13.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形.则S扇形= cm2.答案4解析由题意可知扇形的周长为8cm.因为半径r=2cm,所以弧长l=8-2×2=4(cm),所以S扇形=l·r=×4×2=4(cm2).14.如图,点A、B、C、D都在☉O上,∠ABC=90°,AD=3,CD=2,则☉O的直径的长是.答案解析连接AC,∵点A、B、C、D都在☉O上,∠ABC=90°,∴∠ADC=180°-∠ABC=90°,AC是直径,∵AD=3,CD=2,∴AC==,即☉O直径的长是.15.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,外圆的半径OC⊥AB于D,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.答案50cm解析如图,连接OA,设半径为r cm,∵CD=10cm,AB=60cm,∴AD=AB=30cm,OD=(r-10)cm,∴r2=(r-10)2+302,解得r=50.∴这个车轮的外圆半径是50cm.16.如图,两个同心圆,大圆的半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.答案8<AB≤10解析如图,当AB经过圆心时最长,此时AB=2×5=10.当AB与小圆相切于D时,利用勾股定理可得AD=4.利用垂径定理可得AB=8.根据直线与圆的位置关系可得,若大圆的弦AB与小圆相交,则8<AB≤10.17.如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x 轴上,☉M半径为2,☉M与直线l相交于A、B两点,若△ABM为等腰直角三角形,则点M的坐标为.答案(2,0)或(-2,0)解析过点M作MC⊥l,垂足为C,∵△MAB是等腰直角三角形,∴MA=MB,且∠BAM=∠ABM=45°.∵MC⊥l,∴∠BAM=∠CMA=45°,∴AC=CM.在Rt△ACM中,∵AC2+CM2=AM2,即2CM2=4,∴CM=.在Rt△OCM中,∠COM=30°,∴CM=OM,∴OM=2CM=2,∴M(2,0).根据对称性知,若点M在x轴负半轴上,则点M(-2,0)也满足条件.18.如图24-5-16,在☉O中,AB是直径,点D是☉O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q.连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).答案②③解析如图,连接OD,∵DG是☉O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠APE=∠GPD=∠GDP,∴GP=GD.结论②正确.∵AB是☉O的直径,∴∠ACB=90°,∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.所以结论③正确.由于不能确定∠BAD与∠ABC的关系,所以结论①不一定正确.故答案是②③.三、解答题19.如图,AB是☉O的直径,弦CD⊥AB于点E.点M在☉O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求☉O的直径;(2)若∠M=∠D,求∠D的度数.答案(1)∵AB是☉O的直径,弦CD⊥AB,CD=16,∴DE=CD=8.∵BE=4,∴OE=OB-BE=OD-4.在Rt△OED中,OE2+ED2=OD2,∴(OD-4)2+82=OD2,解得OD=10.∴☉O的直径是20.(2)∵弦CD⊥AB,∴∠OED=90°.∴∠EOD+∠D=90°.∵∠M=∠D,∠EOD=2∠M,∴∠BOD+∠D=2∠M+∠D=90°.∴∠D=30°.20.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的☉O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).答案(1)证明:连接OD.∵BC是☉O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∠OED=∠AOE=60°,∵OE=OD,∴△ODE为等边三角形,∴∠DOE=60°,∴阴影部分的面积=S扇形ODE==π.21.如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为☉O的切线;(3)若☉O的半径为5,∠BAC=60°,求DE的长.答案(1)证明:连接AD,∵AB是☉O的直径,∴∠ADB=90°,又BD=CD,人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③B .①③④C .①②③D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是( )A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4 , AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A.B. C.D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,人教版数学九年级上册第24章《圆》单元培优练习卷(含解析)一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A.2 B.3 C.6 D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4πB.2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.7.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BAC=∠BOD,则⊙O 的半径为()A.4B.8 C.10 D.68.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.59.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若AC=6,则图中阴影部分的面积是()A.2π﹣3B.2π+3C.π﹣D.π+11.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°12.如图,四边形ABCD中,CD∥AB,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D,点B在⊙O上,连接BD,若DE=4,则BD的长为()A.4 B.4C.8 D.8二.填空题13.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接P D,BC=6,DP =4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=42°,则∠CAD=16.如图,在Rt△ABC中,∠C=90°,∠B=30°,其中AC=2,以AC为直径的⊙O交AB 于点D,则圆周角∠A所对的弧长为(用含π的代数式表示)17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为.18.如图,在边长为2的菱形ABCD中,∠B=45°,以点A为圆心的扇形FAG与菱形的边BC相切于点E,则图中的弧长是.三.解答题19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.23.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.参考答案一.选择题1.解:设扇形的半径为r.由题意:=6π,∴r2=36,∵r>0,∴r=6,故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:∵四边形ABCD为圆O的内接四边形,∴∠B+∠D=180°,∵∠B=135°,∴∠D=45°,∵∠AOC=2∠D,∴∠AOC=90°,则l==2π,故选:B.5.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.6.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.7.解:∵∠BAC=∠BOD,∴,∴AB⊥CD,∵AE=CD=16,∴DE=CD=8,设OD=r,则OE=AE﹣r=16﹣r,在Rt△ODE中,OD=r,DE=8,OE=16﹣r,∵OD2=DE2+OE2,即r2=82+(16﹣r)2,解得r=10.故选:C.8.解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.9.解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.10.解:∵在菱形ABCD中,AC与BD交于点O,BD=CD,AC=6,∴AC⊥BD,OC=3,BD=CD=BC,BD=2OB,∴△BCD是等边三角形,∴∠BDC=60°,OB=,∴BD=2,∴图中阴影部分的面积是:S阴=S扇形CDB﹣S△CDB=﹣×2×3=2π﹣3,故选:A.11.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.12.解:如图,连接OD,设⊙O的半径为r,∵⊙O与边CD相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ADE=90°,∴∠ODA+∠ODE=90°,∴∠ODA=∠3,而∠ODA=∠1,∴∠1=∠3,∵ED=EC=4,∴∠2=∠3,∴∠1=∠2,∵AB∥CD,∴∠2=∠CAB,∴∠1=∠CAB∴=,∴AE⊥BD,∵∠1=∠2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠DEF=∠AED,∠DFE=∠ADE,∴△EDF∽△EAD,∴DE:EA=EF:DE,即4:2r=(r﹣2):4,整理得r2﹣2r﹣8=0,解得r=﹣2(舍去)或r=4,∴EF=r﹣2=2,在Rt△DEF中,DF==2,∴DB=2DF=4.故选:B.二.填空题(共6小题)13.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连接OC,OD,如图所示.∵∠CAB=42°,∴∠COB=84°.∵=,∴∠COD=(180°﹣∠COB)=48°,∴∠CAD=∠COD=24°.故答案为:24°.16.解:连接OD,在Rt△ABC中,∠C=90°,∠B=30°,∴∠A=60°,∴∠COD=2∠A=120°,∵AC=2,∴圆周角∠A所对的弧长为:=,故答案为:.17.解:如图,连接OF.S阴=(S扇形OFC﹣S△OFC)+(S△ABC﹣S△OFC﹣S扇形OBF)=﹣•×+×2×﹣××﹣=﹣+﹣=+,故答案为: +.18.解:连接AE,如图,∵以点A为圆心的扇形FAG与菱形的边BC相切于点E,∴AE⊥BC,在Rt△ABE中,∵AB=2,∠B=45°,∴∠BAE=45°,AE=AB=×2=2,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAE=∠BEA=90°,∴的弧长==π.故答案为π.三.解答题(共6小题)19.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PF,FC,FO并延长交⊙O于G,则∠G=∠ACF,∠G+∠PFG=90°,∵AF是⊙O的切线,∴∠AFG+∠PFG=90°,∴∠AFP=∠G=∠ACF,∵∠FAP=∠A CF,∴△AFP∽△ACF,∴=,∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ABO∽△AOE,∴,∴=,∴AE=3.22.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.23.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.24.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠A DO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.人教版九年级上册第24章数学圆单元测试卷(含答案)(7)一.选择题1.如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB的度数为()A.26°B.52°C.54°D.56°2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°3.已知⊙O的半径为5cm,若点A到圆心O的距离为3cm,则点A()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定4.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°5.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆6.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是cm,则这个正六边形的周长是()A. cm B.12cm C. cm D.36 cm7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.2πB.πC.D.4π8.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°9.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q10.如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD 交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.二.填空题11.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=26°,则∠ABC的度数为.12.如图所示,AB是⊙O的直径.PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P =40°,则∠B等于.13.如图,在直角坐标系中,点A(0,3)、点B(4,3)、C(0,﹣1),则△ABC外接圆的半径为.14.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.16.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.17.已知点A是圆心为坐标原点O且半径为3的圆上的动点,经过点B(4,0)作直线l⊥x 轴,点P是直线l上的动点,若∠OPA=45°,则△BOP的面积的最大值为.18.如图,已知⊙O的半径为m,点C为直径AB延长线上一点,BC=m.过点C任作一直线l,若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于.三.解答题19.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.20.如图,点P是⊙O的直径AB延长线上的一点,点C,D在⊙O上,且PD是⊙O的切线,PC=PD.(1)求证:PC是⊙O的切线;(2)若⊙O的半径为2,DO=PO,求图中阴影部分的面积.21.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)22.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交A P的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.23.如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG.24.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.25.【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上的长.(π取3.1)参考答案一.选择题1.解:∵OB=OC,∴∠C=∠OBC,∵∠OBC=26°,∴∠AOB=2∠C=52°,故选:B.2.解:连接CO,∵∠A=68°,∴∠BOC=136°,∴∠OBC=∠OCB=(180°﹣136°)=22°.故选:A.3.解:∵OA=3cm<5cm,∴点A在⊙O内.故选:A.4.解:∠APB=∠AOB=×40°=20°.故选:C.5.解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.6.解:设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选:C.7.解:连接OA、OC,如图.∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则劣弧AC的长==2π.故选:A.8.解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠P=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选:D.9.解:连接OM,ON,OQ, OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选:C.10.解:连接AD,CF,作CH⊥BD于H,如图所示:∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∴△ADF∽△BDC,∴==,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴AE=AF,∵AE=2BF,∴BC=AB=3BF,设BF=x,则AE=2x,AB=BC=3x,∴BE==x,CF==,由切割线定理得:AE2=ED×BE,∴ED===x,∴BD=BE﹣ED=,∵CH⊥BD,∴∠BHC=90°,∠CBH+∠BCH=∠CBH+∠ABE,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:BH=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.二.填空题11.解:连接CO,∵CD切⊙O于点C,∴CO⊥CD,∴∠OCD=90°,∵∠BCD=26°,∴∠OCB=90°﹣26°=64°,∵CO=BO,∴∠ABC=∠OCB=64°.故答案为:64°.12.解:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故答案为:25°.13.解:连接AB,分别作AC、AB的垂直平分线,两直线交于点H,由垂径定理得,点H为△ABC的外接圆的圆心,∵A(0,3)、点B(4,3)、C(0,﹣1),∴点H的坐标为(2,1),则△ABC外接圆的半径==2,故答案为:2.14.解:由题意:BA=BC=1,∠ABC=90°,∴S==.扇形BAC故答案为.15.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.16.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.17.解:当PA是⊙O的切线时,OP最长,则PB最长,故△BOP的面积的最大,连接OA,∵PA是⊙O的切线,∴OA⊥PA,∵∠OPA=45°,∴△OPA是等腰直角三角形,∴OA=PA=3,∴OP=3,在Rt△BOP中, PB===,∴△BOP的面积的最大值为×4×=2,故答案为2.18.解:∵PM、PN是过P所作的⊙O的两切线且互相垂直,∴∠MON=90°,∴四边形PMON是正方形,根据勾股定理求得OP=m,∴P点在以O为圆心,以m长为半径作大圆⊙O上,以O为圆心,以m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P点,此时∠ACP有最大值,如图所示,∵PC是大圆⊙O的切线,∴OP⊥PC,∵OC=2m,OP=m,∴PC==m,∴OP=PC,∴∠ACP=45°,∴∠ACP的最大值等于45°,.故答案为45°.三.解答题19.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.20.(1)证明:连接OC,在△PDO与△PCO中,,∴△PDO≌△PCO(SSS),∴∠PCO=∠PDO,∵PD是⊙O的切线,∴∠PDO=90°,∴∠PCO=90°,∴PC是⊙O的切线;(2)解:∵∠PDO=90°,DO=PO,∴∠POD=60°,∴∠DOC=120°,∵⊙O的半径为2,∴PD=OD=2,∴图中阴影部分的面积=S四边形PDOC ﹣S扇形DOC=2××2×2﹣=4﹣.21.(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.。

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合》1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:tan∠EAB的值为;(2)在(1)的条件下,证明:FG是⊙O的切线;(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.6.问题发现:(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;问题探究:(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;解决问题:(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.(1)求证:AM平分∠CAB;(2)若AB=4,∠APE=30°,求的长.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.(1)求证:PO=PD;(2)若AC=,求⊙O的半径.13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.14.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)15.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.16.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.17.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC 边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tan B=,tan C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.18.如图,在等腰三角形ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,过点C作⊙O的切线交AB的延长线于点P.(1)求证:∠CAB=2∠BCP;(2)若⊙O的直径为5,sin∠BCP=,求△ABC内切圆的半径;(3)在(2)的条件下,求△ACP的周长.19.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.20.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△CAB的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.参考答案1.解:(1)在Rt△ABC中,∵AB=8,∠ABC=30°,∴AC=AB sin∠ABC=8sin30°=4,∴⊙O的半径为2;(2)证明:连接OD,CD,∵AC为⊙O的直径,∴CD⊥AB,∴∠CDB=90°,∵点E是边BC的中点,∴DE=CE=CB,∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ACD+∠DCE=90°,∴∠ODE=∠ODC+∠CDE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(3)连接OO′交AB于F,设⊙O′与AB相切于G,连接O′G,则∠O′GF=90°,∵将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,∴OO′∥BC,AO=O′G,∴∠AOF=∠ACB=90°,∵∠AFO=∠O′FG,∴△AOF≌△O′GF(AAS),∴O′F=AF,∵在Rt△AOF中,∵∠A=60°,AO=2,∴AF=4,OF=2,∴O′F=AF=4,∴OO′=4+2,∴m=4+2.故答案为:4+2.2.(1)解:∵四边形ABCD是矩形,∴∠D=90°,CD∥AB,CD=AB=13,∴∠EAB=∠DEA,∵E是CD的中点,∴DE=CD=,∴tan∠DEA===.故答案为:.(2)证明:连接OF,在矩形ABCD中,AD=BC,∠ADE=∠BCE=90°,又CE=DE,∴△ADE≌△BCE(SAS),∴AE=BE,∴∠EAB=∠EBA.∵OF=OA,∴∠OAF=∠OFA,∴∠OFA=∠EBA.∴OF∥EB.∵FG⊥BE,∴FG⊥OF,∴FG是⊙O的切线.(3)解:若BE能与⊙O相切,由AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=13﹣x.由勾股定理得:AE2+EB2=AB2,即(36+x2)+[(13﹣x)2+36]=132,整理得x2﹣13x+36=0,解得:x1=4,x2=9,∴DE=4或9,当DE=4时,CE=9,BE===3,当DE=9时,CE=4,BE===2,∴BE能与⊙O相切,此时BE=2或3.3.解:(1)如图1,连接OC,∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=AB=,设BE=EF=x,则OE=x+,在Rt△OEF中,∵OE2+EF2=OF2,∴,在Rt△OBC中,∵OB2+BC2=OC2,∴=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴,解得:x=,∴正方形BEFG的边长为;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=,即x(x+y)=,∴EF×OE=,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1﹣a,则OE=1﹣a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a2=OD2,(1﹣a+b)2+b2=OF2,∵OD=OF,∴12+a2=(1﹣a+b)2+b2,∴(b+1)(a﹣b)=0,∵b+1≠0,∴a﹣b=0,∴a=b,∴OA=EF,在Rt△AOD和Rt△EFO中,,∴Rt△AOD≌Rt△EFO(HL),∴∠FOE=∠ODA,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO⊥FO.4.解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =3, ∴CF =(k +3),EF =(8k ﹣3),∵EA 2+CF 2=EF 2, ∴+=,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1.∴AB =12,∴AO =AB =6,∴⊙O的半径为6.5.解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB 不一定是锐角三角形;②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△OAB是直角三角形;③正确.点B在射线OA上的射影值大于1时,∠OAB是钝角,故△OAB是钝角三角形;故答案为:B.(2)①如图2,作BH⊥OC于点H,∵点B在射线OA上的射影值为,∴=,=,CA=OA=OB=1,∴=,又∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴直线BC是⊙O的切线;②图形是上下对称的,只考虑B在直线OC上及OC上方部分的情形.过点D作DM⊥OC,作DN⊥OB,当∠DOB<90°时,设DM=h,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DN=OC×DM,∴DN=2h,∵在Rt△DON和Rt△DOM中,OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去h得:y=2x﹣.如图,当∠BOD=90°时,过点D作DM⊥OC于点M,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DO=OC×DM,∵CA=OA=OB=1,∴OD=2DM,∴sin∠DOM=,∴∠DOM=30°,设DM=h,则OD=2h,OM=h,∴h2+=1+4h2,∴h=,∴OM=,当点B在OC上时,OD=,综上所述,当≤x≤时,y=0;当<x≤时,y=2x﹣.故答案为:y=0(≤x≤)或y=2x﹣(<x≤).6.解:(1)如图1,连接OA、OB,过点O作OH⊥AB于点H,∵∠C=60°,∴∠AOB=120°,∵OA=OB,∴△OAB为等腰三角形,∵OH⊥AB,∴∠AOH=∠BOH=60°,∴AH=OA sin∠AOH=4×=2,则AB=2AH=4;故答案为4;(2)如图2,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,∵四边形ABCD的面积S=AC×DE AC×BF=AC×(DE+BF),∴当D、E、F、B四点共线且为直径时,四边形ABCD的面积S最大;∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=120°,在△AOC中,由(1)知,AC=2×OA sin60°=2×6×=6,∴四边形ABCD的面积S的最大值为:×AC×BD=6×12=36,故四边形ABCD的面积的最大值为36;(3)如图3,过点D作DK⊥AB于点K,连接CD,在△ADM中,DK=AD•sin A=1×=,同理AK=,则KM=AM﹣AK=2﹣=,则tan∠DMK==∴∠DMK=30°,故△ADM为直角三角形,同理△CMB为直角三角形,在Rt△ADM中,DM===,∴∠DMC=180°﹣∠DMA﹣∠CMB=60°∵AD=BM,AM=BC,∠A=∠B=60°,∴Rt△ADM≌Rt△BMC(SAS),∴DM=CM,∴△CDM为等边三角形;设所在的圆的圆心为R,连接DR、CR、MR,∵DM=CM,RM=RM,DR=CR,∴△DRM≌△CRM(SSS),∴∠DMR=∠CMR=∠DMC=30°,在△DMR中,DR=1,∠DMR=30°,DM==CM,过点R作RH⊥DM于点H,则RM===1=RD,故D、P、C、M四点共圆,∴∠DPC=120°,如图4,连接MP,在PM上取PP′=PC,∵△CDM为等边三角形,∴∠CDM=60°=∠CPM,∴△P′PC为等边三角形,则PP′=P′C=PC,∵∠PMC=∠PDC,∠CP′M=180°﹣∠PP′C=120°=∠DPC,CD=CM,∴△PDC≌△P′MC(AAS),∴PD=P′M,∴PD+PC=PP′+PD=PP′+P′M=PM,故当PM是直径时,PD+PC最大值为2;∵四边形DMCP的周长=DM+CM+PC+PD=2+PD+PC,而PD+PC最大值为2;故四边形DMCP的周长的最大值为:2+2,即四条慢跑道总长度(即四边形DMCP的周长)最大为2+2.7.(1)证明:∵OQ∥AP,∴∠EOC=∠OAP,∠POQ=∠APO,又∵OP=OA,∴∠APO=∠OAP,又∵∠BOQ=∠EOA=∠OAP,∴∠POQ=∠BOQ,在△BOQ与△POQ中,,∴△POQ≌△BOQ(SAS),∴∠OPQ=∠OBQ=90°,∵点P在⊙O上,∴PQ是⊙O的切线;(2)解:①∵△POQ≌△BOQ,∴∠OBQ=∠OPQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=2;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=1,∴PC===,∴PE=2PC=2.故答案为:2;2.8.解:(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.9.解:(Ⅰ)如图①,连接OC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∵DC与⊙O相切,∴∠OCD=90°,∵OB=BD,∴BC=OD=OB=BD,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠COB=60°,∴∠BCD=∠OCA=30°,∴∠D=∠A=30°;(Ⅱ)如图②,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵AF⊥CD,∴∠AFC=90°,∵∠ACF是圆内接四边形ACEB的外角,∴∠ACF=∠ABE,∴∠FAC=∠EAB=18°,答:∠FAC的大小为18°.10.解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为=.11.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.12.(1)证明:∵PA与⊙O相切于点P,∴BP⊥AP∴∠OPD+∠DPA=90°,∠OAP+∠AOP=90°∵∠OAP=∠DPA.∴∠OPD=∠AOP∴OD=PD∵PO=OD∴PO=PD.(2)连接PC,∵PB为⊙O的直径∴∠BCP=90°∵PO=PD=OD∴∠AOP=60°设⊙O的半径为x,则PB=2x,=tan60°∴PA=x∴AB==x∵∠BPA=∠BCP=90°,∠B=∠B∴△BAP∽△BPC∴=∵AC=∴=∴7x﹣=4x∴x=∴⊙O的半径为.13.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.14.解:(1)过点E作EH⊥AF于H,连接OA、OE、OH,如图1所示:∵∠ACB=90°,AB=10,AC=8,∴BC===6,设运动时间为t,则AE=5t,AF=8t,∵∠AHE=∠ACB=90°,∠EAH=∠BAC,∴△EAH∽△BAC,∴=,即:=,∴AH=4t,∴FH=AF﹣AH=8t﹣4t=4t,∴AH=FH,∵EH⊥AF,∴△AEF是等腰三角形,∴E为的中点,∠EAF=∠EFA,∵AH=FH,∴OH⊥AC,∴E、H、O三点共线,∴∠OAF+∠AOE=90°,∵AB平分∠DAM,∴∠DAE=∠EAF=∠EFA,∵∠AOE=2∠EFA,∴∠AOE=∠DAE+∠EAF=∠DAF,∴∠DAF+∠OAF=90°=∠DAO,即OA⊥AD,∵OA为⊙O的半径,∴AD与⊙O相切;故答案为:等腰三角形,相切;(2)连接OA、OF、OE,OE于AC交于H,如图2所示:由(1)知:EH⊥AC,∵EN与⊙O相切,∴∠OEN=90°,∵∠ACB=90°,∴四边形EHCN为矩形,∴EH=NC,在Rt△AHE中,EH===3t,∴NC=3t,∵点N为BC的中点,∴BC=2NC=6t,∵BC=6,∴6t=6,∴t=1,∴AH=4,EH=3,设⊙O的半径为x,则OH=x﹣3,在Rt△AOH中,由勾股定理得:OA2=OH2+AH2,即x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∴OH=,∴tan∠AOH==,∴∠AOH=74°,∵∠AOH=60°时,△AOE是等边三角形,AE=OA,74°>60°,∴AE>OA,∴劣弧长度的大于半径;(3)当点E运动到B点时,t=10÷5=2,∴AF=2×8=16,AE=EF=AB=10,此时△AEF的内心记为G,当A、E、F重合时,内心为A点,∴△AEF的内心运动的路径长为AG,作GP⊥AE于P,GQ⊥EF于Q,连接AG、GF,则CG=PG=NQ,如图3所示:S△AEF=AF•BC=×16×6=48,设CG=PG=NQ=a,则S△AEF =S△AGF+S△AEB+S△FEG=AF•CG+AE•PG+EF•NQ=×(16+10+10)a=48,解得:a=,在Rt△AGC中,AC2+CG2=AG2,即82+()2=AG,∴AG=,故答案为:;(4)分别讨论两种极限位置,①当EN与⊙O相切时,由(2)知,t=1;②当N在⊙O上,即ON为⊙O的半径,连接OA、ON、OE,OE交AC于H,过点O作OK⊥BC于K,如图4所示:则四边形OKCH为矩形,OA=OE=ON,∴OH=CK,AH=4t,EH=3t,设⊙O的半径为x,则在Rt△AOH中,AH2+OH2=OA2,即(4t)2+(x﹣3t)2=x2,解得:x=t,∴OH=CK=t﹣3t=t,在Rt△OKN中,OK2+KN2=ON2,即(8﹣4t)2+(3+t)2=(t)2,解得:t=,∴线段EN与⊙O有两个公共点时,t的取值范围为:1<t≤,故答案为:1<t≤.15.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.16.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.17.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a=﹣2(舍去),2∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,=2,(舍去)解得a1∴BD=3+a=3+2=5.∴或5.(5)①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,连接AD,BD,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.18.解:(1)如图,连接AN,∵AC为直径,∴AN⊥BC,∵AB=AC,∴AN平分∠BAC,∵PC是圆的切线,∴∠ACP=90°,∵∠NAC+∠ACB=∠PCB+∠ACB=90°,∴∠NAC=∠BCP,即∠BAC=2∠BCP;(2)由(1)知,AN平分∠BAC,则∠NAC=∠BCP,故sin∠NAC=sin∠BCP=,则tan∠NAC=,在Rt△NAC中,AC=5,NC=AC•sin∠NAC=5×=,同理AN=2,则BC=2NC=2;S=×BC•AN=2×2=10,△ABC设△ABC内切圆的半径为r,则S=(AB+AC+BC)•r=×(5+5+2)=10,△ABC解得:r=;故△ABC内切圆的半径为;(3)在△ABC中,设AC边长的高为h,则S=AC•h=×5×h=10,解得:h=4,△ABCsin∠BAC==,在Rt△ACP中,∵sin∠BAC==,设PC=4m,则AP=5m,则AC=3m=5,解得m=,△ACP的周长=3m+4m+5m=12m=20.19.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.20.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OC2=OG•OA,∴OG=,∴CG===,∴CF=2CG=.。

人教中考数学圆的综合综合题含详细答案

人教中考数学圆的综合综合题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上DCE B∠=∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵11322OA AB x ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8.∴1384132OA=⨯=.则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD=,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD 的面积为6×4=24,Rt △CED 的面积为12×4×2=4, 扇形ABE 的面积为12π×42=4π, ∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.4.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-, 解得333a -=∴ 点A 的横坐标为33333111.22x a --=+=+= ∴331.x -≤ 综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:33 ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.5.如图,在直角坐标系中,⊙M 经过原点O(0,0),点6,0)与点B(02),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(263,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633=∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.6.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.7.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.8.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE 3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=,∴PE =36 . 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB . ∴2AD AC AC R= ∴R =2322AC AD =10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题; (2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2), ∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。

第一学期 初三数学 人教版九年级上册(新)第24章 圆 综合练习题 学生版

第一学期 初三数学 人教版九年级上册(新)第24章 圆 综合练习题 学生版

北京市丰台区-第一学期 初三数学第24章 圆 综合练习题一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =.(1)求证:ABE ADB △∽△,并求AB 的长; (2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D . (1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP :PO 的值.OF A BC DEF EDCBO AA DO G5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若662AD AE ==,,求BC 的长.6.如图,内接于⊙O ,过点的直线交⊙O 于点,交的延长线于点,且AB 2=AP ·AD(1)求证:;(2)如果,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线;(2)若BD =5, DC =3, 求AC 的长.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD⊙AB 于E ,连结AC 、OC 、BC.(1)求证:⊙ACO=⊙BCD ;(2)若BE=2,CD=8,求AB 和AC 的长.9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD于E ,且BE AE =. (1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。

人教中考数学圆的综合的综合复习含答案

人教中考数学圆的综合的综合复习含答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5=,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴223635+=∴PB=OB-OE=353.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.3.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO;(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是=,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;BD中点,推出CD CB(2)想办法证明∠EFB=∠EBF即可;(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;试题解析:(1)如图1中,连接OA,∵OA=OC,∴∠1=∠ACO,∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,∵点C是BD中点,∴CD CB=,∴∠BAC=∠DAC,∴∠DAC=∠ACO+∠ABO.(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,∴∠EFB=∠EBF,∴EF=EB.(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF 于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a , ∵AB=13,∴EF=EB=FB=FH+BH=a+132, ∴OE=EF ﹣OF=FB ﹣OF=132﹣a ,OB=OC=OE+EC=132﹣a+2=172﹣a , ∵NE=12EF=12a+134, ∴ON=OE=EN=(132﹣a )﹣(12a+134)=134﹣32a , ∵BO 2﹣ON 2=EB 2﹣EN 2, ∴(172﹣a )2﹣(134﹣32a )2=(a+132)2﹣(12a+134)2, 解得a=32或﹣10(舍弃), ∴OE=5,EB=8,OB=7, ∵∠K=∠ATC=90°,∠KAC=∠TAC ,AC=AC ,∴△ACK ≌△ACT ,∴CK=CT ,AK=AT , ∵CD CB =,∴DC=BC ,∴Rt △DKC ≌Rt △BTC ,∴DK=BT ,∵FT=12FC=5,∴DK=TB=FB ﹣FT=3,∴AK=AT=AB ﹣TB=10,∴AD=AK ﹣DK=10﹣3=7.4.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2【解析】【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得BC ABBO BF=,结合AB=2BO即可得;(3)证ECD∽△EGC得EC EDEG EC=,根据CE=3,DG=2.5知32.53DEDE=+,解之可得.【详解】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+, 整理,得:DE 2+2.5DE ﹣9=0,解得:DE =2或DE =﹣4.5(舍),故DE =2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.5.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD .(1)求证:EF ∥BC ;(2)若EH =4,HF =2,求BE 的长.【答案】(1)见解析;(2) 233【解析】【分析】(1)根据EF=BD可得EF=BD,进而得到BE DF,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴EF=BD∴BE DF∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.6.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(235.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225DE CE-=△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°.∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3.∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°. ∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.7.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并说明理由;(2)若AB =2,BC =2,求⊙O 的半径.【答案】(1)直线CE 与⊙O 相切,理由见解析;(2)⊙O 的半径为64【解析】【分析】(1)首先连接OE ,由OE=OA 与四边形ABCD 是矩形,易求得∠DEC+∠OEA=90°,即OE ⊥EC ,即可证得直线CE 与⊙O 的位置关系是相切;(2)首先易证得△CDE ∽△CBA ,然后根据相似三角形的对应边成比例,即可求得DE 的长,又由勾股定理即可求得AC 的长,然后设OA 为x ,即可得方程222)x x -=,解此方程即可求得⊙O 的半径.【详解】解:(1)直线CE 与⊙O 相切.…理由:连接OE ,∵四边形ABCD 是矩形,∴∠B =∠D =∠BAD =90°,BC ∥AD ,CD =AB ,∴∠DCE +∠DEC =90°,∠ACB =∠DAC ,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE=,又CD =AB BC =2,∴DE =1根据勾股定理得EC又AC =…设OA 为x ,则222)x x +=,解得x =,∴⊙O .【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.8.如图,已知△ABC,AB=2,3BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x(0≤x≤3); (2) 45; (3) BD的长是1或1+52.【解析】【分析】(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.(2)由勾股定理求得:22AH DH+.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知12DQCQ=.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A作AH⊥BC,垂足为点H.∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF ==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =5k =,∴2253DC DQ CQ =+=. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x x x +=-,整理得 210x x --=,解得 152x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+5. 【点睛】 此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.9.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.【答案】(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH 313.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=-,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,在△PAG和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.10.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)213【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴BD的长度=π(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,CG CD108∴EG=2222+=+=213.64DG DE。

人教中考数学复习圆的综合专项综合练含答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.3.如图1,在Rt △ABC 中,AC=8cm ,BC=6cm ,D 、E 分别为边AB 、BC 的中点,连结DE ,点P 从点A 出发,沿折线AD ﹣DE 运动,到点E 停止,点P 在AD 上以5cm/s 的速度运动,在DE 上以1cm/s 的速度运动,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN .设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为_____cm .(用含t 的代数式表示) (2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s,即可求出DP;(2)由正方形PQMN与△ABC重叠部分图形为五边形,可知点P在DE上,求出DP=t﹣1,PQ=3,根据MN∥BC,求出FN的长,从而得到FM的长,再根据S=S梯形FMHD+S矩形DHQP,列出S与t的函数关系式即可;(3)当圆与边PQ相切时,可求得r=PE=5﹣t,然后由r以0.2c m/s的速度不断增大,r=1+0.2t,然后列方程求解即可;当圆与MN相切时,r=CM=8﹣t=1+0.2t,从而可求得t的值.详解:(1)由勾股定理可知:AB=22AC BC=10.∵D、E分别为AB和BC的中点,∴DE=12AC=4,AD=12AB=5,∴点P在AD上的运动时间=55=1s,当点P在线段DE上运动时,DP段的运动时间为(t﹣1)s.∵DE段运动速度为1c m/s,∴DP=(t﹣1)cm.故答案为t﹣1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP时,重叠部分为五边形,∴3>t﹣1,t<4,DP>0,∴t﹣1>0,解得:t>1,∴1<t<4.∵△DFN∽△ABC,∴DNFN=ACBC=86=43.∵DN=PN﹣PD,∴DN=3﹣(t﹣1)=4﹣t,∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ 相切时,r =PE ,由(1)可知,PD =(t ﹣1)cm ,∴PE =DE ﹣DP =4﹣(t ﹣1)=(5﹣t )cm .∵r 以0.2c m/s 的速度不断增大,∴r =1+0.2t ,∴1+0.2t =5﹣t ,解得:t =103s . ②当圆与MN 相切时,r =CM .由(1)可知,DP =(t ﹣1)cm ,则PE =CQ =(5﹣t )cm ,MQ =3cm ,∴MC =MQ +CQ =5﹣t +3=(8﹣t )cm ,∴1+0.2t =8﹣t ,解得:t =356s . ∵P 到E 点停止,∴t ﹣1≤4,即t ≤5,∴t =356s (舍). 综上所述:当t =103s 时,⊙O 与正方形PQMN 的边所在直线相切. 点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.4.如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连结DC、DA、OA、OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA.(2)若AB=2,求阴影部分的面积.【答案】(1)证明见解析;(2)4339π-.【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD,于是可判断四边形OADC为菱形,则BD垂直平分AC,∠4=∠5=∠6,易得OA=OC,∠2=∠3,所以OB=OC,可判断点O 为△ABC的外心,则可判断△ABC为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC,CD=OA=OB,则根据“SAS”证明△BOC≌△CDA;(2)作OH⊥AB于H,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=3BH=3,OB=2OH=23,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S扇形AOB-S△AOB进行计算即可.详解:(1)证明:∵O是△ABC的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠6,∴△BOC ≌△CDA (AAS )(2)由(1)得,BC =AC ,∠3=∠4=∠6,∴∠ABC =∠ACB∴AB =AC∴△ABC 是等边三角形∴O 是△ABC 的内心也是外心∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC .在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴OA=OB=OC=233∵∠AOC=120°,∴=AOB AOB S S S-阴影扇 =21202313()2360323π-⨯⨯ =4339π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.5.如图,△ABC 中,∠A=45°,D 是AC 边上一点,⊙O 经过D 、A 、B 三点,OD ∥BC . (1)求证:BC 与⊙O 相切;(2)若OD=15,AE=7,求BE 的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB ,求出∠DOB 度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO 交⊙O 于点F ,连接AF ,求出∠ABF ,解直角三角形求出BE .详解:(1)证明:连接OB .∵∠A=45°,∴∠DOB=90°.∵OD ∥BC ,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.6.如图,AB,BC分别是⊙O的直径和弦,点D为BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.详解:证明:(1)连接OC,∵HC=HG,∴∠HCG=∠HGC;∵HC切⊙O于C点,∴∠OCB+∠HCG=90°;∵OB=OC,∴∠OCB=∠OBC,∵∠HGC=∠BGF,∴∠OBC+∠BGF=90°,∴∠BFG=90°,即DE⊥AB;(2)连接BE,由(1)知DE⊥AB,∵AB是⊙O的直径,∴,∴∠BED=∠BME;∵四边形BMDE内接于⊙O,∴∠HMD=∠BED,∴∠HMD=∠BME;∵∠BME是△HEM的外角,∴∠BME=∠MHE+∠MEH,∴∠HMD=∠MHE+∠MEH.点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.7.如图,AB是⊙O的直径,弦BC=OB,点D是AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CFOF=12,求BFGF的值;(3)记△CFB,△DGO的面积分别为S1,S2,若CFOF=k,求12SS的值.(用含k的式子表示)【答案】(1)∠DGE =60°;(2)72;(3)12S S =211k k k +++. 【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)过点F 作FH ⊥AB 于点H 设CF =1,则OF =2,OC =OB =3,根据勾股定理求出BF 的长度,再证得△FGO ∽△FCB ,进而求得BF GF的值; (3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k 的式子表示出12S S 的值. 【详解】解:(1)∵BC =OB =OC ,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HF 33HB =OB ﹣OH =2,在Rt △BHF 中,BF 22HB HF 7=+=由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB ,∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12, ∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中, BF=由(2)得:△FGO ∽△FCB , ∴GO OF CB BF=,即1GO k =+, ∴GO =过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.8.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.9.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)求证:△OBC≌△ABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F和直线BO的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE的位置不变,AE的解析式为:33=-y x(3)C点运动到(4,0)处时,直线EF∥直线BO;此时直线BO与⊙F相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB,BC=BD,∠OBA=∠DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“SAS”得到△OBC≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE中,由OA的长,根据tan60°的定义求出OE的长,确定出点E的坐标,设出直线AE的方程,把点A和E的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b =+⎧⎪⎨-=⎪⎩,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,则EF 与EA 所在的直线重合,∴点F 为DE 与BC 的交点,又F 为BC 中点,∴A 为OC 中点,又AO=2,则OC=4,∴当C 的坐标为(4,0)时,EF ∥OB ,这时直线BO与⊙F相切,理由如下:∵△BCD为等边三角形,F为BC中点,∴DF⊥BC,又EF∥OB,∴FB⊥OB,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若CD=2,AC=4,BD=6,求⊙O的半径.【答案】(1)详见解析;(235.【解析】【分析】(1)解答时先根据角的大小关系得到∠1=∠3,根据直角三角形中角的大小关系得出OD⊥AD ,从而证明AD为圆O的切线;(2)根据直角三角形勾股定理和两三角形相似可以得出结果【详解】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)过点O作OF⊥BC,垂足为F,∵OF⊥BD∴DF=BF=12BD=3∵AC=4,CD=2,∠ACD=90°∴AD22AC CD5∵∠CAD=∠B,∠OFB=∠ACD=90°∴△BFO∽△ACD∴BFAC = OB AD即3425∴OB=352∴⊙O35.【点睛】此题重点考查学生对直线与圆的位置关系,圆的半径的求解,掌握勾股定理,两三角形相似的判定条件是解题的关键。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

人教版 九年级数学上册 第24章 圆 综合训练


.所以
l
BC

60 180
×π×
2
3 = 2 3 π.设此圆锥的底面圆的半径为 r,
3
则 2πr= 2 3 π,解得 r= 3 ,因此本题答案为 3 .
3
3
3
17. 【答案】144 [解析] ∵⊙O 与正五边形 ABCDE 的边 AB,DE 分别相切于点 B,D,∴OB⊥AB,OD⊥DE.∵正五边形每个内角均为 108°, ∴∠BOD=∠C+∠OBC+∠ODC=108°×3-90°×2=144°.
人教版 九年级数学 第 24 章 圆 综合训练-答案
一、选择题 1. 【答案】C [解析]扇形的圆心角为 90°,它的半径为 6,即 n=90°,r=6,根据 弧长公式 l= ,得 l= =3π.故选 C. 2. 【答案】A [解析]设☉O 与 AC 的切点为 E,连接 AO,OE,∵等边三角形 ABC 的边长为 8,∴AC=8,∠C=∠BAC=60°. ∵圆分别与边 AB,AC 相切,∴∠BAO=∠CAO= ∠BAC=30°,∴∠AOC=90°, ∴OC= AC=4. ∵OE⊥AC,∴OE= OC=2 ,∴☉O 的半径为 2 .故选 A .
360
15. 【答案】(-4,-7) [解析] 过点 P 作 PH⊥MN 于点 H,连接 PM,则 MH= 12MN=3,OH=OM+MH=7.由勾股定理,得 PH=4,∴圆心 P 的坐标为(-4, -7).
16. 【答案】 3 3
【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接 OA,OB,
180 180 3 【解析】(1)由图形旋转的性质可得△ABC 与△DBE 全等,旋转角∠ABD=∠ CBE 都为 60°,且 AB=BD,根据“有一个角为 60°的等腰三角形为等边三角形” 推出△ABD 是等边三角形,所以∠DAB=60°,利用“同位角相等,两直线平行” 即可证得 BC∥AD;

2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练

2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练(附答案)1.如图,AB是⊙O的直径,且AB=10,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.(1)若G是弧AC上任意一动点,请找出图中和∠G相等的角(不在原图中添加线段或字母),并说明理由.(2)当点C是弧BG的中点时,①若∠G=60°,求弦DG的长,②连接BG,交CD于点F,若BE=2,求线段CF的长.2.如图,等腰△ABC内接于⊙O,AB=AC,连结OC,过点B作AC的垂线,交⊙O于点D,交OC于点M,交AC于点E,连结AD.(1)若∠D=α,请用含α的代数式表示∠OCA;(2)求证:CE2=EM•EB;(3)连接CD,若BM=4,DM=3,求tan∠BAC的值及四边形ABCD的面积与△BMC 面积的比值.3.已知:AB为⊙O的直径,=,D为弦AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=2,求AD的长.(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.4.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4.求⊙O的半径;(3)在(2)条件下,求BE、DE、弧围成的阴影部分的面积.5.如图1,⊙O的弦BC=6,A为BC所对优弧上一动点且sin∠BAC=,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)求证:点P为的中点;(2)如图2,求⊙O的半径和PC的长;(3)若△ABC不是锐角三角形,求P A•AE的最大值.6.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC,AC与BD相交于点G.(1)求证:∠ACF=∠ADB;(2)求证:CF=DF;(3)∠DBC=°;(4)若OB=3,OA=6,则△GDC的面积为.7.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)当∠BAC=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在弧AB上取一点F,使∠ABF=15°,连接OF交弦AB于点H,求FH的长度是多少?8.如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC.∠ACB的平分线交⊙O于点D,交AB于点E,(1)求证:PC是⊙O的切线;(2)求证:△PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.9.圆内接四边形ABCD,AB为⊙O的直径.(1)如图1,若D为弧AB中点,AB=4.①求∠DCB的度数;②求四边形ABCD面积的最大值.(2)如图2,对角线AC,BD交于点E,连结OE并延长交CD于点F,若OE=3EF=3,求AB的长.10.已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O 的半径.11.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD 的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.12.如图,线段AB=6,以AB为直径作⊙O,C为⊙O上一点,过点B作⊙O的切线交AC 的延长线于点D,连接BC.(1)求证:△BCD∽△ABD;(2)若∠D=50°,求的长.(3)点P在线段AC上运动,直接写出△PBD的外心运动的路径长.13.如图,在平面直角坐标系中,已知A(0,3),点B在x轴正半轴上,且∠ABO=30°,C为线段OB上一点,作射线AC交△AOB的外接圆于点D,连接OD,∠COD=∠OAD.(1)求∠BAD的度数;(2)在射线AD上是否存在点P,使得直线BP与△AOB的外接圆相切?若存在,请求出点P的坐标;若不存在,请说明理由.14.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,直径AE交BC于点H,点D 在弧AC上,过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF的长;(3)在(2)的条件下,直接写出CD的长.15.如图,AB是⊙O的直径,P A是⊙O的切线,连接OP交⊙O于点E,点C在⊙O上,四边形OBCE为菱形,连接PC.(1)求证:PC是⊙O的切线;(2)连接BP交⊙O于点F,交CE于点G.①连接OG,求证:OG⊥CG;②若OB=3,求BF的长.16.如图,在平面直角坐标系xOy中,直线m:y=x+与x轴交于点A,与y轴交于点B,点P在直线m上,以点O为圆心,OP为半径的⊙O交x轴于点C、D(点C 在点D的左侧),与y轴负半轴交于点E,连接PE,交x轴于点F,且AF=AP.(1)判断直线m与⊙O的位置关系,并说明理由;(2)求∠PEB的度数;(3)若点Q是直线m上位于第一象限内的一个动点,连接EQ交x轴于点G,交⊙O于点H,判断EG•EH是否为定值,若是,求出该定值;若不是,请说明理由.17.如图,线段AB是⊙O的直径,过点B作一条射线BC与AB垂直,点P是射线BC上的一个动点,连接PO交⊙O于点F,连接AF并延长交线段BP于点E,设⊙O的半径为r,PB的长为t(t>0).(1)当r=3时,①若∠F AO=∠EPF,求的长,②若t=4,求PE的长;(2)设PE=n2t,其中n为常数,且0<n<1,若t﹣r为定值,求n的值及∠EAB的度数.18.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径作⊙O,⊙O 与BC相切于点E,连结AE,过点C作CG⊥AB于点G,交AE于点F,过点E作EP⊥AB于点P.(1)求证:∠BED=∠EAD;(2)求证:CE=EP;(3)连接PF,若CG=8,PG=6,求四边形CFPE的面积.19.如图,以△ABC的边AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E,AB=AC.(1)求证:DE⊥AC;(2)延长CA交⊙O于点F,点G在上,.①连接BG,求证:AF=BG;②经过BG的中点M和点D的直线交CF于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,试求出DE的长.20.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC 于点F,连结BE.(1)求证:∠AEB=∠AFD.(2)若AB=10,BF=5,求AD的长.(3)若点G为AB中点,连结DG,若点O在DG上,求BF:FC的值.参考答案1.解:(1)∠AGD=∠B,理由如下:连接AC,∵AB是直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠CEB=90°,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵∠AGD=∠ACD,∴∠AGD=∠B;(2)连接OC,OG,OD,OC交CD于M,∵∠AGD=∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,∵点C是的中点,∴∠COG=∠COB=∠BOD=60°,∴CD是⊙O的直径,∴CD=AB=10;(3)连接BG,交CD于F,连接AC,∵==,∴∠BCD=∠GBC,∴CF=BF,∵∠ACD=∠ABC,∠AEC=∠BEC,∴△ACE∽△CBE,∴CE2=AE×BE=8×2=16,∵CE>0,∴CE=4,设BF=CF=x,则EF=4﹣x,∴(4﹣x)2+22=x2,解得x=,∴CF=.2.(1)解:如图,连接OA,OB,在△AOB与△AOC中,,∴△AOB≌△AOC(SSS),∴∠OAB=∠OAC=,∵,∴∠ACB=∠D=α,∵AB=AC,∴∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α;(2)证明:∵BD⊥AC,∴∠BEC=90°,∴∠CBE=90°﹣∠ACB=90°﹣α,∴∠OCA=∠CBE,∵∠CEM=∠CEB,∴△CEM∽△BEC,∴,∴CE2=EM•EB;(3)解:如图,连接AO并延长交BD于点N,连接CN,CD,∵AB=AC,∠OAB=∠OAC,∴AO垂直平分BC,∴BN=CN,∵∠OCA=∠DAC,∴OC∥AD,∴∠DMC=∠ABD=∠ACB,∵,∴∠BAC=∠CDM,∴∠DCM=∠ABC,∴∠DCM=∠DMC,∴CD=DM=3,∵AC⊥BD,∴∠AED=∠AEN,∵∠OAC=∠DAC,AE=AE,∴△AEN≌△AED(ASA),∴EN=ED,∴AC垂直平分DN,∴CN=CD=3,∴BN=CN=3,∴MN=BM﹣BN=4﹣3=1,由EN=DE得:MN+EM=DM﹣EM,∴1+EM=3﹣EM,∴EM=1,∴EB=BM+EM=4+1=5,DE=DM﹣EM=3﹣1=2,由(2)知,CE2=EM•EB=1×5=5,∴CE=(负值已舍),∵∠BAC=∠BDC,∠DEC=∠AEB,∴△DEC∽△AEB,∴,∴AE=,在Rt△ABE中,tan∠BAC=,由(2)知,∠OCA=∠CBE=∠CAD,∴AD∥OC,∴=,∴CE=,∴S四边形ABCD=AC×BD==,S△BMC===2,∴四边形ABCD的面积与△BMC面积的比值为.3.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵=,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA=22.5°,∵∠CED=∠CBD+∠BCE=67.5°,∠CDE=∠ABD+∠BAC=67.5°,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴OG∥AD,AD=2OG,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴∠OGE=∠OEG,∴OG=OE=2,∴AD=2OG=4;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵=,∴BC=AC,∴CP=CD,∵∠ACB=90°∴∠CPD=45°,∴∠BPD=135°,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DF A≌△BDP(SAS),∴∠F AD=∠BPD=135°,∴∠F AB=∠F AD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,又∵OA为半径,∴AF为⊙O的切线.4.解:(1)连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BCD中,BE=EC,∴DE=EC=BE,∴∠EBD=∠EDB,∵BC是⊙O的切线,∴AB⊥BC,∴∠EBD+∠DBO=90°,∴∠EDB+∠DBO=90°,∵OD=OB,∴∠DBO=∠BDO,∴∠EDB+∠BDO=90°,即∠ODF=90°,∴DF⊥OD,∵OD为⊙O的半径,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OB=2OD,∴sin F==,∴∠F=30°,∴OB=BF=EF•cos F=4×cos30°=2,即⊙O的半径为2;(3)由(2)知,OD=2,∠BOD=90°﹣∠F=60°,∴DF=OD•tan∠BOD=2×=6,∵EF=4,∠F=30°,∴BE=EF•sin30°=2,∵阴影部分的面积=三角形ODF的面积﹣三角形FEB的面积﹣扇形BOD的面积,∴S阴=S△ODF﹣S△FEB﹣S扇形BOD=OD•DF﹣BF•BE﹣π•OD2==4﹣2π,∴阴影部分的面积为4﹣2π.5.(1)证明:①如图1,连接OC,AB,∵AP平分∠BAF,∴∠BAP=∠P AF,∵∠P AF+∠P AC=180°,∠P AC+∠PBC=180°,∴∠P AF=∠PBC,又∠BAP=∠PCB,∴∠PBC=∠PCB,∴PB=PC,∴=,∴点P为的中点;(2)解:连接OB,OC,过O作OM⊥BC于M,∴OM垂直平分BC,∴BM=CM=BC=3,∠BOM=∠BOC=∠BAC,∵sin∠BAC=,∴sin∠BOM==,∴OB=5,∴⊙O的半径是5,在Rt△OMC中,OM==4,在Rt△PMC中,PM=OM+OP=9,∴PC==3;(3)∵∠ACE+∠BCA=∠BPE+∠BCA=180°,∴∠ACE=∠BPE,同理,∠CAE=∠PBC=∠P AB,∴△ACE∽△APB,∴=,∴P A•AE=AC•AB,如图4,过C作CQ⊥AB于Q,∵sin∠BAC=,∴CQ=AC•sin∠BAC,∴S△ABC=AB•CQ=AB•AC,∴P A•AE=S△ABC,∵△ABC非锐角三角形,且BC=6,∴当A运动到使∠ACB=90°时,△ABC面积最大,在Rt△ABC中,BC=6,AB=10,∴AC==8,∴S△ABC=BC•AC=24,∴此时,P A•AE=80,即P A•AE的最大值为80.6.(1)证明:连接AB,∵OP⊥BC,∴BO=CO,∴AB=AC,又∵AC=AD,∴AB=AD,∴∠ABD=∠ADB,又∵∠ABD=∠ACF,∴∠ACF=∠ADB;(2)证明:∵AC=AD,∴∠ACD=∠ADC,∵∠ACF=∠ADF,∵∠ACD﹣∠ACF=∠ADC﹣∠ADF,即∠FCD=∠FDC,∴CF=DF;(3)解:连接AF,由(2)知CF=DF,则点F在CD的垂直平分线上,∵AC=AD,∴点A在CD的垂直平分线上,∴AF是CD的垂直平分线,∴AF平分∠CAD,∴∠CAF=45°,∴∠CBD=45°,故答案为:45;(4)解:作CH⊥BD于H,∵OB=OC=3,∠DBC=45°,∴CH=BH=3,∵OA=6,OC=3,∴AC=3,∴CD=AC=3,∴DH=,∴DB=BH+DH=9,∵∠ACD=∠DBC,∠CDG=∠BDC,∴△DCG∽△DBC,∴DC2=DG•DB,∴(3)2=DG•9,∴DG=5,∴△GDC的面积为=15,故答案为:15.7.(1)证明:如图,连接OB,∵⊙O是直角三角形ABC的外接圆,∴∠ABC=∠DBC=90°.在Rt△DBC中,M为CD的中点,∴BM=MC,∴∠MBC=∠MCB.又∵OB=OC,∴∠OCB=∠OBC.∵CD为⊙O的切线,∴∠ACD=90°.∴∠MCB+∠OCB=∠MBC+∠OBC=90°,即OB⊥BM.又∵OB为⊙O的半径,∴BM与⊙O相切;(2)解:∵∠BAC=60°,OA=OB,∴△ABO为等边三角形,∴∠AOB=60°.∵AC=4,∴OA=2,∴弦AB和弧AB所夹图形的面积=S扇形AOB﹣S△AOB=.(3)解:连接OB,∠ABF=15°时,∠AOF=30°,∴等边△ABO中,OF平分∠AOB,∴OF⊥AB.在Rt△AOH中,AO=2,∠AOH=30°,∴AH=1,∴OH=,∴FH=.8.(1)证明:连接OC,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OA=OC,∴∠BAC=∠ACO,∠BCP=∠BAC,∴∠BCP=∠ACO,∴∠BCP+∠OCB=90°,∴OC⊥PC,∵OC为半径,∴PC是⊙O的切线;(2)证明:∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∵∠PCE=∠PCB+∠BCD,∠PEC=∠BAC+∠ACD,∴∠PEC=∠PCE,∴△PEC是等腰三角形;(3)解:作DM⊥AC于M,DN⊥CB交CB的延长线于N,∵CD平分∠ACB,DM⊥∠AC,DN⊥CB,∴DM=DN,,∵∠AMD=∠BND=90°,∴Rt△AMD≌Rt△BND(HL),∴AM=BN,∵∠DMC=∠MCN=∠CND=90°,∴四边形CMDN为矩形,∵DM=DN,∴矩形CMDN为正方形,∴CN=,∵AC+BC=CM+AB+CB=2CN,∴AC+BC=CD,∵AC+BC=2,∴CD=.9.解:(1)①∵AB为直径,D为的中点,∴∠DCB=180°﹣∠A=180°﹣45°=135°,②连接BD,AC交于点E,当四边形ABCD面积最大时,即△BCD面积最大,当OC⊥BD时,CE最大,∵AB=4,∴BD=AD=2,∴OE=,∴S,∴S四边形ABCD的最大值为:S;(2)直线OF交⊙O于点M,N,过F作PQ∥AB交直线BD,AC于点P,Q,∵∠Q=∠A=∠CDE,∴△PFD∽△CFQ,∴PF•FQ=FD•FC,∵∠N=∠MDF,∠MFD=∠CFN,∴△MFD∽△CFN,∴MF•FN=FD•FC,∴PF•FQ=MF•FN,∴,∴FP=FQ=,设半径为r,∴(r﹣4)(r+4)=,∵r>0,∴r=3,∴AB=6.10.解:(1)连接AE,∵∠AEC+∠ADC=180°,∠BDC+∠ADC=180°,∴∠BDC=∠AEC,∵∠CBD=∠ABE,∴△ABE∽△CBD,∴,∵BC=,AD=2,BD=1,∴AB=AD+BD=2+1=3,∴,∴BE=2,∴CE=BE﹣BC=;(2)BN是⊙O的切线,理由如下:连接CO并延长交⊙O于点F,连接DF,则∠CDF=90°,∴∠CFD+∠FCD=90°,∵∠BCA=∠BDC,∠B=∠B,∴∠BAC=∠BCD,∵∠CAD=∠CFD,∴∠CFD=∠BCD,∴∠FCB=∠FCD+∠BCD=∠FCD+∠CFD=90°,∴BC⊥OC,∵OC是半径,∴BC是⊙O的切线,即BN是⊙O的切线;(3)过点A,C,D三点作⊙O,当BC是⊙O的切线时,∠ACD最大,连接CO并延长交⊙O于点G,连接AG,DG,则∠CDG=90°,∠CAG=90°,∴∠CGD+∠DCG=90°,∵BC是⊙O的切线,∴BC⊥OC,∴∠BCO=90°,∴∠BCD+∠DCG=90°,∴∠BCD=∠CGD,∵∠CGD=∠CAD,∴∠BCD=∠BAC,∵∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=BD•BA,∵AD=2,∴BA=BD+AD=BD+2,∴BC2=BD(BD+2)=BD2+2BD,∵BC2+BA2=AC2,AC=2BD,∴BC2=AC2﹣BA2=(2BD)2﹣(BD+2)2=11BD2﹣4BD﹣4,∴11BD2﹣4BD﹣4=BD2+2BD,∴5BD2﹣3BD﹣2=0,∴BD=﹣(舍去)或BD=1,∴BD=1,∴BA=BD+AD=1+2=3,AC=2BD=2,∵∠B=90°,∴AB⊥BC,∵CG⊥BC,∴CG∥AB,∴∠BAC=∠ACG,∵∠B=∠CAG=90°,∴△BAC∽△ACG,∴,∴,∴CG=4,∴OC=2,即⊙O的半径为2.11.(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.12.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠DCB=90°,∵BD切⊙O于点B,∴∠ABD=90°,∴∠DCB=∠ABD,∵∠D=∠D,∴△BCD∽△ABD;(2)解:连接OC,∵∠D=50°,∠ABD=90°,∴∠A=40°,∴∠COB=2∠A=80°,∵直径AB=6,∴半径r=3,∴的长为=;(3)解:取BD的中点E,AD的中点F,连接EF,当点P在点C处时,△PBD为直角三角形,E为△PBD的外心,当点P在点A处时,△ABD为直角三角形,F为△PBD的外心,∵AB=6,EF为△ABD的中位线,∴EF=AB=3,∴△PBD的外心运动的路径长为3.13.解:(1)∵∠AOB=90°,∠ABO=30°,∴∠OAB=90°﹣∠ABO=60°,∵=,∴∠COD=∠BAD,∵∠COD=∠OAD,∴∠BAD=∠OAD=,即∠BAD的度数为30°;(2)如图,存在点P,使得直线BP与△AOB的外接圆相切,∵∠AOB=90°,∴AB是△AOB外接圆的直径,∴AB⊥PB,∴∠ABP=90°,∴∠PBC=90°﹣∠ABO=90°﹣30°=60°,由(1)得,∠OAC=30°,∴∠ACO=90°﹣∠OAC=60°,∴∠PCB=∠ACO=60°,∴△PBC是等边三角形,∵A(0,3),∴OA=3,∴OC=OA•tan∠OAC=3×=,在Rt△AOB中,OA=3,∠OAB=60°,∴OB=OA•tan60°=3,∴BC=OB﹣OC=3﹣=2,作PQ⊥BC于Q,∴PQ=CQ•tan∠PCB=×=3,∴OQ=OC+CQ=2,∴P(3,﹣2).即:存在点P,使得直线BP与△AOB的外接圆相切,此时点P(3,﹣2).14.(1)证明:∵AB=AC,∴,∵AE是直径,∴,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF∥BC,∴EF⊥AE,∵OE是半径,∴EF是⊙O的切线;(2)解:连接OC,设⊙O的半径为r,∵AE⊥BC,∴HG=HC+CG=4,∴AG===5,在Rt△OHC中,OH2+CH2=OC2,∴(3﹣r)2+1=r2,解得:r=,∴AE=,∵EF∥BC,∴△AEF∽△AHG,∴,∴,∴EF=;(3)解:∵AH=3,BH=1,∴AB===,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴,∴,∴CD=.15.(1)证明:连接OC,∵四边形OBCE为菱形,∴OB=BC,OB∥CE,∴OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=∠COE=60°,∴∠AOP=∠COP=60°,∵OA=OC,OP=OP,∴△APO≌△CPO(SAS),∴∠PCO=∠BAP,∵AB是⊙O的直径,P A是⊙O的切线,∴∠P AO=90°,∴∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)①证明:由(1)知,∠AOP=60°,∠P AO=90°,∴∠APO=30°,∵OA=OP,∴OE=PE,∴PE=BC,∵PO∥BC,∴∠PEG=∠BCG,∠EPG=∠CBG,∴△PEG≌△BCG(ASA),∴EG=CG,∴OG⊥CG;②解:∵OB=3,∴OA=OB=3,∴OP=2OA=6,∴AP==3,∴PB===3,连接AF,∵AB是⊙O的直径,∴AF⊥PB,∵S△APB=AP•AB=PB•AF,∴AF===,∴BF===.16.解:(1)直线m与⊙O相切,理由:连接PO,∵AP=AF,∴∠APF=∠AFP,∵∠AFP=∠EFO,∴∠APF=∠EFO,∵OP=OE,∴∠OPF=∠OEF,∵∠FOE=90°,∴∠OFE+∠OEF=∠OPF+∠APF=90°,∴∠APO=90°,∴PO⊥直线AB,∵OP是⊙O的半径,∴直线m与⊙O相切;(2)∵y=x+与x轴交于点A,与y轴交于点B,∴令y=0,得x=﹣2,令x=0,得y=,∴A(﹣2,0),B(0,),∴OA=2,OB=,∴tan∠BAO==,∴∠BAO=30°,∴∠AOP=60°,∵∠AOB=90°,∴∠BOP=30°,∵OP=OE,∴∠OPE=∠EOP,∵∠BOP=∠OPE+∠OEP=2∠PEB=30°,∴;(3)连接CE、CH,∵CD⊥BE,∴∠COE=∠DOE=90°,∴∠CHE=∠ECG=90°=45°,∵∠CEG=∠HEC,∴△CEG∽△HEC,∴.∴EG•EG=CE•EC=2.17.解:(1)①∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠POB=2∠EPF,∵BC⊥AB,∴∠OBP=90°,∴∠POB+∠EPF=90°,∴2∠EPF+∠EPF=90°,∴∠EPF=30°,∴∠POB=60°,∴n=60,∵r=OB=3,∴的长为;②延长FO交⊙O于点G,连接BF,BG,∵FG是⊙O的直径,∴∠FBG=90°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFB+∠GBF=180°,∴AF∥BG,∴,∵OP==5,∴PF=OP﹣OF=2,∵PB=4,∴,∴PE=1;(2)∵t﹣r的值为定值,∴t﹣r=0,∴t=r,∴OB=BP,∴∠POB==45°,∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠EAB=∠OAF==22.5°,由②同理得AF∥BG,∴,∵OP===r,∴PF=OP﹣OF=(﹣1)r,PG=OP+OG=(+1)r,∴,∴n,∵0<n<1,∴n=﹣1,∴∠EAB=22.5°.18.(1)证明:连结OE,∵BC与⊙O相切于点E,∴OE⊥BC,∴∠BED+∠OED=90°,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,∵OE=OD,∴∠OED=∠ADE,∴∠BED=∠EAD;(2)证明:∵AC⊥BC,OE⊥BC,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,又∵EP⊥AB,EC⊥AC,∴CE=EP;(3)解:连结PF,∵∠ACB=90°,CG⊥AB,∴∠CAE+∠AEC=∠AFG+∠EAP=90°,∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=EP,∴平行四边形CFPE是菱形,∴CF=PF,设CF=x,则PF=x,FG=8﹣x,在Rt△PFG中,由勾股定理可得:x2=(8﹣x)2+62,解得:x=,∴四边形CFPE的面积=CF•PG=.19.(1)证明:如图1,连接OD,∵DE为⊙O的切线,∴∠ODE=90°,∵AB=AC,∴∠B=∠C,又∵OB=OD,∴∠B=∠ODB,∴∠C=∠ODB,∴OD∥AC,∴∠DEC=∠ODE=90°,∴DE⊥AC;(2)①证明:如图2,连接BF,AG,∵AB为⊙O的直径,∴∠AFB=∠BGA=90°,∵.∴∠ABD=∠DBG,∵∠ABC=∠C,∴∠C=∠DBG,∴CF∥BG,∴∠FNG+∠BF A=180°,∴∠FBG=90°,∵∠FBG=∠AFB=∠BGA=90°,∴四边形AFBG为矩形,∴AF=BG;②解:如图3,连接AD,∵AB为⊙O的直径,∴∠BDA=90°,∵AB=AC,∴BD=DC,∵CF∥BG,∴∠NCD=∠MBD,在△BDM和△CDN中,,∴△BDM≌△CDN(ASA),∴BM=CN,过点C作CP∥DH交BA的延长线于点P,∴=,∴BH=HP,∵AH:BH=3:8,∴AH:AP=3:5,∵FH∥CP,∴==,∵AB=AC,∴=,设AB=5k,则AC=5k,F A=BG=3k,连接FB,∵∠BF A=90°,∴BF==4k,∵M为BG中点,∴BM=BG=k,∴CN=k,∴AN=AC﹣CN=5k﹣k=k=7,则k=2,∵∠DEC=∠BFC=90°,∴DE∥BF,∴=,∴EF=EC,∴DE=BF=2k,∴DE=4.20.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠AFD,∴∠AEB=∠AFD;(2)解:如图1,过点B作BM⊥AE于点M.∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵AB=10,∠ABE=90°,∴AE===5,∵,∴BM==2,∴EM=FM===,∴AF=AE﹣EF=5﹣2=3,∵∠BMF=∠ADF=90°,∠AFD=∠BFM,∴△BFM∽△AFD,∴,∴,∴AD=6;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,∵O为AE的中点,G为AB的中点,∴OG∥BE,∵∠ABE=90°,∴∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点探究
专题五
圆的综合题
1.本题考查了切线的判定、全等、相似、勾股定理、等面 积法求边长、点的坐标、待定系数法求函数解析式等. 2.PA与圆有交点,因此只需要说明该直线与过该交点的半 径垂直,可通过已知条件证∠DAP=90°即可. 3.要求点 B的坐标,根据坐标的意义,就是要求出点 B到x 轴和y轴的距离,自然联想到连接OB,过点B作BD⊥x轴于点D, 从而构造Rt△OBD.
考点探究
专题五
圆的综合题
OP 1 ∴sin∠OCP= = , OC 2 ∴∠OCP=30°.
考点探究
专题五
圆的综合题
(3)证明:连接AP,BP. ∵∠AOP=∠DOB,
∴AP=DB.
∵CP=DB,
∴AP=PC,
∴∠A=∠C.
∵∠A=∠D,
考点探究
专题五
圆的综合题
∴∠C=∠D. ∵OC=PD=4,PC=DB,
2 2
所以 AD= AC -DC = (2
1 所以△ABC 面积的最大值为 ×2 2
考点探究
专题五
圆的综合题
【点拨交流】 1.本题考查了哪些知识?
2.如何证明PA是⊙O的切线?
3.要求点 B的坐标,需要构造一个直角三角形,怎样构造
呢?
4.要求点B的坐标,需要求出哪几条线段的长度? 5.怎样求直线AB所对应的函数解析式?
点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一
点,连接AP,直线PB与⊙O相切于点B,交x轴于点C. (1)求证:PA是⊙O的切线; (2)求点B的坐标; (3)求直线AB所对应的函数解析式.
图T5-3考点Βιβλιοθήκη 究专题五圆的综合题
解:(1)证明:依题意可知 A(0,2). ∵A(0,2),P(4,2),∴AP∥x 轴, ∴∠OAP=90°,且点 A 在⊙O 上, ∴PA 是⊙O 的切线. (2)连接 OP,OB,作 PE⊥x 轴于点 E,BD⊥x 轴于点 D. ∵PB 切⊙O 于点 B, ∴∠OBP=90°,即∠OBP=∠PEC. 又∵OB=PE=2,∠OCB=∠PCE, ∴△OBC≌△PEC,∴OC=PC.
考点探究
专题五
圆的综合题
4.在构造Rt△OBD后,需要先求出线段 OC,BC的长度,再 求出BD,OD的长度即可. 5.已知点A,B的坐标,用待定系数法可求出直线AB所对应 的函数解析式.
考点探究
专题五
圆的综合题
【解题思路】
考点探究
专题五
圆的综合题
例2
[2013•江西] 如图T5-3,在平面直角坐标系中,以
2.满足什么条件时,△OPC的面积最大?
3.满足什么条件时,∠OCP的度数最大?怎样求∠OCP的度
数? 4.证明一条直线是圆的切线有哪些方法?
考点探究
专题五
圆的综合题
1.本题综合考查了圆的有关性质、切线的性质与判定、解 直角三角形等知识.解题的关键是掌握有关性质和判定方法, 能添加辅助线解题. 2.把OC当作△OPC的底,其为定值4,要使△OPC的面积最 大,则需使OC边上的高(点P到OC的距离)最大,由点P在⊙O上, 可知当OP⊥OC时OP最长,此时OP是OC边上的高. 3.当CP是⊙O的切线,即OP⊥PC时,∠OCP的度数最大,通
专题五
圆的综合题
专题五
圆的综合题
圆的综合题往往根据圆的有关性质及与圆有关的位置关系 综合考查代数、几何相关知识的问题,充分考查学生的综合能 力.在近几年江西中考试题中以解答题为主,填空题、选择题 形式考查的较少,预计2015年仍会延续此命题方式.
考点探究
专题五
圆的综合题
考向互动探究
【点拨交流】
1.本题考查了哪些知识?解题的关键是什么?
考点探究
专题五
圆的综合题
(2)因为△ABC 中的边 BC 的长不变,所以底边上的高最大时, ︵ 的中点时,△ABC 的面积最大. △ABC 的面积最大,即点 A 是BAC 因为∠BAC=60°,所以△ABC 是等边三角形. 在 Rt△ADC 中,AC=2
2 2
3,DC= 3, 3) - 3 =3, 3×3=3 3.
专题五
圆的综合题
【解题思路】
考点探究
专题五
圆的综合题
例1 [2014•江西] 如图T5-1①,AB是⊙O的直径,点C在AB
的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连
接OP,CP. (1)求△OPC的最大面积; (2)求∠OCP的最大度数; (3)如图②,延长PO交⊙O于点D,连接DB.当CP=DB时,求 证:CP是⊙O的切线.
过解Rt△OPC可求得此时∠OCP的度数.
考点探究
专题五
圆的综合题
4.(1)若已知这条直线与圆的交点,则只需要说明该直线 与过该交点的半径垂直(简记为“连半径,证垂直”); (2)若已知这条直线垂直于某条半径,只需要说明该垂足与 圆心的连线的长度等于半径即可 (简记为“作垂线,证相等”) .
考点探究
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
图T5-2
考点探究
专题五
圆的综合题
解:(1)连接 OB,OC,过点 O 作 OD⊥BC 于点 D,连接 OA.因为 BC=2 1 3,所以 CD= BC= 3. 2
CD 3 又 OC=2,所以 sin∠DOC= ,即 sin∠DOC= , OC 2 所以∠DOC=60°. 1 又 OD⊥BC,所以∠BAC= ∠BOC=∠DOC=60°. 2
∴△OPC≌△PBD,
∴∠OPC=∠PBD.
∵PD是⊙O的直径,
∴∠PBD=90°,
∴∠OPC=90°,
考点探究
专题五
圆的综合题
∴OP⊥PC. 又∵OP是⊙O的半径,
∴CP是⊙O的切线.
考点探究
专题五
圆的综合题
针对训练 如图T5-2,已知⊙O的半径为2,弦BC的长为2 3,点A为弦 BC所对优弧上任意一点(B,C两点除外).
考点探究
专题五
圆的综合题
图T5-1
考点探究
专题五
圆的综合题
解:(1)∵△OPC 的边长 OC 是定值, ∴当 OP⊥OC 时,OC 边上的高取最大值,此时△OPC 的面积最 大. ∵AB=4,BC=2, ∴OP=OB=2,OC=OB+BC=4, 1 1 ∴S△OPC= OC·OP= ×4×2=4,即△OPC 的最大面积为 4. 2 2 (2)当 PC 与⊙O 相切,即 OP⊥PC 时,∠OCP 的度数最大. 在 Rt△OPC 中,∠OPC=90°,OC=4,OP=2,
相关文档
最新文档