2015年春季新版苏科版八年级数学下学期期末复习试卷4
2015年苏科版八年级(下)期末数学常考试题100题 (解析版)

苏科版八年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(常考指数:57)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°考点:菱形的性质.专题:压轴题.分析:延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠的度数,从而不难求得∠FPC的度数.解答:解:延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG(直角三角形斜边上的中线等于斜边的一半),∵PF=PG(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°.故选:D.点评:此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.2.(常考指数:50)如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条考点:相似三角形的判定.分析:本题要根据相似三角形的判定方法进行求解.解答:解:过点P可作PE∥BC或PE∥AC,可得相似三角形;过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,∴△APE∽△ACB;所以共有3条.故选:C.点评:此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.(常考指数:47)计算:tan60°+2sin45°﹣2cos30°的结果是()A.2B.C.D.1考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算即可.解答:解:原式=+﹣=.故选:C.点评:本题考查了对特殊角的三角函数值的应用,主要考查学生的记忆能力和计算能力.4.(常考指数:50)如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形考点:三角形中位线定理.分析:可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形行具体的判定.解答:解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选:D.点评:这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.5.(常考指数:49)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外考点:点与圆的位置关系.分析:先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.解答:解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.点评:本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,在圆外;当d=r时,点在圆上;当d<r时,点在圆内.6.(常考指数:70)在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题;数形结合.分析:根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行择正确答案.解答:解:解法一:系统分析当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一三象限,选项中没有符合条件的图象,当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二四象限,D选项的图象符合要求,解法二:具体分析A、由一次函数的图象得出k<0,而反比例函数的开口方向也应该是在第二、四象限即:k<0,不符合意,故A选项错误;B、由一次函数的图象得出k>0,而反比例函数的开口方向也应该是在第一、三象限即:k>0,不符合意,故B选项错误;C、由一次函数的图象得出k>0,即与y轴的交点在y轴负半轴,不符合题意,故C选项错误;D、由一次函数的图象得出k<0,与y轴的交点也在正半轴,反比例函数图象也是在第二四象限,符合意,故D选项正确;故选:D.点评:此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图必有交点;一次函数与y轴的交点与一次函数的常数项相关.7.(常考指数:50)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是()A.2个B.3个C.4个D.5个考点:同位角、内错角、同旁内角;线段的性质:两点之间线段最短.分析:此题考查的知识点多,用平行线的性质,对顶角性质,补角的定义等来一一验证,从而求解.解答:解:①忽略了两条直线必须是平行线,故①错误;②两点之间,线段最短是公理,故②正确;③不应忽略相等的两个角的两条边必须互为反向延长线,才是对顶角,故③错误;④举一反例即可证明是错的:80°+60°=170°,170°显然不是锐角,故④错误.⑤根据补角定义如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角,同角的补角相等.比如:∠A+∠B=180°,∠A+∠C=180°,则∠C=∠B.角的补角相等.比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠C=∠B.故⑤正确.故正确的有②⑤.故选:A.点评:此题考察了平行线的性质,对顶角性质,两点之间线段最短的性质等,涉及知识较多,请同学们认真阅最好借助图形来解答.8.(常考指数:62)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.考点:相似三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△AB 解答:解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选:C.点评:本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度中.9.(常考指数:45)如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是()A.B.C.D.考点:剪纸问题.专题:压轴题.分析:由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.解答:解:在对折后的三角形的三个角上各挖去一个洞,展开后会得到6个洞,排除了第二个图形;在三角形的角上挖洞,展开后洞肯定还是在角上,排除了第一和第四个图形;所以答案为第三个图形;故选:C.点评:此题主要考查学生的动手实践能力和想象能为.10.(常考指数:106)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°考点:翻折变换(折叠问题).专题:数形结合.分析:首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.解答:解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A .点评: 本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.11.(常考指数:56)已知反比例函数y=的图象经过点P (﹣1,2),则这个函数的图象位于( )A . 第二,三象限B . 第一,三象限C . 第三,四象限D . 第二,四象限考点: 反比例函数的性质;待定系数法求反比例函数解析式.专题: 压轴题;待定系数法.分析: 先把点代入函数解析式,求出k 值,再根据反比例函数的性质求解即可. 解答: 解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D .点评: 本题考查了反比例函数的图象的性质:k >0时,图象在第一、三象限,k <0时,图象在第二、四象限.12.(常考指数:51)已知△ABC 如图,则下列4个三角形中,与△ABC 相似的是( )A .B .C .D .考点: 相似三角形的判定.分析: △ABC 是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.解答: 解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A 选项中三角形各角的度数分别为75°,52.5°,52.5°,B 选项中三角形各角的度数都是60°,C 选项中三角形各角的度数分别为75°,30°,75°,D 选项中三角形各角的度数分别为40°,70°,70°,∴只有C 选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C .点评: 此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大但综合性较强.13.(常考指数:67)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米考点:相似三角形的应用.专题:应用题.分析:由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.解答:解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B点评:本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.14.(常考指数:69)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选:A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.15.(常考指数:52)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.考点:概率公式.专题:应用题;压轴题.分析:先求出球的所有个数与红球的个数,再根据概率公式解答即可.解答:解:∵共8球在袋中,其中5个红球,∴其概率为,故选:C.点评:本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种果,那么事件A的概率P(A)=,难度适中.16.(常考指数:46)函数y=kx+1与函数y=在同一坐标系中的大致图象是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符值,两函数图象共存于同一坐标系内的即为正确答案.解答:解:分两种情况讨论:①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限17.(常考指数:48)甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.B.C.D.考点:概率公式.专题:压轴题.分析:列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,所以甲排在中间的概率是,也就是.故选:C.点评:本题用了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.18.(常考指数:84)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1B.2C.3D.4考点:相似三角形的判定.专题:压轴题.分析:由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答解答:解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.点评:此题主要考查学生对相似三角形的判定方法的掌握情况.19.(常考指数:54)若关于x的方程有增根,则m的值是()A.3B.2C.1D.﹣1考点:分式方程的增根.专题:计算题.分析:有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入成整式方程的方程中,求得m的值.解答:解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评:增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.(常考指数:66)在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为()A.0<x<2 B.x<2 C.x>0 D.x>2考点:点的坐标.分析:根据第二象限内的点的坐标特征,列出不等式组,通过解不等式组解题.解答:解:∵点P(x﹣2,x)在第二象限,∴,解得0<x<2,∴x的取值范围为0<x<2,故选:A.点评:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考常与不等式、方程结合起来求一些字母的取值范围,比如本题中求x的取值范围.21.(常考指数:62)下列二次根式中与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:根据同类二次根式的定义,先化简,再判断.解答:解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.点评:此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做类二次根式.22.(常考指数:71)下列图形是轴对称图形的是()A.1个B.2个C.3个D.4个考点:轴对称图形.分析:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图叫做轴对称图形.解答:解:根据轴对称的概念可得:只有第(1)(4)符合轴对称的定义.故选:B.点评:本题考查轴对称的定义,属于基础题,掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形部分折叠后可重合.23.(常考指数:67)要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>1考点:分式有意义的条件.分析:本题主要考查分式有意义的条件:分母不能为0.解答:解:∵x+1≠0,∴x≠﹣1.故选:B.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.24.(常考指数:53)在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是()A.1250km B.125km C.12.5km D.1.25km考点:比例线段.专题:应用题.分析:根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.解答:解:设甲、乙两地间的实际距离为x,则:=,解得x=125000cm=1.25km.故选:D.点评:理解比例尺的概念,根据比例尺进行计算,注意单位的转换问题.25.(常考指数:74)不能判断四边形ABCD是平行四边形的是()A.A B=CD,AD=BC B.A B=CD,AB∥CD C.A B=CD,AD∥BC D.A B∥CD,AD∥BC考点:平行四边形的判定.分析:A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形解答:解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.点评:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.26.(常考指数:74)不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.专题:图表型.分析:不等式2x﹣6>0的解集是x>3,>应向右画,且不包括3时,应用圈表示,不能用实心的原点表示3这点,据此可求得不等式的解以及解集再数轴上的表示.解答:解:将不等式2x﹣6>0移项,可得:2x>6,将其系数化1,可得:x>3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案.故选:A.点评:此题主要考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.27.(常考指数:43)如图,∠1、∠2、∠3的大小关系为()A.∠2>∠1>∠3 B.∠1>∠3>∠2 C.∠3>∠2>∠1 D.∠1>∠2>∠3考点:三角形的外角性质.分析:由于∠2是△ABF的外角,∠1是△AEF的外角,所以∠2>∠3,∠1>∠4;又由于∠4和∠2是对顶角故∠4=∠2,所以∠1>∠2.∠1、∠2、∠3的大小关系为∠1>∠2>∠3.解答:解:∵∠2是△ABF的外角,∴∠2>∠3;∵∠1是△AEF的外角,∴∠1>∠4;又∵∠4=∠2∴∠1>∠2.∠1、∠2、∠3的大小关系为:∠1>∠2>∠3.故选:D.点评:解答此题要两次运用三角形内角和外角的关系,比较出∠2、∠3;∠1,∠4的大小,再用对顶角相等建起联系.28.(常考指数:54)如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()A.12m B.10m C.8m D.7m考点:相似三角形的应用.专题:压轴题.分析:要求旗杆高度BC,易证△AED∽△ABC,根据对应线段成比例,列出式子即可求出.解答:解:如图,∵ED⊥AD BC⊥AC∴ED∥BC∴△AED∽△ABC∴而AD=8,AC=AD+CD=8+22=30(m),ED=3.2m∴BC===12(m)∴旗杆的高为12m.故选:A.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例出方程,建立适当的数学模型来解决问题.29.(常考指数:49)已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)考点:反比例函数图象上点的坐标特征.分析:只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.解答:解:∵点M(﹣2,3)在双曲线y=上,∴k=xy=(﹣2)×3=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上.A、因为3×(﹣2)=﹣6=k,所以该点在双曲线y=上.故A选项正确;B、因为(﹣2)×(﹣3)=6≠k,所以该点不在双曲线y=上.故B选项错误;C、因为2×3=6≠k,所以该点不在双曲线y=上.故C选项错误;D、因为3×2=6≠k,所以该点不在双曲线y=上.故D选项错误.故选:A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系30.(常考指数:52)在中,分式的个数是()A.2B.3C.4D.5考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:在中,分式有,∴分式的个数是3个.故选:B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.二、填空题(共30小题)31.(常考指数:62)如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标(3,).考点:反比例函数综合题.专题:压轴题.分析:由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题BC=m,BC边上的高是2﹣n=2﹣,根据三角形的面积公式得到关于m的方程,解方程即可求出m,然把m的值代入y=,即可求得B的纵坐标,最后就求出点B的坐标.解答:解:∵函数y=(x>0常数k>0)的图象经过点A(1,2),∴把(1,2)代入解析式得2=,∴k=2∵B(m,n)(m>1),∴BC=m,当x=m时,n=,∴BC边上的高是2﹣n=2﹣,而S△ABC=m(2﹣)=2,∴m=3,∴把m=3代入y=,∴n=,∴点B的坐标是(3,).故答案为:(3,).点评:本题主要考查了用已知坐标系中点的坐标表示图象中线段的长度及三角形的面积,解题时要注意数形结32.(常考指数:41)已知关于x的不等式组无解,则a的取值范围是a≥3.考点:解一元一次不等式组.分析:先求出不等式组的解集,利用不等式组的解集是无解可知,x应该是“大大小小找不到”,所以可以判断出a 解答:解:解关于x的不等式组,得,∵不等式组无解∴大大小小找不到,即a≥3.故答案为:a≥3.点评:本题主要考查了已知一元一次不等式组的解集,求不等式中的字母的值,同样也是利用口诀求解,但是注意当两数相等时,不等式组是x>3,x<3时没有交集,所以也是无解,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.33.(常考指数:54)从﹣1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.考点:概率公式;一次函数的性质.专题:压轴题.分析:从三个数中选出两个数的可能有6种.要使图象不经过第四象限,则k>0,b>0,由此可找出满足条件个数除以总的个数即可.解答:解:列表,如图,k、b的取值共有6种等可能的结果;满足条件的为k>0,b>0,即k=1,b=2或k=2,b=1两种情况,∴概率为.故答案为:.点评:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生结果数m,然后根据概率的定义计算出这个事件的概率=.也考查了一次函数的性质.34.(常考指数:30)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为8.考点:垂径定理;勾股定理.分析:连接OA,根据垂径定理可知AM的长,根据勾股定理可将OM的长求出,从而可将DM的长求出.解答:解:连接OA,∵AB⊥CD,AB=8,∴根据垂径定理可知AM=AB=4,在Rt△OAM中,OM===3,∴DM=OD+OM=8.故答案为:8.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解此题的关键.35.(常考指数:42)分解因式:ax2﹣ay2=a(x+y)(x﹣y).考点:提公因式法与公式法的综合运用.分析:应先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).点评:本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.36.(常考指数:31)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:本题主要考查反比例函数与一次函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.37.(常考指数:34)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④(把你认为正确结论的序号都填上,答案格式:“①②③④”).考点:反比例函数系数k的几何意义.专题:压轴题;数形结合.分析:本题考查的是反比例函数中k的几何意义,无论如何变化,只要知道过双曲线上任意一点引x轴、y轴垂所得矩形面积为|k|,是个恒等值即易解题.解答:解:①△ODB与△OCA的面积相等都为;②四边形PAOB的面积不会发生变化为k﹣1;③不能确定PA与PB是否始终相等;④由于反比例函数是轴对称图形,当A为PC的中点时,B为PD的中点,故本选项正确.故其中一定正确的结论有①、②、④.故答案为:①、②、④.点评:本题主要考查反比例函数系数k的几何意义,反比例函数中k的几何意义,即过双曲线上任意一点引轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一要正确理解k的几何意义.。
新苏科版初二数学下册期末考试试题及答案

新苏科版初二数学下册期末考试试题及答案一、选择题1.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC = 2.平行四边形的一条边长为8,则它的两条对角线可以是( )A .6和12B .6和10C .6和8D .6和63.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次 D .中奖次数不能确定4.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( )A .B .C .D .5.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( ) A .1000B .1500C .2000D .25006.如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于G ,连接AG 、HG ,下列结论:①CE ⊥DF ;②AG=AD ;③∠CHG=∠DAG ;④HG=12AD .其中正确的有( )A .① ②B .① ② ④C .① ③ ④D .① ② ③ ④7.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .8.“明天下雨的概率是80%”,下列说法正确的是( ) A .明天一定下雨B .明天一定不下雨C .明天下雨的可能性比较大D .明天80%的地方下雨9.一个事件的概率不可能是( ) A .32B .1C .23D .010.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .4二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).13.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .14.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是_____.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .17.如图,AB ∥CD ,AB =7,CD =3,M 、N 分别是AC 和BD 的中点,则MN 的长度_____.18.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .19.若分式方程211x m x x-=--有增根,则m =________. 20.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.三、解答题21.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.22.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数;(2)补全条形统计图;(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.23.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.24.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.25.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是 ;(精确到0.01) (2)估算袋中白球的个数.26.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数.27.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .28.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB ,A ,B 均为格点,按要求完成下列问题.(1)以AB 为对角线画一个面积最小的菱形AEBF ,且E ,F 为格点; (2)在(1)中该菱形的边长是 ,面积是 ;(3)以AB 为对角线画一个菱形AEBF ,且E ,F 为格点,则可画 个菱形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.2.A解析:A【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OB与OC的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC.A、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A.【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.3.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定. 故选D . 【点睛】解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件; ()P A 1=②为必然事件; ()0P A 1<<③为随机事件. 4.B解析:B 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数ky x=-的图象分布在二、四象限,没有选项符合题意;当k 0<时,函数1y kx =+的图象经过一、二、四象限,反比例函数ky x=-的图象分布在一、三象限,B 选项正确, 故选:B . 【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大.5.B解析:B 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次, 故选:B . 【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.6.D解析:D 【详解】∵四边形ABCD 是正方形, ∴AB=BC=CD=AD ,∠B=∠BCD=90°, ∵点E 、F 、H 分别是AB 、BC 、CD 的中点, ∴△BCE ≌△CDF ,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.7.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大8.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.9.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C、D选项的概率都有可能,∵32>1,∴A不成立.故选:A.【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.10.A解析:A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD=12×AC×BD=AB×DH,∴12×8×6=5×DH,∴DH=245,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.二、填空题11.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.12.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.13.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.14.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒15.【解析】【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD是菱形,∴CO=A解析:24 5【解析】【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD是菱形,∴CO=12AC=3cm,BO=12BD=4cm,AO⊥BO,∴BC22AO BO+5cm,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24, ∴AE =24245BC =cm . 故答案为:245cm . 【点睛】 此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.16..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠解析:020.【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD 为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD 绕点A 顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.17.2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB 于E ,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,2212+5,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.19.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.20.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角解析:103或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=5,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=5,BC=12,∴=13,∵将ΔABE沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即将ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+, 解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题21.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14. 【点睛】 本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.22.(1)150人;(2)见解析;(3)192人【分析】(1)根据书法小组的人数及其对应百分比可得总人数;(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.【详解】(1)参加这次问卷调查的学生人数为:30÷20%=150(人);(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:(3)该校选择“围棋”课外兴趣小组的学生有:1200×24150×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.24.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.25.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11x+=0.25,解得x =3. 答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.26.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.27.t=2【分析】当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,∵EF∥AB,BF∥AE,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t=2秒时,EF∥AB.【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.28.(1)见解析;(2)10,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF即为所求.(2)AE=223+1=10,菱形AEBF的面积=12×6×2=6,故答案为10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.。
新苏科初二数学下学期期末测试题及答案(共五套) 百度文库

新苏科初二数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =2.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°3.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.下列事件为必然事件的是( ) A .射击一次,中靶B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上5.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是( ) A .2000B .200C .20D .26.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠ 7.下列图形不是轴对称图形的是( )A .等腰三角形B .平行四边形C .线段D .正方形8.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184S B .20194S C .20204S D .20214S9.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45°二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.13.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.14.如图,在□ABCD 中,AD=6,点E 、F 分别是BD 、CD 的中点,则EF=______.15.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号). 16.在函数y =1xx 中,自变量x 的取值范围是_____. 17.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.18.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图. 19.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.20.如图,在□ABCD 中,AB =7,AD =11,DE 平分∠ADC ,则BE =__.三、解答题21.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?22.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB 边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.24.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元,该商家购进的第一批衬衫是多少件?25.在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,求BF 的长;(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.26.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?27.如图,已知一次函数y=x+2的图象与x轴、y轴分别交于点A,B两点,且与反比例函数y=mx的图象在第一象限交于点C,CD⊥x轴于点D,且OA=OD.(1)求点A的坐标和m的值;(2)点P是反比例函数y=mx在第一象限的图象上的动点,若S△CDP=2,求点P的坐标.28.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.2.B解析:B 【分析】根据轴对称和平行线的性质,可得∠A 'DE =∠B ,又根据∠C =120°,∠A =26°可求出∠B 的值,继而求出答案. 【详解】解:由题意得:DE ∥BC ,∴∠A 'DE =∠B =180°﹣120°﹣26°=34°, ∴∠BDE =180°﹣∠B =146°,故∠A 'DB =∠BDE ﹣∠A 'DE =146°﹣34°=112°. 故选:B . 【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.3.D解析:D 【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得. 【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH 四边形EFGH 是矩形 90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥ BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形 故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.4.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B.【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.6.D解析:D【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确∠=∠,所以选项D正确;再根据∠EBC再根据等腰三角形的性质即可得出A EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可. 【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆, ∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-, ∴选项A 、C 不一定正确 ∴∠A =∠EBC∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090, ∴选项B 不一定正确; 故选D . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7.B解析:B 【分析】根据轴对称图形的概念判断即可. 【详解】等腰三角形是轴对称图形,故A 错误; 平行四边形不是轴对称图形,故B 正确; 线段是轴对称图形,故C 错误; 正方形是轴对称图形,故D 错误; 故答案为:B. 【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.8.B解析:B 【分析】观察图形发现第2个图形中的阴影部分的面积为S 4,第3个阴影部分的面积为16S,依此类推,得到第n 个图形的阴影部分的面积即可. 【详解】解:观察图形发现:第2个图形中的阴影部分的面积为S4,第3个图形中的阴影部分的面积为16S , …第n 个图形中的阴影部分的面积为14n S -,故第2020个图中阴影部分的面积可以用含S 的代数式表示为20194S .故选:B . 【点睛】本题考查了图形的变化类问题,解题的关键是仔细的观察图形,找到规律用通项公式表示出来.9.A解析:A 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°, 由勾股定理得:AB =2234+=5, ∵S 菱形ABCD =12×AC×BD =AB×DH , ∴12×8×6=5×DH , ∴DH =245, 故选A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.10.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13.【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1解析:【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.3【解析】【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵点E. F分别是BD、CD的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.15.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC =BD ,∴四边形ABCD 是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC =BD ,∴四边形ABCD 是正方形,①正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AC ⊥BD ,∴四边形ABCD 是正方形,②正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AB =AD ,∴四边形ABCD 是正方形,③正确;④AB =BD ,且AB ⊥BD ,无法得出四边形ABCD 是正方形,故④错误;∵四边形ABCD 是平行四边形,OB =OC ,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.16.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.17.35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.18.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.19.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=△BOC面积=12×2×1=1.故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC面积是解题的关键.20.4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AB=7,AD=11,解析:4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD 中,AB=7,AD=11,∴CD=AB=7,BC=AD=11,∴BE=BC-CE=11-7=4.三、解答题21.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.22.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2,∴x2+62=(8-x)2.解得x=74.∴DE=8-74=254.在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,∴BD=10.∴OD=12BD=5.在Rt△DOE中,根据勾股定理,有DE2-OD2=OE2,∴OE=154.∴EF=2OE=152.【点睛】考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.24.该商家购进的第一批衬衫是120件.【解析】整体分析:设第一批购进了x件衬衫,用含x的分式表示出两批的单价,根据第二批的单价比第一批的单价贵了10元列方程.解:设第一批购进了x件衬衫,则第二批购进了2x件衬衫.根据题意得12000x=264002x-10解得x=120.经检验,x=120是原分式方程的解且符合题意.答;该商家购进的第一批衬衫是120件.25.(1)25 4(2)15 2【分析】(1)根据折叠的性质可得∠ADB=∠EDB,再根据两直线平行,内错角相等可得∠ADB=∠DBC,然后求出∠FBD=∠FDB,根据等角对等边可得BF=DF,设BF=x,表示出CF,在Rt△CDF中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH,设BH=DH=x,表示出CH,然后在Rt△CDH中,利用勾股定理列出方程求出x,再连接BD、BG,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中, S 菱形BHDG =12BD ⋅GH=BH ⋅CD , 即12×10⋅GH=254×6,解得GH=152.故答案:15 2【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.26.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.27.(1)(-2,0);8(2)(1,8)或(3,83)【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P CS CD x x=⨯⨯-△,即可求解.【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2),OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.28.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°, ∴11,22AE BE CF BF ==, ∵∠MBN=60°,BE=BF ,∴△BEF 是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
2015~2016学年苏科版初二数学第二学期期末测试卷 有答案

2015~2016学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B C D 6.下列等式一定成立的是……………………………………………………………( )A =B =;C 3±;D .;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上; C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数ky x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 . 14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = . 16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1) (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221a b a b a b⎛⎫-÷⎪--⎝⎭,其中1a ,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1ky x=和一次函数2y ax b =+的图象相交于点A 和点D ,且点A 的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y ax b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x-4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=(x >0)也恰好经过点A . (1)求k 的值;(2)如图2,过O 点作OD ⊥AC 于D 点,求22CD AD -的值;(3)如图3,点P 为x 轴上一动点.在(1)中的双曲线上是否存在一点Q ,使得△PAQ 是以点A 为直角顶点的等腰三角形.若存在,求出点P 、点Q 的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD 是平行四边形,AC 为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M 为AC 的中点,动点E 从点C 出发以每秒1个单位的速度运动到点B 停止,连接EM 并延长交AD 于点F ,设点E 的运动时间为t 秒. (1)求四边形ABCD 的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12. 712;13. 12k <;14.2;15.2;16.3;17.16;18. 3y x=; 三、解答题:19.(13;(2)1x -; 20.(1)3x =-;(2)2x =;21. a b +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形.23.(1)C (8,3),24y x=;(2)4m =;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2).将点A (2,2)代入反比例函数的解析式为ky x=,求得k=4.则反比例函数的解析式为4y x =.(2)点A 的坐标为(2,2),在Rt △AMO 中,222AO AM MO =+=4+4=8. ∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4.在Rt △COD 中,222OC OD CD =+(1);在Rt △AOD 中,222AO AD OD =+(2); (1)-(2),得2222CD AD OC OA -=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ ,∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4y x=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222ME +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况:当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。
2014-2015年苏科版八年级下数学期末复习试卷

苏科版八年级下数学期末模拟试卷11x -) A .0x ≥ B .1x ≠ C .0x > D .0x ≥且1x ≠2.下列图案中,不是中心对称图形的是 ( )A .B .C .D .3.下面有四种说法:①为了解一种灯泡的使用寿命,宜采用普查的方法;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中,正确的说法是 ( ) A .①②③ B .①②④ C .①③④ D .②③④4.下列命题中,正确的是 ( ) A .两条对角线相等的四边形是平行四边形 B .两条对角线相等且互相垂直的四边形是矩形 C .两条对角线互相垂直平分的四边形是菱形 D .两条对角线互相平分且相等的四边形是正方形 5、对角线互相垂直的四边形的中点四边形是 ( ) A .菱形 B .平行四边形 C .矩形 D .正方形6.下列二次根式是最简二次根式的个数是 ( )a1,xyz ,x 1,y x ,y x ,y x ,52,182222-+ A .2 B .3 C .4 D .57.已知点A (1,1y )、B (2,2y )、C (3-,3y )都在反比例函数xy 6=的图象上,则的大小关系是 ( ) A .213y y y << B .321y y y << C .312y y y << D .123y y y <<8.如图,矩形ABCD 的面积为220cm ,对角线交于点O ;以AB 、AO 为邻边做平行四边形1AOC B ,对角线交于点1O ;以AB 、1AO 为邻边做平行四边形12AO C B ;…;依此类推,则平行四边形45AO C B 的面积为 ( ) A .25cm 4B .25cm 8C .25cm 16D .25cm 32二、填空题(每空3分,共36分) 9.若2,3a b =则aa b =+ . 化简:=181 ,2)3(π- =_________102x =-,且x 10≤的正整数,那么x 的取值是 .11a = .12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中有标记的鱼有5条,则鱼塘中估计有 条鱼. 13.如图,将矩形A B C D 绕点A 顺时针旋转到矩形A B C D ''''的位置,旋转角为α (090α<<).若1110∠=,则α= .14.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM PN +的最小值为 . 15.已知关于x 的方程的解是负数,则n 的取值范围为 .16. 已知113x y -=,则代数式21422x xy y x xy y----的值为 17.已知反比例函数xky =在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AB AO ⊥,AB=6,AO=8,则k= .18.长为30,宽为a 的矩形纸片(15<a <30),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=3时,a 的值为 .三、解答题19.计算(每题4分,8分) (1)(2⎛÷⎝A B CD B ’ 1 C ’ D ’第8题 第13题 第14题 第17题20.解方程(每题4分,共8分) (1)x x x x -++=--212253 (2)22416222-+=--+x x x x x -21.(本题6分)先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中,a 是方程2310x x ++= 的解.22.(本题6分)2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?频数分布直方图23.(本题12分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1; ②画出将△ABC 绕点C 顺时针旋转90°得到△A 2B 2C , (2)回答下列问题:①△A 1B 1C 1中顶点A 1坐标为 ; ②若P (a ,b )为△ABC 边上一点,则按照(1)中①作图,点P 对应的点P 1的坐标为 . ③△A 1B 1C 1可以看作△A 2B 2C 绕点( , ),按照顺时针旋转 °得到的。
苏科版2014-2015年八年级下期末考试数学试题及答案

2015年春学期期末学业质量测试八年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.下列各式中,与2是同类二次根式的是( ▲ )A .3B .5C .8D .142.在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是( ▲ )A .男、女生做代表的可能性一样大B .男生做代表的可能性较大C .女生做代表的可能性较大D .男、女生做代表的可能性的大小不能确定3.分式x --11可变形为( ▲ ) A .11--x B .x +-11 C .x +11 D .11-x 4.利用配方法将x 2-2x +3=0化为a (x -h )2+k =0 (a ≠0)的形式为 ( ▲ )A .(x -1)2-2=0B .(x -1)2+2=0C .(x +1)2+2=0D .(x +1)2-2=05.下列命题是假命题的是( ▲ )A .平分弦的直径垂直于弦B .不在同一直线上的三点确定一个圆C .矩形的四个顶点在同一个圆上D . 三角形的内心到三角形三边的距离相等6.如图,在⊙O 的内接六边形ABCDEF 中,∠CAE =80°,则∠B+∠F 的度数为( ▲ )A .220 °B .240 °C .260 °D .280 ° 二、填空题(本大题共有10小题,每小题3分,共30分)7.若分式21a +有意义,则a 的取值范围是 ▲ . 8.写出以3,-5为根且二次项系数为1的一元二次方程是 ▲ .9.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有▲ 个数.10.已知点A (3,m )与点B (-2,1-m )是反比例函数x k y =图像上的两个点,则m 的值为 ▲ .11.如图,已知A 点是反比例函数xk y =(0≠k )的图像上一点,AB ⊥y 轴于B ,且△ABO 的面积为2,则k 的值为 ▲ . BA yO x12.直角三角形的两直角边是6和8,则它的外接圆的直径为 ▲.13.已知圆锥的母线长为10,底面圆的半径为2,则圆锥的侧面积为 ▲ .14.已知扇形的圆心角为120°,半径为3,则此扇形的弧长为 ▲ .15.两个连续负奇数的积是143,则这两个数是 ▲ .16.如图,在每个小正方形边长都为1的正方形网格中,经过格点A 、B 、C 的弧所在圆的面积为 ▲ .(结果保留准确值)三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)(1)3248313122-+-; (2))322)(233(+-. (第11题图) (第16题图)18.(本题满分8分)解方程:(1)13962=-+-x x x ; (2)42)2(2-=-x x . 19.(本题满分8分)先化简再求值:)1121(122+---÷--m m m m m ,其中m 是方程 20152=-x x 的解.20.(本题满分8分)己知函数y =52)2(--kx k 为反比例函数. (1)求k 的值;(2)它的图像在第 ▲ 象限内,在各象限内,y 随x 增大而 ▲ ;(填变化情况)(3)求出-2≤x ≤-12时,y 的取值范围. 21.(本题满分10分)已知一元二次方程x 2 -4x +k +1=0有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k +1=0与x 2+mx +m -1=0有一个相同的根,求此时m 的值.22.(本题满分10分)如图,在R t △ABC 中,∠ABC=90°.(1)利用直尺和圆规按下列要求作图:(保留作图痕迹,不写作法)①作∠BCA 的角平分线,交AB 于点O ;②以O 为圆心,OB 为半径作圆.(2)在(1)所作的图中,①AC 与⊙O 的位置关系是 ▲ (直接写出答案);②若BC=3,AB=4,求⊙O 的半径.23.(本题满分10分)如图,用长6 m 的铝合金条制成“日”字形窗框,窗框的宽和高各是多少时,窗户的透光面积为1.5m 2(铝合金条的宽度不计)?C B A (第22题图)(第23题图)24.(本题满分10分)如图,在△ABC 中,∠ACB =90°,以CE 为直径作⊙O ,AB 与⊙O 相切于点D ,连接CD ,若BE =OE =3.(1)求证:∠A =2∠DCB ;(2)求线段AD 的长度.25.(本题满分12分)如果方程02=++q px x 的两个根是1x 、2x ,那么p x x -=+21,q x x =⋅21,请根据以上结论,解决下列问题:(1)已知1x 、2x 是方程0242=-+x x 的两个实数根,求2111x x +的值; (2)已知方程02=++c bx x 的两根分别为12+、12-,求出b 、c 的值;(3)关于x 的方程03)1(22=-+-+m x m x 的两个实数根互为倒数,求m 的值.26.(本题满分14分)如图,点E (3,4)在平面直角坐标系中的⊙O 上,⊙O 与x 轴交于点A 、B ,与y 轴交于点C 、D ,点F 在线段AB 上运动,点G 与点F 关于AE 对称,HF ⊥FG 于点F ,并交GE 的延长线于点H ,连接CE .(1)求⊙O 的半径和∠AEC 的度数;(2)求证:HE=EG ;(3)若点F 在运动过程中的某一时刻,HG 恰好与⊙O 相切,求出此时点F 的坐标.2015年春学期期末学业质量测试八年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分)1.C ;2.B ;3.D ;4.B ;5.A ;6.C.二、填空题(本大题共有10小题,每小题3分,共30分)7.1-≠a ; 8.01522=-+x x ; 9.200; 10.-2; 11.4; 12.10; 13.π20; 14. π2; 15. -13,-11; 16.π237. 三、解答题(共10题,102分.下列答案....仅供参考....,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)原式=3234334-+-(4分,每对1个得1分)=35(6分);(2)(本小题6分)原式=61166-+-(4分,每对1个得1分)=665-(6分). 18.(本题满分8分)(1)(本小题4分)9)3(62-=++x x x (2分),5-=x (3分);经检验5-=x 是原方程的根(4分).(2)(本小题4分)0)2(2)2(2=---x x (2分),0)4)(2(=--x x ,21=x ,42=x (4分).19.(本题满分8分) 原式=)2(1)1)(1(2-+⋅-+-m m m m m m (2分)=m m -21(4分),因为m 是方程20152=-x x 的解,所以20152=-m m (6分),所以原式=20151(8分). 20. (本题满分8分) (1)(本小题3分)152-=-k ,2±=k (2分),因为02≠-k ,所以2-=k (3分);(2)(本小题2分)二、四,增大(每空1分);(3)(本小题3分)反比例函数表达式为xy 4-=(1分),当2-=x 时,2=y ,当21-=x 时,8=y (2分),所以,当212-≤≤-x 时,82≤≤y (3分). 21.(本题满分10分) (1)(本小题4分)0)1(416>+-=∆k (2分),3<k (4分);(2)(本小题6分)k 符合条件的最大整数为2(1分),0342=+-x x ,11=x ,32=x (2分),把11=x 代入x 2+mx +m -1=0,得0=m ,把32=x 代入,得2-=m ,综上所述,0=m 或2-=m (6分).22.(本题满分10分)(1)(本小题4分)图略(4分,角平分线2分,圆2分);(2)(本小题6分)①相切(2分);②连接点O 与AC 上的切点D ,设半径为x ,则AO=x -4,AD=AC-DC=AC-BC=2(3分),所以4)4(22+=-x x ,23=x (6分). 23.(本题满分10分)设窗框的宽为xm ,则窗框的高为236x -m (2分),所以5.1236=⋅-x x (6分),解得1=x ,所以5.1236=-x (9分),答:略(10分). 24.(本题满分10分) (1)(本小题5分)连接OD ,则∠ODB =90°,∴∠BOD +∠B =90°,∵∠A+∠B =90°,∴∠A =∠BOD ,∵OC =OD ,∴∠BOD =2∠DCB ,∴∠A =2∠DCB (5分);(2)(本小题5分)连接AO ,则△ACO ≌△ADO ,∴AD =AC ,在△OBD 中,BD =22OD OB -=33,设AD =x ,则AB =33+ x ,AC =x ,BC =9,所以2229)33(+=+x x ,∴33=x ,即AD =33(5分).25.(本题满分12分)(1)(本小题4分)421-=+x x ,221-=⋅x x (2分),21212111x x x x x x +=+=2(4分); (2)(本小题4分))1212(-++-=b =22-(2分),)12)(12(-+=c =1(4分);(3)(本小题4分)132=-m ,所以2±=m (2分),当2=m 时,方程没有实数根,舍去,当2-=m 时,方程有两个实数根互为倒数(4分).26.(本题满分14分)(1)(本小题6分)⊙O的半径为5(3分),∠AEC=135°(6分);(2)(本小题4分)连接EF,则EF=EG,∴∠EFG=∠G,∵∠HFG=90°,∴∠EFH=∠H,∴EF=HE,∴HE=EG(4分);∠OEA=90°,∵OE=OA,∴∠OEA=∠EAO,∵点G与点F关于AE对称,∴∠GEA=∠AEF,∴∠AEF+∠EAO=90°,∴EF⊥AB,∴点F的坐标为(3,0)(4分).。
新苏科八年级苏科初二下学期数学《期末考试试题》含答案.
新苏科八年级苏科初二下学期数学《期末考试试题》含答案.一、选择题1.满足下列条件的四边形,不一定是平行四边形的是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个3.下列调查中,适合采用普查的是( )A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率4.如果a =32+,b =3﹣2,那么a 与b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a >b5.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( )A .10B .40C .96D .192 6.已知关于x 的方程23x m x -=+的解是负数,则m 的取值范围为( ) A .6m >-且3m ≠- B .6m >- C .6m <-且3m ≠- D .6m <-7.下列事件为必然事件的是( ) A .射击一次,中靶 B .12人中至少有2人的生日在同一个月C .画一个三角形,其内角和是180°D .掷一枚质地均匀的硬币,正面朝上 8.下列我国著名企业商标图案中,是中心对称图形的是( )A .B .C .D .9.下列图标中,是中心对称图形的是( )A .B .C .D .10.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A.245B.125C.5 D.4二、填空题11.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.12.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.13.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.14.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ=_____°时,GC=GB.15.5x 有意义,字母x必须满足的条件是_____.16.当a<0时,化简2a2a|结果是_____.17.已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于_____.18.如图,在矩形ABCD中,AB=5,BC=6,P为AD上一动点,把△ABP沿BP翻折,使点A落在点F处,连接CF,若BF=CF,则AP的长为_____.19.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.20.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.三、解答题21.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标. 22.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.23.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?24.计算:242933 x x xx x-----25.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?26.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.27.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.28.已知ABC∆是边长为8cm的等边三角形,动点,P Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s.()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A 、∵两组对边分别平行的四边形是平行四边形,∴选项A 不符合题意;B 、∵两组对边分别相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.2.C解析:C【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】第1个,即不是轴对称图形,也不是中心对称图形,故本选项错误;第2个,既是轴对称图形,也是中心对称图形,故本选项正确;第3个,既是轴对称图形,也是中心对称图形,故本选项正确;第4个,既是轴对称图形,也是中心对称图形,故本选项正确.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.3.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.4.A解析:A【分析】先利用分母有理化得到a 2),从而得到a 与b 的关系.【详解】∵a2),而b 2,∴a =﹣b ,即a+b=0.故选:A .【点睛】﹣2是解答本题的关键.5.C解析:C【分析】根据菱形的面积等于对角线乘积的一半即可解决问题.【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =,∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型. 6.A解析:A【分析】解分式方程,得到含有m 得方程的解,根据“方程的解是负数”,结合分式方程的分母不等于零,得到两个关于m 得不等式,解之即可.【详解】解:方程两边同时乘以1x +得:3(1)x m x -=+,解得:6=--x m ,又∵方程的解是负数,∴60--<m ,解不等式得:6m >-,综上可知:6m >-且3m ≠-,故本题答案为:A.【点睛】本题考查了分式方程的解;解一元一次不等式.解决本题的关键是熟练掌握分式方程的解法过程,注意分式方程分母不为0这一要求.7.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C.画一个三角形,其内角和是180°是必然事件;D.掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.B解析:B【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B【点睛】此题考查中心对称图形,难度不大9.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.10.A解析:A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB=2234=5,∵S菱形ABCD=12×AC×BD=AB×DH,∴12×8×6=5×DH,∴DH=245,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.二、填空题11.1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.解析:1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x <4+3,即1<x <7,故答案为1<x <7.12.【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =A 解析:245【解析】【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO ,∴BC 5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24,∴AE =24245BC =cm . 故答案为:245 cm . 【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.13.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.14.60或300【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角θ的度数.【详解】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况解析:60或300【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角θ的度数.【详解】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.故答案为60或300【点睛】本题考查了旋转的性质,矩形的性质,利用分类讨论思想解决问题是本题的关键.15.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】5x∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.16.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根解析:﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.17.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.18.【分析】过点F 作EN∥DC 交BC 于点N ,交AD 于点E ,设AP =x ,则PF =x ,得出(3﹣x )2+12=x2,解方程即可得解.【详解】解:过点F 作EN∥DC 交BC 于点N ,交AD 于点E ,∵四 解析:53【分析】过点F 作EN ∥DC 交BC 于点N ,交AD 于点E ,设AP =x ,则PF =x ,得出(3﹣x )2+12=x 2,解方程即可得解.【详解】解:过点F 作EN ∥DC 交BC 于点N ,交AD 于点E ,∵四边形ABCD是矩形,∴∠A=∠D=∠DCB=90°,∴FN⊥BC,FE⊥AD,∵BF=CF,BC=6,∴CN=BN=3,由折叠的性质可知,AB=BF=5,AP=PF,∴224FN BF BN=-=,∴EF=EN﹣FN=5﹣4=1,设AP=x,则PF=x,∵PE2+EF2=PF2,∴(3﹣x)2+12=x2,解得,53x=,故答案为:53.【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键.19.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角解析:103或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=5,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示,连结AC ,在Rt △ABC 中,AB=5,BC=12,∴AC=22512+=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+,解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.20.【分析】已知S△PAB=S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l∥AB,作点A 关于l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离.【详解41【分析】已知S △PAB =13S 矩形ABCD ,则可以求出△ABP 的高,此题为“将军饮马”模型,过P 点作直线l∥AB,作点A关于l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.【详解】解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22225441+=+=AB AE,即PA+PB的最小值为41.故答案为:41.【点睛】本题主要考查的是勾股定理以及“将军饮马”的模型,“将军饮马”模型主要是用来解决最小值问题,掌握这模型是解题的关键.三、解答题21.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.22.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.23.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,依题意,得:1001201 0.8x x-=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.24.3x-【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x xxx x x--+-+-====----;【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.25.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x千克,则第二次购进这种商品(x+5)千克,由题意,得5007505x x=+,解得x=10.经检验:x=10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.26.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为:360°×2505000=18°, 故答案为:18;(4)在扇形统计图中表示观点E 的百分比是:2005000×100%=4%, 故答案为:4%.【点睛】 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.27.菱形,理由见解析【分析】根据平行四边形的判定得出四边形BDEF 是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE =BD ,进而利用菱形的判定解答即可.【详解】四边形DBFE 是菱形,理由如下:∵DE ∥BC ,EF ∥AB ,∴四边形DBEF 是平行四边形,∴DE ∥BC ,∴∠DEB =∠EBF ,∵BE 平分∠ABC ,∴∠DBE =∠EBF ,∴∠DBE =∠DEB ,∴BD =DE ,∴平行四边形DBEF 是菱形.【点睛】此题考查菱形的判定,关键是根据平行四边形的判定得出四边形BDEF 是平行四边形解答.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴==ABC∆是等边三角形,60A︒∴∠=30AQM︒∴∠=2AQ AM∴=,①当83t≤时,由题意有832382tt at-⎛⎫+=+⎪⎝⎭,解得3/a cm s=,②当83t≥时,由题意有382382tt at-⎛⎫-=+⎪⎝⎭,解得3/a cm s=,∴综上所述,存在3/a cm s=时,BPQ∆恒为以BP为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
苏科版 初二下学期 数学期末考试试卷(含答案解析)
苏科版初二下学期数学期末考试试卷(含答案解析)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C .3个D .4个2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1 个球,摸到红球的概率是(▲)A .52B .53C .51D .31 4.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C .213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分 别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S ,OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲)A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲)A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为(▲)A .6B .8C .10D .12二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ . 10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a ,,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ .13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是 ▲2cm .14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”的长等于 ▲ .第6题 x yF E DA O BC16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ . 17.如图,一次函数11y k x b =+的图像与反比例函数22k y x =的图像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ . 18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm . 三、解答题(本大题共有10道题,共96分) 19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯(2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分)解方程:22216224x x x x x -+-=+-- 21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;(2)计算扇形统计图中m =__▲__; (3)计算扇形统计图中A 区的圆心角的度数.第17题 y xBAOyxD CBEAO(4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分)如图,在四边形ABCD 中,AB CD //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由. 24.(本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D .(1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集;(3)判断CD 与AB 的位置关系,并说明理由.25.(本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度. (1)根据题意填空:①若小慧设 ▲ 为x 公里/小时,列出尚不完整的 方程:xx 5.1120120=+(▲); ②若小聪设 ▲ 为y 小时,列出尚不完整的 方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:yxHDEBAFCO (1).在实数范围内分解因式:=+-3322x x ▲;(2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标;(3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.D 为直线BC 上一动点(点28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF .(1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CD CF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.答案一、选择题(3×8=24分) 题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9.21-≥x 10.5211.3212.9322m m <≠且13.12 14.1或2-15.1或23316.︒7517.02x <<或6x >18.5,26,8 三、解答题19.(每题4分,共8分) (1)22-(2)22x x --+ 20.(本题8分)2x =-经检验2x =-是原方程的增根,∴原方程无解21.(本题8分)原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45(2)12(3)︒=︒⨯14436020080(4)567020046809000=+⨯ 23.(本题10分) (1)证明:AB CD //∴BAC DCA ∠=∠AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS )…………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。
2014——2015第二学期八年级数学下册期末试卷(四)
2014——2015学年度第二学期八年级数学期末试卷(四)(亲爱的同学,当你走进考场,你就是这里的主人。
只要心境平静,只要细心、认真地阅读、思考,你就会感到试题并不难。
一切都在你的掌握之中,请相信自己。
)一、精心选一选:本大题共8小题,每小题4分,共32分.1、下列计算正确的是()A.=B=C3=D3=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.矩形B.直角梯形C.菱形D.正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s=2甲,0.60s=2乙,20.50s=丙,20.45s=丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,75、若直线y=kx+b经过第一、二、四象限,则k,b的取值范围是()(A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<06、如图,把直线L沿x轴正方向向右平移2个单位得到直线L′,则直线L/的解析式为()A.12+=xy B. 42-=xyC. 22y x=- D. 22+-=xy7、如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()(A)4 cm (B)5 cm (C)6 cm (D)10 cmA第7题BCDEEDBACD EFC8、如图,ABC ∆和DCE ∆都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) (AB)C)D)二、细心填一填:本大题共8小题,每小题4分,共32分.9的结果是 .10、实数p 在数轴上的位置如图所示,化简_______。
11、张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y 元,则y = .12、已知直线1l 的解析式为26y x =-,直线2l 与直线1l 关于y 轴对称,则直线2l 的解析式为 .13、在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件. 14、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为 .15、如图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
苏科初二数学下学期期末考试试题及答案
苏科初二数学下学期期末考试试题及答案一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有A .1组B .2组C .3组D .4组2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是( )A .2016年泰兴市八年级学生是总体B .每一名八年级学生是个体C .500名八年级学生是总体的一个样本D .样本容量是5003.下列图案中,是中心对称图形的是( )A .B .C .D .4.将下列分式中x ,y (xy ≠0)的值都扩大为原来的2倍后,分式的值一定不变的是( )A .312x y +B .232x yC .232x xyD .3232x y 5.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =6.如图,▱ABCD 的周长为22m ,对角线AC 、BD 交于点O ,过点O 与AC 垂直的直线交边AD 于点E ,则△CDE 的周长为( )A .8cmB .9cmC .10cmD .11cm7.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C.D.8.下列条件中,不能..判定平行四边形ABCD为矩形的是()A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC9.反比例函数3yx=-,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大10.下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式二、填空题11.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.12.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为_____.13.若分式x3x3--的值为零,则x=______.14.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.15.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.16.已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于_____.17.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k y x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.18.若分式方程211x m x x-=--有增根,则m =________. 19.如图,反比例函数y =x k (x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.20.▱ABCD 的周长是32cm ,∠ABC 的平分线交AD 所在直线于点E ,且AE :ED =3:2,则AB 的长为_____.三、解答题21.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?22.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?23.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.24.如图,在平面直角坐标系xOy 中,边长为1个单位长度的正方形ABCD 的边BC 平行于x 轴,点A 、C 分别在直线OM 、ON 上,点A 的坐标为(3,3),矩形EFGH 的顶点E 、G 也分别在射线OM 、ON 上,且FG 平行于x 轴,EF :FG =3:5.(1)点B 的坐标为 ,直线ON 对应的函数表达式为 ;(2)当EF =3时,求H 点的坐标;(3)若三角形OEG 的面积为s 1,矩形EFGH 的面积为s 2,试问s 1:s 2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.25.如图,在正方形ABCD 内有一点P 满足AP AB =,PB PC =.连接AC 、PD .(1)求证:APB DPC ∆∆≌;(2)求PAC ∠的度数.26.计算:242933x x x x x ----- 27.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .28.解方程(1)22(1)1x x +=+(2)22310x x ++=(配方法)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形;(2)∵AB ∥CD ,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD ,∴∠BAD+∠ABC=180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形;(3)∵在四边形ABCD 中,AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形;(4)∵在四边形ABCD 中,AB ∥CD ,AD =BC ,∴四边形ABCD 可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD 是平行四边形的有3组.故选C.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A 错误;B. 每一名八年级学生的视力情况是个体,故B 错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C 错误;D. 样本容量是500,故D 正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.A解析:A【分析】本题根据中心对称图形的概念求解.【详解】A 选项是中心对称图形,故本选项符合题意;B 选项是轴对称图形,故本选项不合题意;C 选项是轴对称图形,故本选项不合题意;D 选项是轴对称图形,故本选项不合题意.故选:A .【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.4.C解析:C【分析】根据分式的基本性质解答.【详解】解:∵分式中x ,y (xy ≠0)的值都扩大为原来的2倍,∴A.23161224x x y y ⨯++=⨯,分式的值发生改变; B. 222332(2)4x x y y ⨯=⨯,分式的值发生改变; C. 223(2)32222x x x y xy⨯=⨯⨯,分式的值一定不变; D. 33223(2)32(2)x x y y⨯=⨯,分式的值发生改变; 故选:C .【点睛】本题考查了分式的基本性质:分式的分子和分母都乘以或除以同一个不为0的数(或式子),分式的值不变.5.D解析:D【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵//AB CD∴180C D ∠+∠=︒∵A C ∠=∠∴180A D +=︒∠∠∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.6.D解析:D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,AO=CO,可得AD+CD=11cm,由线段垂直平分线的性质可得AE=CE,即可求△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AO=CO,又∵EO⊥AC,∴AE=CE,∵▱ABCD的周长为22cm,∴2(AD+CD)=22cm∴AD+CD=11cm∴△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm故选:D.【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.7.B解析:B【分析】根据轴对称图形和中心对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故答案为B.【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.8.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A、∠A=∠C不能判定这个平行四边形为矩形,故此项错误;B、∵∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A.本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.9.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.10.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B 、了解一批袋装食品是否含有防腐剂,适合抽样调查;C 、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D 、调査某新型防火材料的防火性能,适合抽样调查.故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.12.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中解析:4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=22BC AC+=2234+=5,连接CP,如图所示:∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∵1122BC AC AB CP⋅=⋅,∴DE=CP=345⨯=2.4,故答案为:2.4.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.13.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.可估计湖里大约有鱼100÷20200=1000条. 故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息. 16.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.17.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形, 解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =,∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.18.-1【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.19.4【分析】设D 的坐标是,则B 的坐标是,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是,则B 的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.20.6cm 或12cm .【分析】证△ABE 是等腰三角形,分“点E 在线段AD 上” 和“点E 在AD 的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E 在线段AD 上,如图1,∵四边解析:6cm 或12cm .【分析】证△ABE是等腰三角形,分“点E在线段AD上” 和“点E在AD的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E在线段AD上,如图1,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:5,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×38=6(cm).②点E在AD的延长线上,如图2,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:1,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×34=12(cm);故答案为:6cm或12cm.【点睛】本题考查了平行四边形与角平分线线的综合应用,熟知以上知识点及应用是解题的关键.三、解答题21.(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDF BE DF∠∠===∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF∵∠GCE =∠GCF , GC =GC∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.22.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.23.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.24.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x =;(2)∵EF =3,EF :FG =3:5.∴FG =5,设矩形EFGH 的宽为3a ,则长为5a ,∵点E 在直线OM 上,设点E 的坐标为(e ,e ),∴F (e ,e ﹣3),G (e +5,e ﹣3),∵点G 在直线ON 上,∴e ﹣3=12(e +5), 解得e =11,∴H (16,11).(3)s 1:s 2的值是一个常数,理由如下:如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.(1)见解析;(2)15°【分析】(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可;(2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果.【详解】解:(1)∵四边形ABCD 为正方形,∴∠ABC=∠DCB=90°,AB=CD ,∵BP=PC ,∴∠PBC=∠PCB ,∴∠ABP=∠DCP ,又∵AB=CD ,BP=CP ,在△APB 和△DPC 中,AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );(2)由(1)得AP=DP=AB=AD ,∴△PAD 为等边三角形,∴∠PAD=60°,∠PAB=30°,在正方形ABCD 中,∠BAC=∠DAC=45°,∴∠PAC=∠PAD-∠CAD=60°-45°=15°.【点睛】本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键.26.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】 解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.27.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.28.(1)11x =-,212x =-;(2)11x =-,212x =- 【分析】(1)移项,提取公因式1x +,利用因式分解法求解即可;(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.【详解】(1)22(1)1x x +=+, 移项得:22(1)10()x x -++=,提取公因式1x +得:121)()(0x x ++=,可得:10x +=或210x +=, 解得:12112x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即231()416x +=, 开方得:3144x +=±, 解得:12112x x =-=-,. 【点睛】本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015学年度第二学期八(下)数学模拟试卷(二)
一、选择题
1. 已知O ⊙的半径为5,圆心O 到直线l 的距离为3,则反映直线l 与O ⊙的位置关系的图形是( ).
2.如图2,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,连接BC 、BD ,下列结论中不一定正确的是( )
= 3.如图3,AB 是⊙O 的弦,AC 是⊙O 的切线,切点为A ,BC 经过圆心O.若∠B =25o ,则
∠C 的大小等于 ( )
A .20o
B .25o
C .40o
D .50°
图2 图3
4. 如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD 已知DE=6,
∠BAC+∠EAD=180°,则点A 到弦BC 的距离等于 ( )
A. 241
B. 234
C. 4
D. 3
5. 方程x 2-2x-1=0的两个解为x 1 和x 2,则x 1+ x 2的值为 ( )
A. 2
B.-2
C.1
D.-1
6.下列说法正确的是 ( )
A.三点确定一个圆
B.平分弦的直径垂直于弦
C.等弧所对的圆周角相等
D.垂直于半径的直线是圆的切线
二、填空题
7.当m= 时,关于x 的方程(m-2)22-m
x +2x-1=0是一元二次方程.
8. 关于x 的方程062=++k x x 有两个不相等的实数根,实数k 的取值范围是 ________.
9.已知圆一条弦的长为R,半径也为R,则该弦所对的圆周角为
10.如图4,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB= 度.
11.如图5,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =40°.则∠APB 的度数为 12如图6,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的度数为 .
13. 如图7,一圆与平面直角坐标系中的x 轴切于点A(8,0),与y 轴交于点B(0,4),
C(0,16),则该圆的直径为__________
14.已知关于x 的方程a(x+m)2=c 的解为x 1=3 ,x 2=-2,方程a(x+m+2)2
=c 的解为 .
15.已知Rt △ABC 中,∠C=90°,AC=6,BC=8,点O 和M 分别为Rt △ABC 的外心和内心,线段OM 的长为 .
16.半径为1的⊙O 中,两条弦
,∠BAC 的度数为 .
三、解答题
17.解方程:
(1)x 2-2x-8=0 (2)2x 2-3x-1=0
18.化简求值:
(a+2)(a-2)+2(a+1)2-(a+1)(a-3) 其中实数a 是方程2x 2+6x-1=0的一个根.
19.已知关于x 的方程024102=-++a x x .
(1)若此方程有两个不相等的实数根,求a 的范围;
(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.
20.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交⊙O 于E ,连接
CD ,CE ,若CE 是⊙O 的切线,
(1)求证:CD 是⊙O 的切线;
(2)若BC=3,AB=4,求平行四边形OABC 的面积.
21. 某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P(个)与每个书包销售价
x(元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为40元时,每天销售20个.
(1)求P关于x的函数关系式;
(2)如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?
22.如图,点A是半圆上的三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O的半径是1,问点P 在直线MN上什么位置是(在图中标注),AP+BP的值最小? 并求出最小值。
23.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
24.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,方程ax2+bx-c=0是关于x的一元二次方程。
(1)判断方程ax2+bx-c=0的根的情况为(填序号);
①.方程有两个相等的实数根;②.方程有两个不相等的实数根;
③.方程无实数根;④.无法判断
(2)如图,若△ABC内接于半径为2的⊙O,直径BD⊥AC于点E,且∠DAC=60°,求方程ax2+bx-c=0的根;
(3 )若x=1
4
c是方程ax2+bx-c=0的一个根,△ABC的三边a、b、c的长均为整数,且ac-4b<0,
试求a、b、c的值.。