如东县高中2018-2019学年高二上学期数学期末模拟试卷含解析
2018-2019学年高二(上)期末数学试卷(理科)(含答案解析)(3)

2018-2019学年高二(上)期末数学试卷(理科)(含答案解析) 一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量十:二鼻"二:二,-,若」 '则x 的值为() A. - 3 B. 1 C. - 1 D . 32. (5分)已知函数f (x ) =x+lnx ,则f'(1)的值为()A. 1B. 2C. - 1 D .- 2 3. (5分)某学校高一、高二、高三共有学生 3500人,其中高三学生数是高一 学生数的两倍,高二学生数比高一学生数多 300人,现在按丁的抽样比用分层 抽样的方法抽取样本,则应抽取高一学生数为()A. 8B. 11C. 16 D . 104. (5分)某公司在2014年上半年的收入x (单位:万元)与月支出万元)的统计资料如下表所示:5. (5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等 马,田忌的中等马优于齐王的下等马, 劣于齐王的中等马,田忌的下等马劣于齐 王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,为( y (单位: 根据统计资料,则( ) A. 月收入的中位数是15, B. 月收入的中位数是17, C. 月收入的中位数是16, D. 月收入的中位数是16, x 与y 有正线性相关关系x 与y 有负线性相关关系 x与y 有正线性相关关系 x与y 有负线性相关关系 则田忌获胜的概率6 . (5 分)点集Q= (x, y) | 0<x<e, 0<y<e}, A={ (x, y) | y>e x, (x, y) €內,在点集Q中任取一个元素a,贝U a€ A的概率为( )7. (5分)下列说法错误的是( )A .函数f (x )的奇函数”是“f (0) =0”的充分不必要条件.B. 已知A , B , C 不共线,若-: = |,则P >△ ABC 的重心.C. 命题? x o € R , sinx o 》T 的否定是:? x € R, sinx v 1”.D.命题若a=,则cos 的逆否命题是: 若cosy • —,则,——”. 322 3 2 28. (5分)过双曲线21 - :.的右焦点且垂直于x 轴的直线与双a 2b 2 曲线交于A , B 两点,D 为虚轴上的一个端点,且△ ABD 为直角三角形,则此双 曲线离心率的值为( )A . 「B.门.:C. Y :或 门.:D. 「或::'.:9. (5分)若双曲线x 2+my 2=m (m € R )的焦距4,则该双曲线的渐近线方程为 ( )A. : :B. : :■-C. , _ I :,D.,-,—10. (5分)已知正三棱柱ABC- A1B1C1的侧棱长与底面边长相等,则 ABi 与侧面2=x 2 - 9lnx 在区间[a - 1, a+1]上单调递减,则实数a 的取值范围是() A . (1, 2] B . [4, +x)C . (-X, 2] D. (0, 3] 12. (5分)设函数f (x )=二sin 丄三,若存在f (x )的极值点X 。
2018-2019学年高二上学期期末考试数学试题3+答案

2018-2019学年高二上学期期末考试注意事项:1.答题前,请您将自己的座位号填写在答题卡上规定的地方,准考证号的条形码粘贴在答题卡上规定的地方.2.答题时,请使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字迹工整,笔迹清楚. 3.请按照题号在答题卡上各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.请保持卡面清洁,不折叠,不破损.参考公式:])(...)()[(),...(122221221x x x x x x S x x x nx n n -++-+-=+++=一、填空题:本大题共14小题,每小题5分,共计70分。
不需写出解题过程,请把答案直接填写在答题卡相应位置上。
1. 写出命题“1>,2x N x ∈∃”的否定: ▲ . 2. 某中学生一周内每日睡眠时间分别是6,6,7,x ,7,8,9(单位:小时),若该组数据的平均数为7,则该组数据的方差为 ▲ .3.在平面直角坐标系xOy 中,已知点M (3,0)到抛物线)02px (p >2=y 准线的距离为4,则p 的值为 ▲ .4. 运行如图所示的伪代码,其结果为 ▲ .5. 如图,圆和其内接正三角形,若在圆面上任意取一点,则点恰好落在三角形外的概率为▲ .6. 如图是某算法流程图,则程序运行后输出的值为 ▲ .7. 一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球. 若从中1次随机摸出2只球,则2只球颜色相同的概率为 ▲ . 8. 若曲线在处切线的斜率为2,则实数的值为 ▲ .9. 已知双曲线C: )0b >,0(a >12222=-by a x 的一个焦点坐标为(2,0),且它的一条渐近线与直线03:=+y x l 垂直,则双曲线C 的标准方程为 ▲ .10. 若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为 ▲ .11. 若直线t x y +=与方程211y x -=-所表示的曲线恰有两个不同的交点,则实数t 的取值范围为 ▲ .12. 已知椭圆)0b >,0(a >12222=+by a x 的左焦点为F ,左顶点为A ,上顶点为B.若点F 到直线AB 的距离为172b,则该椭圆的离心率为 ▲ . 13. 在平面直角坐标系xOy 中,已知圆4)(:221=-+t y x C ,圆14)2(:222=+-y x C .若圆C 1上存在点P ,过点P 作圆C 2的切线,切点为Q ,且PQ PO 2=,则实数t 的取值范围为 ▲ .14. 已知函数xe ax xf +=)( (a 为常数,e 为自然对数的底数),若对任意的]2,1[-∈x ,0)(≥x f 恒成立,则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,15—17每题14分,18—20每题16分,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.命题:p :指数函数xa m y )3(+-=是减函数;命题R m q ∈∃:,使关于x 的方程02=+-m x x 有实数解,其中R m a ∈,.(1)当a=0时,若p 为真命题,求m 的取值范围; (2)当a=-2时,若p 且q 为假命题,求m 的取值范围.16.随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表: (1)求表格中的a ,b ,c 的值; (2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?17.在平面直角坐标系xOy 中,已知ABC ∆的顶点坐标分别是A (0,0),B (2,2),C )3,1(-,记ABC ∆外接圆为圆M. (1)求圆M 的方程;(2)在圆M 上是否存在点P ,使得422=-PB PA ?若存在,求点P 的个数;若不存在, 说明理由18. 如图,已知A 、B 两个城镇相距20公里,设M 是中点,在AB 的中垂线上有一高铁站P ,PM 的距离为10公里.为方便居民出行,在线段PM 上任取一点O (点O 与、P 、M 不重合)建设交通枢纽,从高铁站铺设快速路到O 处,再铺设快速路分别到A 、B 两处.因地质条件等各种因素,其中快速路PO 造价为1.5百万元/公里,快速路OA 造价为1百万元/公里,快速路OB 造价为2百万元/公里,设)(rad OAM θ=∠,总造价为y (单位:百万元).(1)求y 关于θ的函数关系式,并指出函数的定义域;(2)求总造价的最小值,并求出此时θ的值.19.如图,在平面直角坐标系xOy 中,点)23,1(P 在椭圆M 上,且)0b >,0(a >12222=+by a x 椭圆M 的离心率为23. (1)求椭圆M 的标准方程;(2)记椭圆M 的左、右顶点分别为A 1、A 2,点C 是轴上任意一点(异于A 1、A 2,O 点),过点C 的直线l 与椭圆M 相交于E,F 两点.①若点C 的坐标为)0,3(,直线EF 的斜率为-1,求AEF ∆的面积;②若点C 的坐标为(1,0),连结A 1E,A 2F 交于点G ,记直线A 1E,GC,A 2F 的斜率分别为321,,k k k ,证明:231k k k +是定值.20.设函数x x x g R a x a x x f ln )(),(1ln )(-=∈-+=,. (1)当1=a 时,求曲线)(x f 在1=x 处的切线方程; (2)求函数)(x f 在],1[e 上的最小值(e 为自然对数的底数);(3)是否存在实数a ,使得)()(x g x f ≥对任意正实数x 均成立?若存在,求出所有满足条件的实数a 的值;若不存在,请说明理由.参考答案1. *2, 1≤∀∈x x N 2.873.24.195.3314π- 6,41 7.415 8.1- 9.2213y x -= 10.56 11.(21,2]--- 12.1313.43,43⎡⎤-⎣⎦ 14.1[e,]e- 15.解(1)当0a =时,指数函数(3)x y m a =-+化为(3)x y m =-因为指数函数(3)x y m =-是减函数,所以031m <-< ..................4分 即23m <<所以实数m 的取值范围为(2,3).......................................6分 (2)当2a =-时,指数函数(3)x y m a =-+化为(1)x y m =- 若命题p 为真命题,则011m <-<,即01m <<所以p 为假命题时m 的取值范围是0m ≤或1m ≥......................8分 命题q 为真命题时,即关于x 的方程20x x m -+=有实数解, 所以140m ∆=-≥,解得14m ≤, 所以命题q 为假命题时m 的取值范围为14m >........................10分 因为p 且q 为假命题,所以p 为假命题或者q 为假命题................12分 所以实数m 满足0m ≤或1m ≥或14m >,即0m ≤或14m > 所以实数m 的取值范围为(]1,0,4⎛⎫-∞⋃+∞ ⎪⎝⎭..........................14分16.解:(1)37a =,0.1b =,0.32c =....................................3分(2)10.05+30.1+50.37+70.32+90.16=5.88⨯⨯⨯⨯⨯...................9分 (3)()250.050.10.3713⨯++=.....................................13分 答:(1)表格中的37a =,0.1b =,0.32c =;(2)估计用户的满意度评分的平均数为5.88;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为13 ....................................................................14分17.解:(1)设ABC ∆外接圆M 的方程为220x y Dx Ey F ++++=, 将(0,0),(2,2),(1,3)A B C -代入上述方程得:02280340F D E D E ⎧=⎪++=⎨⎪-+=⎩ ............2分解得400D E F =-⎧⎪=⎨⎪=⎩.............................................4分则圆M 的方程为2240x y x +-= ..................................6分 (2)设点P 的坐标为),(y x ,因为422=+PB PA ,所以2222(2)(2)4,x y x y +----= 化简得:30x y +-=.................................................8分即考察直线30x y +-=与圆C 的位置关系 .............................10分 点M 到直线30x y +-=的距离为222322211d -==<+ .................12分 所以直线30x y +-=与圆M 相交,故满足条件的点P 有两个。
【数学】江苏省如东中学2018-2019学年度高二上学期期末学情检测数学试题

.
11.设 l, m 为两条不同的直线,,为两个不同的平面,下列命题中正确的是
.(填序 号)
①若 l ,m / /, , 则 l m ;②若 l / /m,m ,l , 则/ / ; ③若 l / /, m / /,/ /, 则 l / /m ; ④若 , m, l , l m, 则 l
8. 已知圆锥的高为 6,体积为 8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是 7,则该圆
台的高为
.
9.椭圆
x2 5
y2 m
1的离心率为
10 5 ,则实数 m 的值为
.
10.已知正三棱锥 S-ABC 的底面边长为 4,高为 3,在正三棱锥 S-ABC 内任取一点 P,使得
1
VP-ABC< 2 VS-ABC 的概率是
2018-2019 学年度第一学期期末学情检测
4 参考公式:球体积公式:V R3 ;球表面积公式: S 4R 2 ,其中 R 为球半径.
3
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.不需写出解答过程,请把答案直接填
写 在答题卡相应位置上.
1. 一 组 数 据 1 , 3 , 2 的 方 差
为
.
2. 将 一 枚 硬 币 投 掷 2 次 , 出 现 “ 一 次 正 面 、 一 次 反 面 ” 的 概 率
证明过程或演算步骤.
15. (本小题满分 14 分)
已知椭圆
E
的中心在原点,长轴长是
6,一条准线方程为
x
9 2
;
(1)求椭圆 E 的标准方程;
(2)求以椭圆 E 的焦点为顶点的等轴双曲线的标准方程
16.(本小题满分 14 分) 如图,在斜三棱柱 ABC﹣A1B1C1 中,侧面 AA1C1C 是菱形,AC1 与 A1C 交于点 O,E 是棱 AB 上一点,且 E 是棱 AB 中点 (1)求证:OE∥平面 BCC1B1; (2)若 AC1⊥A1B,求证:平面 ABC1⊥平面 A1BC.
【数学答案】江苏省如东中学2018-2019学年度高二上学期期末学情检测数学试题

设圆柱的高为 h(cm) 。
因为工艺品的体积为 34 (cm3 ) ,所以 1 4 (3x)3 (2x)2 h 34 , 23
所以
h
17 2x2
9 2
x
,
………………4 分
所以工艺品的表面积为 S 1 4 (3x)2 2 (2x)h (3x)2 2 (2x)2 2
35 x2
因为椭圆的离心率为 1 ,所以 c 1 ,即 a 3c ,
3
a3
所以 ABF 的面积为 4 2 ,所以 1 (a c)b 4 2 ,即 bc 2 2 , 2
又 b a2 c2 2 2c ,所以 c2 1 ,即 c 1,所以 a 3,b 2 2 ,………………4 分
所以椭圆的方程为 x2 y2 1 ; 98
所以 AH 平面 PBD ,又因为 PD 面 PAD
所以 AH PD ,
又因为 AB 平面 PAD,PD 面 PAD
所以 AB PD,
因为 AB AH =A
所以 PD 平面 PBA,PA 面 PBA
所以 PA PD. ………………16 分
19. 解:(1)设 F (c, 0) ,其中 c a2 b2 ,
AA
C1
1
O
B1
因为 OE⊄平面 BCC1B1,BC1⊂平面 BCC1B1,
A
C
所以 OE∥平面 BCC1B1,………………7 分
E
B
(2)因为侧面 AA1C1C 是菱形, 所以 AC1⊥A1C, 因为 AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面 A1BC,A1B⊂平面 A1BC, 所以 AC1⊥平面 A1BC,
欢迎加入 QQ 群领更多资料,高一 779302305 高二:593247586 高三:341956196
如东县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

如东县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1}2. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 3. 如图,棱长为的正方体1111D ABC A B C D -中,,EF 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-4. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1) D .(1,e )5. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( ) A . B . C . D .7. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对 8. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( )A .y=3x ﹣4B .y=﹣3x+2C .y=﹣4x+3D .y=4x ﹣59. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 10.已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣211.某几何体的三视图如图所示,则它的表面积为( )A .B .C .D .12.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或8二、填空题13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 14.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.15.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.17.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .18.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.三、解答题19.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.20.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.21.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.22.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.23.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.24. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.如东县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .2. 【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.3. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得4x =,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 4. 【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k . 由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1, 所以f (x )=lnx+e ,f ′(x )=,x >0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.5.【答案】A【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,故选:A.【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题6.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B 7. 【答案】A【解析】解:∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内, ∴直线AB 与平面α的位置关系: 直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.8. 【答案】B【解析】解:∵点(1,﹣1)在曲线上,y ′=3x 2﹣6x , ∴y ′|x=1=﹣3,即切线斜率为﹣3. ∴利用点斜式,切线方程为y+1=﹣3(x ﹣1),即y=﹣3x+2.故选B .【点评】考查导数的几何意义,该题比较容易.9. 【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e ee e-----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,22t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.10.【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 11.【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.12.【答案】D【解析】解:由题意可得3∈A ,|a ﹣5|=3, ∴a=2,或a=8, 故选 D .二、填空题13.【答案】:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 14.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线 【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C 的渐近线方程是:故答案为:,15.【答案】222-【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,2442222222222t y t t t t==≤=-+++++,故222b ac +的最大值为222-. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 16.【答案】15(,)43-17.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.18.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).三、解答题19.【答案】【解析】(I )证明:由S n =2a n ﹣n 2+3n+2(n ∈N *),∴当n ≥2时,,a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1﹣2n+4,变形为a n +2n=2[a n ﹣1+2(n ﹣1)],当n=1时,a 1=S 1=2a 1﹣1+3+2,解得a 1=﹣4,∴a 1+2=﹣2,∴数列{a n +2n}是等比数列,首项为﹣2,公比为2;(II )解:由(I )可得a n =﹣2×2n ﹣1﹣2n=﹣2n﹣2n .∴b n =a n sinπ=﹣(2n +2n ),∵ ==(﹣1)n ,∴b n =(﹣1)n+1(2n+2n ).设数列{b n }的前n 项和为T n .当n=2k(k∈N*)时,T2k=(2﹣22+23﹣24+…+22k﹣1﹣22k)+2(1﹣2+3﹣4+…+2k﹣1﹣2k)=﹣2k=﹣n.当n=2k﹣1时,T2k﹣1=﹣2k﹣(﹣22k﹣4k)=+n+1+2n+1=+n+1.(III)证明:C n=﹣=,当n≥2时,c n.∴数列{C n}的前n项和为P n<==,当n=1时,c1=成立.综上可得:∀n∈N*,.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.20.【答案】【解析】21.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.22.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.23.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.24.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分。
如东县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

如东县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .2. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( )A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}3. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .4. 函数y=+的定义域是( ) A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}5. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .6. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)7. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .8. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.9. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( ) A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.6510.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限11.(﹣6≤a ≤3)的最大值为( ) A .9B.C .3D.12.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( ) A.向左平移个单位得到B.向右平移个单位得到 C.向左平移个单位得到 D.向左右平移个单位得到13.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( )A .1B .2C .3D .4 14.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.15.若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( )A .10B .11 C.12 D .13 二、填空题16.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.17.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .18.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.19.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.三、解答题20.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .21.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.22.已知集合A={x|1<x <3},集合B={x|2m <x <1﹣m}. (1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B=∅,求实数m 的取值范围.23.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.24.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.25.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.如东县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.2.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.3.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.4.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.5.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.6.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.7.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.8. 【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.9. 【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^=0.95x +2.6,当y ^=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样本点(3,4.8)的残差e ^=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D. 10.【答案】D【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0, ∴θ是第四象限角. 故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题.11.【答案】B【解析】解:令f (a )=(3﹣a )(a+6)=﹣+,而且﹣6≤a ≤3,由此可得函数f(a )的最大值为,故(﹣6≤a ≤3)的最大值为=,故选B .【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.12.【答案】C【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=sin (2x ﹣)=sin[2(x ﹣)+)],∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=sin (2x+),故选:C .【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.13.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.14.【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .15.【答案】B 【解析】考点:函数值的求解.二、填空题16.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.17.【答案】.【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,∵mn ﹣m ﹣n=3,∴(m ﹣1)(n ﹣1)=4,(m ﹣1>0,n ﹣1>0),∴(m ﹣1)+(n ﹣1)≥2,∴m+n ≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.18.【答案】1231n -- 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 19.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:4三、解答题20.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.21.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.22.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.23.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f (x )在(1,+∞)上是增函数,…(7分) 任取x 1,x 2∈(1,+∞),不妨设x 1<x 2,则=…(10分)∵x 1,x 2∈(1,+∞)且x 1<x 2∴x 2﹣x 1>0,2x 1x 2﹣1>0,x 1x 2>0 ∴f (x 2)﹣f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )在(1,+∞)上是增函数 …(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.24.【答案】(1)3B π=;(2)[1,2).【解析】25.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).【解析】试题分析:(Ⅰ)利用导函数研究函数的切线,得到关于实数a ,b 的方程组,求解方程组可得;(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(Ⅰ)∵,∴,由题设得,∴;(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在是增函数,∵,,且函数图像在上不间断,∴,使得)∴函数存在极小值;(Ⅲ),使得不等式成立,即,使得不等式成立……(*),令,,则,∴结合(Ⅱ)得,其中,满足,即,∴,,∴,∴,,∴在内单调递增,∴,结合(*)有,即实数的取值范围为.。
2018-2019学年高二上学期期末考试数学试题 (答案+解析)
2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
2018年江苏省南通市如东县掘港中学高二数学文上学期期末试卷含解析
2018年江苏省南通市如东县掘港中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设△ABC的三边长分别的a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为,内切球的半径为R,四面体P-ABC的体积为V,则R等于A B CD参考答案:C略2. 下列说法中,正确的是()A.命题“若,则”的逆命题是真命题B.命题“存在”的否定是:“任意”C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题D.“”是“函数是偶函数”的充分不必要条件参考答案:B3. 在范围内,与的角终边相同的角是( )A. B. C. D.参考答案:A4. 设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2 B.18 C.2或18D.16参考答案:C略5. 设命题p:x2+2x﹣3<0 q:﹣5≤x<1,则命题p成立是命题q成立的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要参考答案:A【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;数学模型法;简易逻辑.【分析】命题p:x2+2x﹣3<0,解得﹣3<x<1.即可判断出命题p与q关系.【解答】解:命题p:x2+2x﹣3<0,解得﹣3<x<1.又q:﹣5≤x<1,则命题p成立是命题q成立的充分不必要条件.故选:A.【点评】本题考查了一元二次不等式的解法、充要条件的判定,考查了推理能力与计算能力,属于中档题.6. 黑白两种颜色的正六边形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖()块.A.27B.22C.20D.23参考答案:B7. 下图是计算函数y=的值的程序框图,在①、②、③处应分别填入的是()A.y=ln(-x),y=0,y=2xB.y=ln(-x),y=2x,y=0C.y=0,y=2x,y=ln(-x)D.y=0,y=ln(-x),y=2x参考答案:B无8. 函数y=2x2–e|x|在[–2,2]的图像大致为()A. B. C. D.参考答案:D试题分析:函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D9. 在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4参考答案:A【考点】余弦定理的应用.【分析】直接利用余弦定理求解即可.【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC?BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.【点评】本题考查三角形的解法,余弦定理的应用,考查计算能力.10. 设为等比数列{}的前n项和,8 ,则=( )A.11 B .5 C. -8 D. -11参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 设等差数列{a n}的前n项和为S n,则S4,S8﹣S4,S12﹣S8,S16﹣S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4,,,成等比数列.参考答案:,.【考点】类比推理;等比数列的性质.【分析】由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性.【解答】解:设等比数列{b n}的公比为q,首项为b1,则T4=b14q6,T8=b18q1+2++7=b18q28,T12=b112q1+2++11=b112q66,∴=b14q22, =b14q38,即()2=?T4,故T4,,成等比数列.故答案为: ,.12. 已知增函数,命题“,”,是:__________.参考答案:,全称命题的否定需将全称量词改为存在量词,同时否定结论,故命题“,”,则是:,.13. 已知{a n}为等差数列,a2+a8=,则S9等于.参考答案:6【考点】等差数列的前n项和;等差数列.【分析】由等差数列的求和公式可得:S9==,代入可得.【解答】解:由等差数列的求和公式可得:S9====6故答案为:614. 两条直线相交,最多有1个交点; 三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;则五条直线相交,最多有___________个交点;推广到n()条直线相交, 最多有____________个交点.参考答案:10,略15. 设为单位向量,非零向量,若的夹角为,则的最大值等于________.参考答案:2略16. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________参考答案:17. 对于下列语句:①?x∈Z,x2=3;②?x∈R,x2=2;③?x∈R,x2+2x+3>0;④?x∈R,x2+x﹣5>0,其中正确的命题序号是.参考答案:②③【考点】命题的真假判断与应用.【专题】常规题型.【分析】对各个选项依次加以判断:利用开平方运算的性质,得到命题①错误而命题②正确,通过配方,利用平方非负的性质,得到③正确,通过举反例得到④错误.【解答】解:对于①,若x2=3,x的取值只有±,说明“?x∈Z,x2=3”不成立,故①错;对于②,存在x=∈R,使x2=2成立,说明“?x∈R,x2=2”成立,故②正确;对于③,因为x2+2x+3=(x+1)2+2≥2>0,所以“?x∈R,x2+2x+3>0”成立,故③正确;对于④,当x=0时,式子x2+x﹣5=﹣5为负数,故“?x∈R,x2+x﹣5>0”不成立,故④错综上所述,正确的是②③两个命题故答案为:②③【点评】本题以开平方运算和二次函数恒成立为载体,考查了含有量词的命题真假的判断,属于基础题.三、解答题:本大题共5小题,共72分。
如东县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
如东县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=842. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3 )D .(3,4)3. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,][6,)5-∞+∞ (,3][6,)-∞+∞ [3,6]4. 阅读下面的程序框图,则输出的S=()A .14B .20C .30D .555. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)6. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+7. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}8. 函数存在与直线平行的切线,则实数的取值范围是( )21()ln 2f x x x ax =++03=-y x a A.B. C. D. ),0(+∞)2,(-∞),2(+∞]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.9. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定10.已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为()A .B .﹣C .D .﹣11.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .12.已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( )A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β二、填空题13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .14.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 . 15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;(Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.20.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则21.设数列{a n }的前n 项和为S n ,a 1=1,S n =na n ﹣n (n ﹣1).(1)求证:数列{a n }为等差数列,并分别求出a n 的表达式;(2)设数列的前n 项和为P n ,求证:P n <;(3)设C n =,T n =C 1+C 2+…+C n ,试比较T n 与的大小.22.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB23.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)24.已知等差数列满足:=2,且,成等比数列。
如东县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析
如东县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=2. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .43. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形4. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .65. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=6. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .7. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .08. 已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为( )A .B .C .D .9. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是610.已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(12.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数a 的取值范围是( )A .B .C .D .二、填空题13.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.14.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)16.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .18.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .三、解答题19.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=﹣对称,且f ′(1)=0 (Ⅰ)求实数a ,b 的值 (Ⅱ)求函数f (x )的极值.20.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.21.已知:函数f (x )=log 2,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.22.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.23.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]24.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.如东县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 2. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .3. 【答案】A 【解析】解:∵(acosB+bcosA )=2csinC ,∴(sinAcosB+sinBcosA )=2sin 2C ,∴sinC=2sin 2C ,且sinC >0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab ≤16,(当且仅当a=b=4成立)∵△ABC 的面积的最大值S△ABC =absinC ≤=4,∴a=b=4,则此时△ABC 的形状为等腰三角形. 故选:A .4. 【答案】C .【解析】解:∵2a =3b=m ,∴a=log 2m ,b=log 3m , ∵a ,ab ,b 成等差数列, ∴2ab=a+b , ∵ab ≠0,∴+=2,∴=log m 2, =log m 3, ∴log m 2+log m 3=log m 6=2, 解得m=.故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.5. 【答案】 C【解析】解:A 中,∵y=2x ﹣x 2﹣1,当x 趋向于﹣∞时,函数y=2x 的值趋向于0,y=x 2+1的值趋向+∞, ∴函数y=2x ﹣x 2﹣1的值小于0,∴A 中的函数不满足条件;B 中,∵y=sinx 是周期函数,∴函数y=的图象是以x 轴为中心的波浪线,∴B 中的函数不满足条件;C 中,∵函数y=x 2﹣2x=(x ﹣1)2﹣1,当x <0或x >2时,y >0,当0<x <2时,y <0;且y=e x>0恒成立,∴y=(x 2﹣2x )e x的图象在x 趋向于﹣∞时,y >0,0<x <2时,y <0,在x 趋向于+∞时,y 趋向于+∞;∴C 中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.6. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如东县高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .44952. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .303. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为()A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]4. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A .B .C .D .[2,)+∞[]2,4(,2]-∞[]0,25. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为()A .4320B .﹣4320C .20D .﹣206. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是()A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值7. 已知集合,则A0或B0或3C1或D1或38. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A .3B .4C .5D .69. 已知函数,且,则( )x x x f 2sin )(-=)2(),31(log ),23(ln 3.02f c f b f a ===A .B .C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.10.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )A .1B .2C .3D .411.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .212.若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .4二、填空题13.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .14.下列说法中,正确的是 .(填序号)①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称;③y=()﹣x是增函数;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0.15.(lg2)2+lg2•lg5+的值为 .16.已知函数,则__________;的最小值为__________.17.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点 .18.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:∃①m,使曲线E过坐标原点;∀②对m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。
其中真命题的序号是 .(填上所有真命题的序号)三、解答题19.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M 在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.20.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.21.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;ξξ(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.22.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.23.(本小题满分12分)的内角所对的边分别为,,ABC ∆,,A B C ,,a b c (sin ,5sin 5sin )m B A C =+垂直.(5sin 6sin ,sin sin )n B C C A =--(1)求的值;sin A(2)若,求的面积的最大值.a =ABC ∆S 24.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.如东县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.2.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 3.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.4.【答案】B【解析】m m 试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知m[]2,4的右端点为,故的取值范围是.考点:二次函数图象与性质.5.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..6.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.7.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
8.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.9.【答案】D10.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.11.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.12.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.二、填空题13.【答案】 .【解析】解:∵F 是抛物线y 2=4x 的焦点,∴F (1,0),准线方程x=﹣1,设M (x 1,y 1),N (x 2,y 2),∴|MF|+|NF|=x 1+1+x 2+1=6,解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离. 14.【答案】 ②④ 【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档. 15.【答案】 1 .【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.16.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:17.【答案】 (3,1) .【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)18.【答案】①④⑤解析:∵平面内两定点M(0,﹣2)和N(0,2),动点P(x,y)满足||•||=m(m≥4),∴•=m①(0,0)代入,可得m=4,∴①正确;②令y=0,可得x2+4=m,∴对于任意m,曲线E与x轴有三个交点,不正确;③曲线E关于x轴对称,但不关于y轴对称,故不正确;④若P、M、N三点不共线,||+||≥2=2,所以△PMN周长的最小值为2+4,正确;⑤曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为2S△MNG=|GM||GN|sin∠MGN≤m,∴四边形GMHN的面积最大为不大于m,正确.故答案为:①④⑤.三、解答题19.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.20.【答案】【解析】设f (x )=x 2﹣ax+2.当x ∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t 取得最小值,此时x=9∴税率t 的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!21.【答案】【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,∴所求概率为(6分)2244225516125C C P C C =-⋅=(Ⅱ) ,,,(9分)0,1,2,ξ=23253(0)10C P C ξ===1123253(1)5C C P C ξ⋅===22251(2)10C P C ξ===故的分布列为:(10分)∴ (12分)3314012105105E ξ=⨯+⨯+⨯=22.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.23.【答案】(1);(2)4.45【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已cos A sin A 知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式 A 22265bc b c a +-=10bc ≤可得面积的最大值.1sin 2S bc A =试题解析:(1)∵,垂直,(sin ,5sin 5sin )m B A C =+ (5sin 6sin ,sin sin )n B C C A =-- ∴,2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]24.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.。