有理数的意义

合集下载

有理数的意义

有理数的意义

第一节有理数的意义月 日 姓 名【知识要点】1.有理数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0)1( (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 2.数轴:规定了原点、正方向和单位长度的直线叫数轴,数轴上右边的数大于左边的数. 3.相反数(1)代数意义:像3与-3这样只有符号不同的两个数,把其中一个叫做另一个的相反数,0的相反数是0.(2)几何意义:在数轴上原点的两旁,并且到原点的距离相等.(3)求一个数的相反数就是在这个数前添一个负号,如a 的相反数是-a . (4)a 与b 互为相反数等价于0=+b a4.绝对值:数轴上,一个数a 所对应的点与原点的距离为该数的绝对值,记作a .任何一个数的绝对值都是非负数,即0≥a .【典型例题】例1.把下列各数填入它所属的集合.-1、 -2、 0、 +3.4、 32-、 311、 5%、 。

.30-、 -(-4)自然数集:{ }负整数集:{ } 分数集: { } 正数集: { } 整数集: { } 有理数集:{ }例2.用数轴把下列各数表示出来,并用“〈”连接下列各数 -,43 1, 1.7, ,35- -0.04, ,54- 0.01, ,43 0例3.有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品,当他爬到梯子正中间一级时,二楼的窗口喷出火来,他就往下退了三级,等到火过去了,他又爬上了七级;这时顶层有两块砖掉下来,他又退了二级;幸好没有打着他,他又爬上八级,这时他距离最高一层还有一级,问这个梯子有几级?例4.如图在数轴上有六个点,且AB=BC=CD=DE=EF ,求与点C 所表示的最接近的整数.例5.①已知()0342322=++-b b a ,则=a ,=b .②若1999-a 与2000+b 的互为相反数,则()3b a += .例6. 已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab思考:三个互不相等的有理数,既可以表示为1,,a b a +的形式,也可以表示为0,,bb a的形式,试求20082008ab +的值。

有理数的意义分析

有理数的意义分析

有理数单元教学目标1了解有理数的意义。

会用正数与负数表示相反意义的量,会按要求把给出的有理数归类。

2了解数轴、相反数、绝对值的概念。

会画数轴,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。

3掌握有理数大小比较的法则。

会用不等号连接两上或两个以上不同的有理数。

单元教学重点1有理数(特别是负数)和绝对值的意义。

2数形结合的思想方法。

单元教学策略有理数是根据学生熟悉的实际需要,对小学学过的数的进一步护展。

对于本单元的学习,学生已有一定的知识基础和生活体验。

教学时教师应注意避免多讲,要从学生已有的知识和熟知的实例出发,引导学生认真阅读、思考、讨论,形成新的认知结构。

同时还要注意为后面的学习做好准备。

教学手段和方法1引导学生把学过的知识和熟悉的事例与新的学习内容联系起来2指导学生阅读、讨论、练习、总结。

3使用投影仪。

第1、2课时正数与负数一、学习目标1了解正数与负数是由于实际需要而产生的,会初步应用正负数表示实际生活中的有关量。

2了解有理数的概念,会判断一个数是正数还是负数,是整数还是分数。

二、教学过程师:同学们先回顾一下我们在小学学过哪些数(小学六年级就接触了负数)填空1在数物体时,物体的个数用 ___________________________ 示;一个物体也没有,就用_________________________ 示。

2测量和计算有时得不到整数的结果,就要用 ______________________________ 示。

3北京冬季里的一天,白天最高气温比0C高10C,记作10C ;夜晚最低气温比0C低5C,记作_______________________________________ 。

在中国地形图上,珠穆朗玛峰处标着8848,表示不打珠穆朗玛峰比海平面高8848米;叶鲁番盆地处标着-155,表示叶鲁番盆地比海平面低21 2 8848、-155,21师:在黑板上写出11、2、3、0、-5、21、1.5、-1、1.5、2请同学们认真观察教师写出的数,以四个小组为单位,讨论下面的问题1哪些数是我们在小学已经学过的?自然数包括0吗?2哪些数我们还没有学过?试说明它们都是在实际需要中产生的。

有理数的意义

有理数的意义

课后作业1.如果规定支出120元记作-120元,那么收入200元记作。

2.一种零件的长在图纸上标出为:20±0.01(单位:mm),表示这种零件的长应是20mm,加工要求最大不超过,最小不大于。

3.非负数为和,非正数为和4.在有理数中,是整数而不是正数的是,是负数而不是分数的是.5.下列说法中错误的是()A 正整数、负整数、零统称为整数B 正分数、负分数统称为分数C 没有最大的有理数D π是有理数6.文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店在书店东边100米处,小明从书店沿街向东行40米,又向东行-60米,此时小明的位置在()A 玩具店B 玩具店东-60米C 文具店D 文具店西40米7.在小于正数的整数中,最大的整数是()A -1B 0C 1D 不存在8.零是()A 最小的整数B 最小的正数 C最小的有理数 D 偶数9.下列说法中,正确的是()A 存在最小的有理数B 存在最大的负有理数C存在最小的正有理数 D 存在最大的负整数10.在下列的说法中,正确的是()A 带“+”号的数是正数 B.带“-”号的数是负数C自然数都大于零 D.负数一定小于正数二、解答题1.7筐苹果,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,-1,-2,+1,+3,-4,-3.这七筐苹果实际各重多少千克?2.判断正确或错误,分别用“√”或“×”填在各题后面的括号内:(1)零是自然数:()(2)零是正数;()(3)零是非负数;()(4)零是整数;()(5)零是偶数.()想一想:正整数中有没有最小的数? ____ 正整数中有没有最大的数?______ _负整数中有没有最小的数?负整数中有没有最大的数?正数中有没有最大的数?正数中有没有最小的数?负数中有没有最大的数?负数中有没有最小的数?_________________。

什么叫有理数,有理数的定义

什么叫有理数,有理数的定义

有理数剖析1.什么是有理数有理数是整数和分数的统称,除了无限不循环小数以外的数都统称有理数。

它可分为整数和分数,也可分为正有理数,零,负有理数。

有理数是整数和分数的集合,但是一切有理数又都可以化成分数的形式,因为整数也可看做是分母为一的分数。

有理数的小数部分是有限或者无限循环的数。

不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

2.有理数例子以下都是有理数:(1)自然数:数0,1,2,3,……叫做自然数.(2)正整数:+1,+2,+3,……叫做正整数.(3)整数:正整数、0、负整数统称为整数.(4)分数:正分数、负分数统称为分数.(5)奇数:不能被2整除的整数叫做奇数.如-3,-1,1,5等.所有的奇数都可用2n-1或2n+1表示,n为整数.(6)偶数:能被2整除的整数叫做偶数.如-2,2,4,8等.所有的偶数都可用2n表示,n为整数.(7)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等.2是最小的质数.(8)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等.4是最小的合数.一个合数至少有3个因数.如3,-98.11,5.72727272……,7/22都是有理数.全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示.有理数集是实数集的子集,即Q?R.相关的内容见数系的扩张.有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律 a+(b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac.0a=0 一个数乘0还等于0.此外,有理数是一个序域,即在其上存在一个次序关系≤.0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a.由此不难推知,不存在最大的有理数.值得一提的是有理数的名称.“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”.事实上,这似乎是一个翻译上的失误.有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”.中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”.但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同).所以这个词的意义也很显豁,就是整数的“比”.与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数).。

第1讲有理数的意义

第1讲有理数的意义

第一讲 有理数的意义一、 情境引入:有理数最初叫数,古希腊毕达哥拉斯学派主张万物皆数的理论,却也知道勾股定理(直角三角形的两直角边的平方和等于斜边的平方这一特性)。

可是有人发现当三角形两条直角边都是1时候,斜边不能表示,结果引发了一次恐慌。

学派为了消除恐慌,把发现这个秘密的人投海喂鱼。

可是纸包不住火,无理数最终仍是不可抗拒地随着数学的进步应运而生了。

为了和无理数区别,所以把整数和分数(这里的分数包括小数)统称为有理数,而无穷不循二、课程标准一、借助生活中的实例理解负数,有理数的意义,体会负数引入的必要性和有理数的普遍性;二、会判断一个数是正数仍是负数,能应用正负数表示生活中具有相反意义的量,体会数学知识与现实世界的联系;3、在负数概念的形成进程中,养成观察,归纳与归纳的能力。

三、知识精讲知识点1:数的形成进程(1)由记数,排序,产生数(2)由表示“没有”、“空位”产生数;(3)由分派,测量产生数(4)问题:生活中如何表示两个具有相反意义的量呢?知识点2:具有相反意义的量(重点)12 3......,,01123,观察下面给出的每一对数量,指出各对数量有什么一路特点?(1)零上和零下 (2)收入元和支出元(3)增加和减少 (4)水位上升和降低归纳总结:像这样别离由具有相反意义的词表示的两个数量,就是具有相反意义的量。

【例1】将下列具有相反意义的量有线连接起来向南走米 失球个进球个 亏损元高于海平面 运出吨粮食盈利元 向北走运进吨粮食 低于海平面方式点拨:先找出叙述的是不是是同一事物,再看其是不是具有相反意义知识点3:正数、、负数的意义(难点)归纳总结:对“”的理解:零既不是正数,也不是负数,它是正数和负数的分界数,但它是整数;零的意义不仅是表示“没有”,而且表示一个肯定的量,例如不是没有温度,而是表示在标准大气压下纯水结成冰的一个肯定的温度。

【例2】填空(1)若是收入元记作元,那么支出元记作 ,元表示 ;(2)腕表的指针顺时针旋转记作,那么逆时针旋转记作 , 表示 ;3C ︒3C ︒8005005kg 2kg 0.5m 1.3m 625500960m 200100030m 500300m 000C ︒5050+5080-90︒90-︒60︒0︒(3)海边的一段堤岸高出海平面,周围的一建筑物高出海平面,海里一潜艇在海平下,现以海边堤岸高度为标准,将其记为,那么周围建筑物的高度应表示为 ,潜艇的高度应表示为 。

有理数的意义包括知识点与配合练习

有理数的意义包括知识点与配合练习

有理数的意义、数轴、绝对值第一部分:有理数1、正负数的概念:比0大的数是正数,比0小的数是负数。

“—”用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。

Ⅱ.相反意义的量可以人为的规定其正负。

在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。

2、对“0”的理解:0不在正、负数的范围内,它是正数和负数的分水岭。

它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。

3、有理数的概念:整数和分数统称为有理数;正数、负数、零都是有理数。

4、有理数的分类:例1:(1)如果把收入50元记做50元,那么下列各数分别表示什么意义?20元 2.5元 -80元 0元(2)如果6摄氏度用6C︒表示,那么零下4摄氏度如何表示?例2:把13121271 2.80734%0.67247--、、、、、、、、、、、、、、-、、分别填在表示正数和负数的圈内。

正数负数巩固练习:1、如果规定向南走为正,那么﹣100米表示向________走100米。

2、某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):由上表知,星期一收盘时,每股价格是元,星期四收盘时,每股价格是元。

3、下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确4、把下列各数填入相应的大括号内:-7,3.01,300%,-0.142,0.1,0,5/3,-355/113,12 (1)正整数集:{ };(2)分数集:{ } (3)负数集:{ };(4)非负整数集:{ }5、下列判断正确的是( )A.所有的整数都是正数B.正整数,负整数统称为整数C.分数一定是有理数D.有理数包括小数和整数6、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.6℃ D.10℃第二部分:数轴的再认识与相反数1、数轴的再认识(1)数轴的三要素:原点、正方向、长度单位。

有理数的意义及运算

有理数的意义及运算有理数是数学中一个重要的概念,是在数轴上广泛应用的基本数类之一。

它们不只是简单的数字,还在我们生活的方方面面扮演着重要角色。

从日常的购物算账到工程设计,有理数都显得尤为重要。

有理数的定义是非常明确的。

一个数如果可以表示为两个整数之比(即在形式上为a/b,a和b是整数且b不为零),那么这个数就属于有理数的范畴。

比如,3(可以写成3/1)、-1/2、0都是有理数。

而平方根2、π等则不属于有理数,因为它们无法用整数字表示。

在我们的学习中,对有理数的理解不仅限于其定义。

还需掌握它们的性质和运算。

有理数的集合不仅包括正数和负数,还涵盖了零。

在数轴上,有理数通过分数和小数的方式表现出来,令其在实际问题中更易于使用。

有理数自身具备几个重要的性质。

有理数是稠密的,这意味着在任意两个有理数之间,总是可以找到另一个有理数。

例如,在1和2之间,有1.5、1.25等;在-1和0之间,有-0.5、-0.75等。

这一性质使得有理数能够精准地表示一些功能的变化,尤其在科学和工程中,需对数据进行细致分析时,这一优势极为显著。

在我们实际应用有理数时,运算是不可或缺的一环。

加法、减法、乘法和除法四种基本的数学运算是处理有理数的主要方式。

对于两个有理数进行加法运算,首先需要找到共同的分母,然后再合并分子。

而减法运算与加法类似,通常也是需要统一分母后再进行操作。

乘法和除法相对简单,直接将分子乘以分子,分母乘以分母。

值得注意的是,当进行除法运算时,除数不能为零,因为零在数学中是无法作为分母的。

运算过程中的简化同样重要。

比如,当我们有一项表达式,例如(3/4)+(1/2),要想简化成一个更直接的形式,需要把1/2转换成相同的分母。

1/2可以写成2/4,如此一来,两者相加后的结果就是5/4。

类似地,在减法和乘法时,简化步骤能够提高计算速度并减少错误。

当面对负数时,计算的过程同样适用。

有理数的负数与正数在运算中同样可以灵活应用。

数学中各种数的意义

数学中各种数的意义数学是一门研究数量、结构、变化和空间的学科,涉及到各种数的概念和意义。

在数学中,不同种类的数具有不同的数学意义,本文将对整数、有理数、无理数、实数和复数这五种数的意义进行论述。

整数是最基本的数,它包括正整数、负整数和零。

整数的数学意义在于表示计数和排序。

正整数用于计算和表示物体的数量,例如1个苹果、2个橘子等;负整数用于表示欠债或亏损的数量,例如-3美元、-5公斤等;零则表示没有数量或不存在的数量。

整数在数学中广泛运用于代数运算、数论、组合数学等多个领域。

有理数是可以表示为两个整数之比的数,包括整数和分数。

有理数的数学意义在于表示精确的比例关系,它用于测量、计算和表示分数数量。

有理数在分数运算、方程求解、概率统计等领域中发挥重要作用。

同时,有理数的运算规则和性质也是数学中的重要基础。

无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环小数。

无理数的数学意义在于表示那些无法精确表示为有理数的量。

最著名的无理数是圆周率π和自然对数的底数e,它们在几何、分析和物理学中具有广泛的应用。

无理数的研究涉及到数学分析中的极限理论和数值计算方法。

实数是整数、有理数和无理数的总称,它包括所有可以在数轴上表示的数。

实数的数学意义在于表示连续和无缝的数量。

实数广泛运用于微积分、函数分析、数学物理等领域,它是现代数学的基础之一。

实数的特性包括有序性、完备性和稠密性,这些性质使得实数具有丰富的数学结构和性质。

复数是由实数和虚数部分组成的数,虚数部分以字母i表示。

复数的数学意义在于表示平面上的点或向量,它在代数、几何和电磁学等领域中广泛使用。

复数的运算规则和性质由复数代数定义,它们包括加法、减法、乘法和除法等运算。

复数具有特殊的性质,例如共轭、模长和辐角等,这些性质使得复数具有广泛的应用和研究价值。

综上所述,数学中的整数、有理数、无理数、实数和复数分别表示了数量、比例、近似、连续以及平面上的点或向量等概念。

5.1有理数的意义 孙燕萍ppt课件

5
5 1 , 0.51 , 3
0 , 7.6 , 2 , 1.5%
正数
负数
非负数 181.练习册p源自-2/习题5.119数学竞赛成绩80以上为优 秀,以此分数为准,老师将某小组五名 同学的成绩简记为+10,-3,0,+5 ,-4,这五名同学的实际成绩应是
90,77,80,85,76。
20
8 -3
71 2
1 6
0
-3.1
••
0.12
15
书本P4第1、2、3题;
16
(1)在 数 -2、25、0、3 、 0.35、 1中 ,
5
3
正 数 是_25_,_53_, 负 数 是____2_,_0_._3_5,___13___。
(2)如 果 规 定 向 东 走 为 正 ,那 么 走 -50米
表 示 什 么 意 义 ? 规 定 向南 走 为 正 , 那 么 走
-50米 又 表 示 什 么 意 义 ?
17
下列各数将它们分别填在相应的圈内
15 , 5 1 , 0.23 , 0.51 , 0 , 0.65 , 7.6, 2 , 3 , 1.5%
3
5
5 1 , 0.51 , 3
7.6 , 2 , 1.5%
15 , 0.23 , 0.65 , 3
用什么表示方法可以明显 将之区分开来呢? 若规定存款为+,取款为-,则分别可 记作:+1000元和-1000元;
7
一条东西向的马路边有一棵树,若把树的位 置看作0,规定向东为+,那么向西为-,


西

小明和小丽分别从树出发,
小明向东走2千米, 小丽向西走1.5千米,
则小丽走的记作:-__1_.5_千米,

【专业教案】0501有理数的意义

第5章第1讲:有理数的意义在以前的学习中,我们已经学习了整数、分数、正数、负数等一些知识。

这节课我们再学习一个新的知识:有理数。

那么什么是有理数呢?有理数:整数和分数,统称有理数。

这是从分类上对有理数的定义,也就是说整数和分数这两类数共同组成了有理数,即:有理数分数整数所以,凡是属于整数和分数的数,都是有理数。

我们知道整数有正负之分,可以分为正整数、负整数和零。

同样分数也有正负之分,可分为正分数和负分数。

所以我们还可以对有理数按照正负进一步细分,主要有以下两种分法:有理数负分数正分数分数负整数正整数整数0这样,我们对有理数又进行了具体分类,在判断时就更加方便。

例题:将下列各数分别写在相应的横线上。

1,—3,0,21,43 ,213,52 ,6正整数:_________________________________;负整数:_________________________________;正分数:_________________________________;负分数:_________________________________;整数:___________________________________;分数:___________________________________;►习题:将下列各数分别写在相应的横线上。

1.352132.0,0,6961217,38 ,,,,,整数:_________________________________;分数:_________________________________;正数:_________________________________;负数:_________________________________;有理数:_______________________________;正整数负分数负整数正分数负有理数正有理数数有理数在有理数中,我们提到了正整数、正分数,它们都是正数;我们还提到了负整数、负分数,它们都是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的意义
要点一、正数与负数
像+3、+1.5、、+584等大于0的数,叫做正数;像-3、-1.5、、-584等在正数前面加“-”号的数,叫做负数.
要点诠释:
(1)一个数前面的“+”“-”是这个数的性质符号, “+”常省略,但 “-”不能省略.
(2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.
(3)0既不是正数也不是负数,它是正数和负数的分界线.
要点二、有理数的分类
(1)按整数、分数的关系分类: (2)按正数、负数与0的关系分类:
要点诠释:
(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.
(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如.
(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数. 12+12
-
π。

相关文档
最新文档