高中数学人教A版必修一优化练习:第二章 2.1 2.1.1 第2课时 指数幂及运算 Word版含解析
高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
2019A新高中数学必修第一册:2.1.1 指数与指数幂的运算

1 3
);
x-
1 2
y
2 3
)(-4
x
1 4
y
2 3
);
(7)
(2
x
1 2
+
3
y-
1 6
)(2
x
1 2
-
3
y
- 16
);
(8)
4
x
1 4
(-3
x
1 4
y-
1 3
)
(-6
x
- 12
y-
2 3
).
解:
(1)
13 7
a 3a4a12
=
a
13+
3 4
+172
=
a
5 3
.
(2)
23
a3a4
5
a6
=
a
32+
43-
3. 分数指数幂
我们将下面根式变形:
10
a>0 时, 5 a10 = 5 ( a2 )5 = a2 = a 5 .
12
a>0 时, 4 a12 = 4 ( a3 )4 = a3 = a 4 .
m
规定: a n = n am (a 0, m, nN *. 且n1).
a-
m n
=
1
m
(a 0,
m,
解:
(1)
原式
=
x3
y2(-
27
1 x3
y31)
=
-
1 27 y
.
(2) 原式 = 4(- 32)a2-(-1)b-1-(-1)= -6a3.
(3)
原式
2014年新课标人教A版必修1数学2.1.1根式与分数指数幂随堂优化训练课件

(1) 3 (16)3 ; (2) 6 ( 3) 6 ; (3) 3.14-π2+ 3.14+π2. 解:(1) 3 (16)3 =-16. (2) 6 ( 3) 6 =|-3|=3. (3) 3.14-π2+ 3.14+π2=|3.14-π|+|3.14+π|=2π.
2.化简:
题型 3 分数指数幂与根式的互化 【例 3】 将下列分数指数幂化为根式(其中 a>0):
4 3 1 2 3 2 5 2
(1)5 ;
4 3
(2)2 ;
(3)a ;
(4)a .
思维突破:根据分数指数幂的意义计算.
解:(1)5 = 3 54 . 2 (2)2 = 2 .
1 2
(3)a = a3. 1 (4)a = 5. a
依此类推,若 xn=a,那么 x 叫做 a 的______________. 答案:二次方根 立方根 四次方根
n 次方根
2.计算( 3)2,3 43 ,n (2) n .从特殊到一般, 思考( n a )n,n a n 的结果.
答案:( 3)2=3, 3 43 =4, n (2) n
-2,n为奇数, = 2,n为偶数.
a
-a
a≥0, (n 为大于 1 a<0
2 -7 练习 2: 3 (7)3 =________ ; 4 (2) 4 =________.
3.分数指数幂的意义 正分数 指数幂
m a 规定: a =________(a>0,m,n∈N*, 且 n>1)
m n
n
分 1 数 m n am 指 负分数 规定: a n = 1m =____________( a>0,m, an 数 指数幂 * n ∈ N ,且 n>1) 幂 0 0 的正分数指数幂等于____________ , 性质 没有意义 0的负分数指数幂____________
人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

备用
1.要使
(5x
1
)
3 4
(x
2
1) 3
有意义,则x的取
值范围是 2
2.计算:1
(a 2
1
a2
1
)(a 2
1
a2
)(a
a2
a1)
a2
3.求值: 3 2 5 12 3 2 2
2.1.1 指数与指数幂的运算
第3课时
指数式的计算与化简
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
(2)在 根 式n am中,若 根 指 数n与 幂 指 数m有 公 约 数 时, 当a 0时 可约 分.当a 0时 不可 随意 约 分. 如8 32 4 3, 10 (2)2 5 2而15 (2)5 3 2.
课堂练习:课本 P54中练习第3题
课外作业:课本 P59习题2.1中A组第2,3,4题
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
小结
1.n次方根的定义:
一般地,如果xn a,那么x叫做a的n次方根, 其中n 1且n N .
2.根式的简单性质: 1) 当n 1, n N *时,总有 (n a )n a.
(1)a a1 7; (2)a2 a2 47;
3
a2 (3) 1
3
a 2
1
(a
1 2
1
a2
)(a
1
a1
1
1
a2
1
a2
)
人教A高中数学必修一2.1.1指数与指数幂的运算

练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?
高中数学必修1_ 第二章 2.1 第2课时 指数幂及其运算

=[(0.4)3]
-
1 3
-
1
+
(-
2)-4
+
2-
3+[(0.1)2]12
=
0.4-1
-1+
1 16
+18+
0.1=18403.
(2)原式=a13×92·a13×-32÷a12×-73·a12
×133=a96-36+76-163=a0=1.
指数幂的一般运算步骤 有括号先算括号里的;无括号先做 指数运算.负指数幂化为正指数幂的倒 数.底数是负数,先确定符号,底数是 小数,先要化成分数,底数是带分数, 先要化成假分数,然后要尽可能用幂的 形式表示,便于用指数幂的运算性质.
[课前反思] (1)分数指数幂的意义是什么?
; (2)有理指数幂的运算性质有哪些?
.
观察下式,完成下列思考.
amn =n
am,a-mn =a1mn =n
1 (a>0,n,m∈N*,n>1). am
[思考 1] 怎样理解分数指数幂?
名师指津:“三角度”理解分指数幂 (1)角度一:与根式的关系. 分数指数幂是根式的另一种写法,根式与分 数指数幂可以相互转化. (2)角度二:底数的取值范围. 由分数指数幂的定义知 a≤0,amn 可能会有意 义.当 amn 有意义时可借助定义将底数化为正数, 再进行运算.
③0 的分数指数幂的意义:
0 的正分数指数幂等于 0,0 的负分数指数幂无
意义.
(2)有理指数幂的运算性质: ①ar·as=ar+s(a>0,r,s∈Q); ②(ar)s=ars(a>0,r,s∈Q); ③(a·b)r=arbr(a>0,b>0,r∈Q). (3)无理数指数幂 无理数指数幂 aα(a>0,α 是无理数)是一个 确定的实数.有理数指数幂的运算性质对于无理 数指数幂同样适用.
高中数学人教A版必修一优化练习:第二章 2.1 2.1.1 第2课时 指数幂及运算 Word版含解析
[课时作业] [A 组 基础巩固]1.化简[3(-5)2]34的结果是( )A .5 B. 5 C .- 5 D .-5解析:[3(-5)2]34=(352)34=52334⨯=512= 5.答案:B 2.设a 12-a 12-=m ,则a 2+1a 等于( )A .m 2-2 B.2-m 2 C .m 2+2 D .m 2解析:对a 12-a12-=m 平方得:a +1a -2=m 2,∴a 2+1a =a +1a =m 2+2. 答案:C3.222的值是( ) A .278B.258C .234D .232解析:222278. 答案:A4. (112)0-(1-0.5-2)÷(278)23的值为( )A .-13 B.13 C.43D .73解析:原式=1-(1-1⎝ ⎛⎭⎪⎫122)÷⎝ ⎛⎭⎪⎫32233⨯=1-(-3)÷⎝ ⎛⎭⎪⎫322=1+3×49=1+43=73. 答案:D5.若102x =25,则10-x =( ) A .-15 B.15 C.150D .1625解析:102x =(10x )2=25,∵10x >0,∴10x =5,10-x =110x =15. 答案:B6.已知102m =2,10n =3,则10-2m -10-n =________. 解析:由102m =2,得10-2m=1102m =12;由10n =3,得10-n =110n =13; ∴10-2m -10-n =12-13=16. 答案:167.已知2x =(2)y +2,且9y =3x -1,则x +y =________. 解析:2x=(2)y +2=222y +,9y =32y =3x -1, ∴⎩⎪⎨⎪⎧x =y +22,2y =x -1,解得{ x =1y =0,∴x +y =1.答案:18.已知x +y =12,xy =9,且x <y ,则11221122x y x y-+的值是________.解析:∵11221122x y x y-+=()122()x y xy x y+--又∵x +y =12,xy =9,∴(x -y )2=(x +y )2-4xy =108.又x <y ,∴x -y =-108=-6 3. 代入化简后可得结果为-33. 答案:-33 9.化简求值:(1)(279)0.5+0.1-2+⎝ ⎛⎭⎪⎫2102723--3π0+3748;(2)⎝ ⎛⎭⎪⎫-338 23-+(0.002)12--10(5-2)-1+(2-3)0.解析:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫642723--3+3748=53+100+916-3+3748=100.(2)原式=(-1)23-×(338)23-+(1500)12-105-2+1=⎝ ⎛⎭⎪⎫27823-+(500) 12-10(5+2)+1=49+105-105-20+1=-1679. 10.完成下列式子的化简: (1)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (2)23a ÷46a ·b ×3b 3.解析:(1)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c . (2)原式=2a 13÷(4a 16b 16)×(3b 32)=12a 1136-b 16-·3b 32=32a 16b 43.[B 组 能力提升]1.若S =(1+2132-)(1+2116-)(1+218-)(1+214-)(1+212-),则S 等于( )A.12(1-2132-)-1B.(1-2132-)-1C .1-2132-D .12(1-2132-)解析:令2132-=a ,则S =(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16).因为1-a ≠0,所以(1-a )S =(1-a )(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16) =(1-a 2)(1+a 2)(1+a 4)(1+a 8)(1+a 16) =…=1-a 32=1-2-1=12.所以S =12(1-a )-1=12(1-2132-)-1.故选A.答案:A2.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1D .x x -1解析:∵x =1+2b ,∴2b =x -1,∴2-b =12b =1x -1,∴y =1+2-b =1+1x -1=x x -1. 答案:D 3.已知10a=212-,10b=332,则1 032+4a b=________.解析:1032+4a b=(10a )2·(10b )34=(212-)2·(3213)34=2-1·254=214. 答案:2144.若x 1,x 2为方程2x =(12)1+1x -的两个实数根,则x 1+x 2=________. 解析:∵2x=(12)1+1x-=21-1x ,∴x =11x-,∴x 2+x -1=0. ∵x 1,x 2是方程x 2+x -1=0的两根,∴x 1+x 2=-1. 答案:-1 5.已知a =3,求11144211241111aaaa+++++-+ 的值 解析:11144211241111aaa a+++++-+ 1114422241(1)(1)1aa a a++++-+ 1122224111a aa+++-+ 1122441(1)(1)aa a +++-+ =41-a +41+a =81-a 2=-1. 6.已知x =12(51n-51n-),n ∈N +,求(x +1+x 2)n 的值.解析:∵1+x 2=1+14(51n-51n -)2=1+14(52n-2+52n -) =14(52n+2+52n-)=[12(51n+51n -)]2, ∴1+x 2=12(51n +51n -),∴x +1+x 2=12(51n -51n -)+12(51n +51n -)=51n.1∴(x+1+x2)n=(5n)n=5.。
人教A版必修一2.1.1.2指数幂及运算
类型一:根式与分数指数幂的互化 用分数指数幂的形式表示下列各式:
规律方法:此类问题应熟练应用
(a>0,m,n
N*,且n>1).当所求根式含有多重根号时,要搞清被 开方数,由里向外用分数指数幂写出,然后再用性质 进行化简. 变式训练1-1:化简
类型二:利用指数幂的运算性质化简、求值 计算下列各式:
(2)解决此类问题的一般步骤是
变式训练3-1:已知x+y=12,xy=9,且x<y,求
的值
思路点拨:负化正、大化小,根式化为分数指数幂,小数化为分数,是简化运 算的常用技巧.
规律方法:(1)指数幂的一般运算步骤是:有括号先算括号里的; 无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数, 先确定符号,底数是小数,先要化成分数,底数是带分数,先要化 成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性 质. (2)根式一般先转化成分数指数幂,然后再利用有理数指数幂的 运算性质进行运算.在将根式化为分数指数幂的过程中,一般采用由 内到外逐层变换为指数的方法,然后运用运算性质准确求解.如
. 2. 有理数指数幂的运算性质
3.无理数指数幂 无理数指数幂 是一个确定的实数.有理数指数幂的运算性质对于无理数指数幂同样适用.
可化为( D )
可化为( A )
探究要点一:分数指数幂的概念 1.分数指数幂的引进是受到根式的基本性质启发的.从根式的基本性质
由此知,分数指数幂并不表示相同因式积,而是根式的另一种写法罢了, 分数指数幂与根式可以相互转换. 2.在引入分数指数幂概念后,指数概念就实现了由整数指数向有理数指数 的扩展,在进行有理数指数幂的运算时,一般思路是化负指数为正指数,化 根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意 运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运 算过程.
高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数
∴原式=--24x1-≤2x<3 -3<x<1 .
12.解
1
1
1
原式=
a3
2
a 8b
1
2
a3
2b3
1
1
×a3
4b3 2a3 a 3
a3
13.解 ∵x- xy-2y=0,x>0,y>0, ∴( x)2- xy-2( y)2=0, ∴( x+ y)( x-2 y)=0, 由 x>0,y>0 得 x+ y>0, ∴ x-2 y=0,∴x=4y, ∴y2+x-2 xxyy=8yy+-42yy=65.
6
1
-32>0, 33
<0,C
选项错.故选
D.]
6.B [①中,当 a<0 时,
a2
3 2
a2
1 2
3
=(-a)3=-a3,
∴①不正确;
②中,若 a=-2,n=3,
则3 -23=-2≠|-2|,∴②不正确;
x-2≥0, ③中,有3x-7≠0,
即 x≥2 且 x≠73,
故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a=5,10b=2, ∴102a=5,10b=2,102a×10b=10,即 102a+b=10.
1 2
3
xy
1 2
·(xy)-1
12
= x3 ·y 3
1
x6
y
1 6
x
1 2
y
1 2
=x1 3·x1 31, =-1,x<0
x>0
.
(2)原式= 1 + 1 + 2+1-22 22
=2 2-3.
2019-2020年数学人教A版必修一优化课件:第二章 2.1 2.1.1 第2课时 指数幂及运算
(1)原式=[(53)
2 3
+(2-4)
1 2
+(73)
11
1
1
3 ] 2 =(52+22+7) 2 =36 2 =6.
(2)原式=[141
27 000
2 3
+14×50×1010600
3 4
]
1 2
=[14130
3
2 3
+14×50×120
4
9 B.100
10 C. 3
D.130
解析:(0.027)
2 3
=[(0.3)3]
2 3
=0.3
3(-
2 3
)
=0.3-2=0.132=0.109=1090.
答案:A
3.计算:2 3×3 1.5×6 12=________.
解析:2
3×3
1.5×6
1
12=2×3 2
×32
1 3
2019/7/18
最新中小学教学课件
23
thank
you!
2019/7/18
最新中小学教学课件
24
1.规定正数的正分数指数幂的意义是:
m
an=
n am
(a>0,m,n∈N+,且 n>1).
2.规定正数的负分数指数幂的意义是:
1
a
m n
=
= n am (a>0,m,n∈N+,且 n>1).
3.0 的正分数指数幂等于 0 ,0 的负分数指数幂 没有意义 .
二、有理数指数幂的运算性质 1.aras= ar+s ; 2.(ar)s= ars ; 3.(ab)r= arbr . 三、无理数指数幂 无理数指数幂 aα(a>0,α 是无理数)是一个 确定的实数 ,有理数指数幂的运算 性质对于无理数指数幂同样适用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[课时作业] [A 组 基础巩固]
1.化简[3
(-5)2]3
4
的结果是( )
A .5 B. 5 C .- 5 D .-5
解析:[
3
(-5)2]34
=(
352)34
=5
2334
⨯=512
= 5.
答案:B 2.设a 12
-a 12
-=m ,则a 2+1
a 等于( )
A .m 2-2 B.2-m 2 C .m 2+2 D .m 2
解析:对a 12
-a
12
-=m 平方得:a +1
a -2=m 2,
∴a 2+1a =a +1
a =m 2+2. 答案:C
3.222的值是( ) A .278
B.258
C .234
D .232
解析:222278
. 答案:A
4. (112)0-(1-0.5-2
)÷(278)23的值为( )
A .-13 B.13 C.43
D .73
解析:原式=1-(1-1⎝ ⎛⎭⎪⎫122)÷⎝ ⎛⎭⎪⎫322
33⨯ =1-(-3)÷
⎝ ⎛⎭⎪⎫322
=1+3×49=1+43=73. 答案:D
5.若102x =25,则10-x =( ) A .-1
5 B.15 C.150
D .1625
解析:102x =(10x )2=25,∵10x >0,∴10x =5,10-x =110x =1
5. 答案:B
6.已知102m =2,10n =3,则10-2m -10-n =________. 解析:由102m =2,得10-2m =1102m =1
2; 由10n =3,得10-n =110n =1
3; ∴10-2m -10-n =12-13=1
6. 答案:16
7.已知2x =(2)y +2,且9y =3x -1,则x +y =________. 解析:2x =(2)y +2=22
2
y +,
9y =32y =3x -1, ∴⎩⎪⎨⎪⎧
x =y +22,2y =x -1,解得{
x =1
y =0,∴x +y =1.
答案:1
8.已知x +y =12,xy =9,且x <y ,则
1122112
2
x y x y
-+的值是________.
解析:∵
112
2112
2
x y x y
-+=
()12
2()
x y xy x y
+--
又∵x +y =12,xy =9,∴(x -y )2=(x +y )2-4xy =108. 又x <y ,∴x -y =-108=-6 3. 代入化简后可得结果为-3
3. 答案:-3
3 9.化简求值:
(1)(279)0.5+0.1-2+⎝ ⎛⎭
⎪⎫210272
3--3π0
+3748; (2)⎝ ⎛
⎭
⎪⎫-338 2
3
-
+(0.002)
12
-
-10(5-2)-1+(2-3)0.
解析:(1)原式=⎝ ⎛⎭⎪⎫2591
2+10.12+⎝ ⎛⎭
⎪⎫642723
--3+3748=53+100+916-3+3748=100.
(2)原式=(-1)
23
-×(338)23-+(1500)1
2-105-2+1
=⎝ ⎛⎭
⎪⎫2782
3-
+(500) 12
-10(5+2)+1
=49+105-105-20+1=-1679. 10.完成下列式子的化简: (1)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (2)23a ÷46a ·b ×3b 3.
解析:(1)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c . (2)原式=2a 1
3÷(4a 16b 16)×(3b 32
)
=12a 1136-b 16-·3b 3
2=32a 16b 43.
[B 组 能力提升]
1.若S =(1+2
132
-)(1+2
116
-
)(1+2
18
-
)(1+2
14
-
)(1+2
12
-
),则S 等于( )
A.1
2(1-2132-)-1
B.(1-2
1
32-
)-1
C .1-2132
-
D .1
2(1-2132-)
解析:令2
132
-=a ,则S =(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16).
因为1-a ≠0,所以(1-a )S =(1-a )(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16) =(1-a 2)(1+a 2)(1+a 4)(1+a 8)(1+a 16) =…=1-a 32=1-2-1=1
2.
所以S =12(1-a )-1
=12(1-2132-)-1.故选A.
答案:A
2.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1
D .x x -1
解析:∵x =1+2b ,∴2b =x -1,∴2-b =12b =1
x -1,
∴y =1+2-b =1+1x -1=x x -1
. 答案:D 3.已知10a
=212
-
,10b
=3
32,则1 0
32+4
a b
=________.
解析:1032+4
a b
=(10a )
2
·(10b )3
4
=(2
1
2-
)2
·(3213
)34
=2
-1
·254=21
4
.
答案:214
4.若x 1,x 2为方程2x =(1
2)1+1x -的两个实数根,则x 1+x 2=________.
解析:∵2x
=(12)1
+1x
-=21-1x ,
∴x =
1
1x
-,∴x 2+x -1=0. ∵x 1,x 2是方程x 2+x -1=0的两根, ∴x 1+x 2=-1. 答案:-1 5.已知a =3,求1114
4
2
1124
1111a
a
a
a
+
+
+
++-+ 的值 解析:
1114
4
2
1124
1111a
a
a a
+
+
+
++-+ 1114
4
2
2241(1)(1)
1a
a a a
+
+
++-+ 112
2
224
111a a
a
++
+-+ 112
2
4
41(1)(1)
a
a a ++
+-+ =41-a +41+a =81-a 2
=-1. 6.已知x =12(51n
-51
n -),n ∈N +,求(x +1+x 2)n 的值. 解析:∵1+x 2
=1+14(51n
-51
n -)2
=1+14(52n
-2+52
n -)
=1 4(52
n+2+5
2
n
-
)
=[1
2(51
n+5
1
n
-
)]2,
∴1+x2=1
2(51
n+5
1
n
-
),
∴x+1+x2
=1 2(51
n-5
1
n
-
)+
1
2(5
1
n+5
1
n
-
)
=51n.
∴(x+1+x2)n=(51n)n=5.。